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Sensing and cooling of a nanomechanical resonator with an electron beam

stimulated internal feedback and a capacitive force
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F-69622, LYON, France.
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A model for the cooling properties of a nanocantilever by a free electron beam is pre-

sented for a capacitive interaction. The optimal parameters for position sensing and

cooling applications are estimated from previous experimental conditions. In partic-

ular, we demonstrate that a purely capacitive force and an electron beam stimulated

internal feedback can lower the temperature of a nanocantilever by several orders of

magnitude in striking contrast with the conventional electrostatic damping regime.

We propose a step by step protocol to extract the interdependent parameters of the

experiments. This work will aid future developments of ultra sensitive force sensors

in electron microscopes.

a)Electronic mail: anthony.ayari”@”univ-lyon1.fr
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I. INTRODUCTION

The recent works on nanoelectromechanical systems (NEMSs) have led to considerable

improvements of their mass1 and force2 sensing limit. Such a progress was the result of

a careful control of the coupling strength with the detection probe, yielding to a trade-off

between the need to increase the signal from the small amplitude of the NEMS vibration

and a limitation of the concomitant increase of the probe perturbations such as heating,

additional noise and non-linear effects. To the opposite, a sufficiently strong and efficient

perturbation due to the probe can produce a backaction force that induces a cooling of a

NEMS down to the quantum regime3 and be used for coherent electron-photon conversion4

and quantum communication5. Such perturbations can be performed by an external feedback

loop6 with an amplifier and a phase shifter but an interesting feature of NEMS devices is

the possibility to form an internal feedback loop7–9 where the active component is hidden

among the intrinsic elements of the device and their coupling.

The probe coupling for position sensing and backaction cooling has been extensively

studied in the framework of gravitational waves10 and optomechanics11,12 where photons

are used as a probe of the mechanical vibrations. To the contrary the coupling between an

electron beam and a nanoresonator has been little studied and is hardly ever used for NEMS

(see ref .13–16 and references therein) despite the fact that focused free electron beams have

a higher spatial resolution than lasers and are essential for imaging applications. A known

drawback of using an electron beam on a nanostructure is the deposition of amorphous

carbon17 due to the dissociation of organic residue present in the SEM chamber. However

this contamination can be prevented by in situ plasma cleaning, cryopumping or using a

load lock to keep the chamber clean. Another issue is the capacitive force induced by the

charging of the NEMS by the electron beam. This force can result in the collapse of the

nanostructure if the vibrating part is too close to a counter electrode. Apart from damaging

the sample, it is usually considered that a capacitive force cannot lead to cold damping11

without an external feedback18. An increase of the mechanical damping18,19, sometimes

called electrostatic damping, arises when a DC voltage is applied to a NEMS cantilever.

This damping leaves the temperature of the mechanical mode unchanged in contrast to the

usual coupling to a red detuned cavity. From this, it might mistakenly be inferred that the

internal feedback loop formed by a NEMS and the capacitive force induced by an electron
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source will also lead to damping without cooling. In fact the type of applied bias and the

spatial dependence of the electrical components play an equally important role to predict

the behavior of such systems. For example, it has been shown that a motional resistance can

lead to self-oscillations in capacitive NEMSs20 or hysteresis and memresistive behavior in

a carbon field emitter21. Recently, it was also demonstrated that the capacitive dynamical

backaction on a NEMS has an opposite effect if an AC voltage is applied instead of a DC

voltage.22,23

In this work, we present a more in-depth analysis of the interaction with a free electron

beam compared to our previous work14. An analytical model with a purely capacitive back-

action force is developed in order to clarify the competition between electrostatic damping

and electron stimulated cold damping. In particular, It will be shown that although elec-

trostatic damping and electron stimulated cold damping come from the same capacitive

force, retarded by the same mechanism, their respective effect can be dramatically different

because in one case the electrical circuit is voltage driven whereas in the other it is current

driven. Our analysis, will highlight the fact that a) in the electrostatic damping regime,

the mechanical system is submitted to an additional stochastic force originating from the

Johnson-Nyquist noise of the resistor in thermal equilibrium with the room temperature

bath; b) in the electron stimulated cold damping regime, this stochastic capacitive force

comes from the noise of the electron gun and for low current the effective temperature of

this source can be lower than room temperature. The optimal conditions for cooling and

self-oscillations are estimated based on previous experiments and confirmed by numerical

simulations. Experimentally accessible data usually present an interdependency on the dif-

ferent degrees of freedom that makes difficult the estimation of the experimental parameters.

Therefore, a thorough experimental protocol is established in order to extract key param-

eters from data. The performances and the limitations of this free electron beam position

sensor is then studied and compared to other electronic sensing techniques in NEMS24 such

as quantum point contacts25, current mixing with a single electron transistor26 and field

emission8,27–29.
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II. ANALYTICAL MODEL

A. Mechanical equations

We consider a single clamped nanowire (NW) in a scanning electron microscope (SEM)

environment. The SEM beam is perpendicular to the resonator and focused at its free end

(see figure 1 a). The model can be easily extended for the case where the electron spot is

at a different position along the nanowire. The nanocantilever can vibrate in the transverse

direction along two perpendicular mechanical polarizations. We suppose that one of these

polarizations has been pre-aligned perpendicularly to the electron beam. The electron beam

interacts with the nanowire and exerts an actuation force Fe on the nanocantilever with

both a deterministic and a stochastic component. The mechanical dynamical equation is:

m(
d2

dt2
+ Γ0

d

dt
+ ω2

0)(x̄+ x) = Fe + FT (1)

where m is the effective mass, t is the time, ω0/2π is the resonance frequency, Γ0 is the

damping, x̄ is the averaged displacement perpendicular to both the nanowire and the SEM

beam, x is the instantaneous additional displacement, FT is the stochastic thermal force.

We will limit our analysis to a one dimensional problem and suppose that the two polar-

izations are uncoupled. There is no mechanical coupling such as observed in ref.30 because of

the small amplitude of vibration and no coupling due to the electron beam force. When the

validity of this last assertion is not satisfied experimentally, this can lead to richer dynamical

effects, such as those observed in ref.31. The physical effect, we want to point out here can be

integrated into a 2D model but for simplicity we will neglect these couplings. The interaction

with electrons can be described by three different backaction forces : a capacitive force, a

thermal force stemming from the electron kinetic energy absorbed by the NW and a direct

momentum transfer force. In ref14 we showed that by changing the capacitive environment,

we drastically modified the way the nanowire interacts with the electron beam and were

capable to reverse the conditions where self-oscillations take place. Such an effect cannot

be explained by thermal or momentum transfer forces. Despite apparent system symmetry,

the experimental capacitive environment is not symmetric, so that moving the nanowire to

one direction will increase C, while moving it to the other direction will decrease C. The

capacitive force can also lead to a coupling of polarizations if the force gradients are not

parallel to the polarization directions but this only induces a change in polarization axes
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FIG. 1. a) Geometry of the experimental set up b) Schematic of the electrical circuit with the

different components. The double line arrows represent the free electron currents. The horizontal

arrows indicate the direction of motion of the nanowire apex and the focal point of the primary

electron beam.

and doesn’t affect the dynamics.

The capacitive force can be written as:

Fc = C ′(Ū + U)2/2 (2)

where C’ is the derivative of capacitance with respect to x, Ū is the average voltage at

the nanowire apex and U is the instantaneous additional voltage. C’ is the parameter that
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controls the breaking of spatial symmetry of the system. In the rest of the text, C’ will be

considered as negative without loss of generality.

B. Electrical equations

The voltage at the apex is governed by the Kirchhoff’s circuit laws and the way the SEM

beam current Ib is divided between the different electrical elements of the system (figure 1

b). Primary electrons from the SEM beam can interact with the nanowire. This interaction

leads to either an absorbtion of the primary electrons by the nanowire, measured with an

electrometer, or an emission of the nanowire electrons into vacuum. The low energy emitted

electrons are called secondary electrons emission and are collected by a SED (secondary

electron detector). The remaining high energy free electrons are mainly the transmitted

electrons, the Auger electrons and the backscattered electrons. The electron current inside

the nanowire is controlled by three impedances in parallel : the resistance of the wire, the

capacitance of the apex and the ”motional impedance” of the mechanical resonator.

Ib = IS + INW + IH + Ic + Im (3)

where INW is the current flowing from the nanowire apex to the tungsten tip, IH is the high

energy free electron current, Ic = CU̇ is the capacitive current, Im = C ′Uẋ the motional

current28 and IS is the secondary electron current.

INW depends on the nanowire resistance R and is given by the Ohm’s law :

INW =
U + Ū

R
(4)

Ib will be considered as constant, i.e. independent of x and U. IH depends on the thickness

of the material and so depends strongly on the relative positions of the nanowire x̄ and of the

focused beam xb. Moreover the voltage at the apex can influence the amount of transmitted

current for instance by slightly deflecting the incident electron beam. For a fixed electron

beam position this current is given by :

IH(x+ x̄− xb, Ū + U) ≈ IH(x̄− xb, Ū) +
∂IH
∂x

(x̄− xb, Ū)x+
∂IH
∂V

(x̄− xb, Ū)U (5)

As well, the secondary electron emission depends on the volume and the shape of the

nanowire, both related to the nanowire position x. It depends also on the apex voltage
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since the secondary electrons have a low energy and can be recaptured with a positive

voltage:

IS(x+ x̄− xb, Ū + U) ≈ IS(x̄− xb, Ū) +
∂IS
∂x

(x̄− xb, Ū)x+
∂IS
∂V

(x̄− xb, Ū)U (6)

By discarding the constant terms and performing a Fourier transform, the electrical dynam-

ical equation 3 becomes :

Û = −Z
∂I

∂x
x̂+ ZĨ (7)

where Û (respectively x̂) is the Fourier transform of U (respectively x), Z is the electrical

impedance of the detection circuit, ∂I
∂x

is the electromechanical transduction and Ĩ is the

total current noise and

1

Z
=

1

R
+

∂IS
∂V

+
∂IH
∂V

+ iωC (8)

∂I

∂x
=

∂IH
∂x

+
∂IS
∂x

+ iωC ′Ū (9)

Ĩ = Ĩb(ω) + ĨS(ω) + ĨH(ω) +
Ũ(ω)

R
(10)

where ω is the angular frequency, Ĩb is the shot noise of the incident electron beam, ĨS is the

secondary electron current noise, ĨH is the current noise from IH and Ũ is the Johnson noise

coming from the resistor. A hidden assumption in this development, is that the change in

current is instantaneously related to the change in position and voltage, so that the spatial

and voltage derivatives of the current are independent of the frequency. It means for instance

that the secondary electron emission process has no delay. We see no reason to doubt the

validity of this assumption in the range of frequency and amplitude of vibration considered

here. The time scale of the secondary emission is faster than 1 ns, the time scale of the

electro-mechanics is usually slower than 1µs and the amplitude of vibration is smaller than

the nanowire diameter or the electron beam width.

C. Effective dynamical equation

The effective electro-mechanical equation of motion can now be expressed using Eq. 1,

Eq. 2 and Eq. 7:

χ−1
e (ω)x̂ = F̃ba + F̃T (11)
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where χe(ω) is the effective mechanical susceptibility including the backaction capacitive

force and F̃ba is the backaction noise force :

χ−1
e (ω) = m(ω2

0 − ω2 + iΓ0ω) + C ′ŪZ
∂I

∂x
(12)

F̃ba = C ′ŪZĨ (13)

The last term in Eq. 12 is the expression of the complex backaction rigidity kba due to the

interaction of the resonator with the electron beam. This interaction can result in a change

in the resonance frequency ωe/2π, a change in the damping Γe and a resonator effective

temperature Te different from the thermal bath at T0.

D. Effective physical parameters

The effective temperature Te of the cantilever can be obtained from the equipartition

theorem :
1

2
kBTe =

1

2
mω2

e < x2(t) >=
1

2
mω2

e

1

2π

∫

∞

0
|x̂|2(ω)dω (14)

and the effective resonance angular frequency and effective damping are :

ω2
e = ω2

0 +
C ′Ū

m
Re

(

Z
∂I

∂x

)

(15)

Γe = Γ0 +
C ′Ū

mω
Im

(

Z
∂I

∂x

)

(16)

So

kBTe ≃
mω2

e

2π
(F̃ 2

T + F̃ 2
ba)
∫

∞

0

dω

m2[(ω2 − ω2
e)

2 + (Γeω)2]
≃ F̃ 2

T + F̃ 2
ba

4mΓe

(17)

where the following hypothesis has been made : the resonance is sufficiently narrow (Γe <<

ωe) so that the noise can be considered as white, the electrical impedance as constant and

the effective susceptibility as a Lorentzian function.

According to the fluctuation dissipation theorem, the power spectrum density of the

stochastic thermal force is :

SFT
= F̃ 2

T = 4kBT0mΓ0 (18)

and from Eq. 10 and 13 the power spectrum density of the backaction noise force is :

SFba
= F̃ 2

ba = (C ′Ū | Z |)2(2eIb + SIS + SIH +
4kBT0

R
) (19)
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The expression of the effective temperature in Eq. 17 can be rewritten as :

Te

T0
=

1 + Γ0/ΓU + eṼ /4kBT0

1 + Γ0/ΓU + λC/λe

(20)

ΓU =
R(C ′Ū)2

m

1

1 + (ωeRC)2

eṼ = R(2eIb + SIS + SIH )

λC = − C

C ′

λe =
Ū

R(∂IS
∂x

+ ∂IH
∂x

)
=

ĪNW

∂INW

∂x

where we have neglected ∂IS
∂V

+ ∂IH
∂V

. It appears that the effective temperature depends

on: i) ωeRC the product of the effective angular frequency by the charge relaxation time;

ii) the ratio between the intrinsic damping Γ0 and the electrostatic damping ΓU ; iii) the

ratio between the current noise energy eṼ and the thermal energy. iv) the ratio between

the characteristic length of capacitance variation λC and the characteristic length of free

electron variation λe.

III. RESULTS AND DISCUSSION

A. Discussion on the different regimes

The complex backaction rigidity in Eq. 12 is the product of the electrical impedance and

the transduction coefficient. This force strongly depends on the frequency because of the

different electrical responsivity regimes and the competition between several transduction

mechanisms. In this study, we are mainly concerned by the dynamics around the resonance

frequency. This frequency needs to be compared to the electrical angular frequency cut-off

1/RC. The effects of the dynamical backaction force are illustrated in Fig. 2 by the solid

line curves, in the case where eṼ /4kBT0 = 0.5 and λe = λC , i.e. the transduction strengths

of the capacitance and of the free electrons are equal. Although these parameters are not

optimal for cooling applications, it illustrates the general trend of the forces originating from

the free electron and the electrostatic damping.

At high resonance frequency, the real part of the backaction dominates, mainly inducing

a tuning of the effective resonance frequency and leaving the damping unchanged whatever

the sign and the amplitude of the free electron transduction. It can be noticed that the
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FIG. 2. Dynamical regimes of a nanowire interacting with a free electron beam and a purely

capacitive force (solid lines) and electrostatic damping regime (dashed lines) as a function of the

resonance frequency, a) Evolution of the real part of the backaction rigidity, b) Evolution of the

imaginary part of the backaction rigidity, c) Evolution of the damping, d) Evolution of the effective

temperature.

imaginary part of the backation rigidity is maximum at the frequency 1/RC but it is at a

lower frequency that the effect of the backation on the damping and the effective temperature

is maximum.

At low resonance frequency, the backaction induces strikingly different effects whether λe

is higher or lower than λC . For |λe| << |λC|, the situation is close to the case of electrostatic

damping18,19 where the effective damping increases without cooling the resonator and the

frequency tuning is negligible. The difference comes from the additional noise from the free

electrons. In the absence of this noise (see the curves in dashed line in Fig. 2 in the case

where the electrostatic damping equals the intrinsic damping), the resonator is submitted

to a thermomechanical noise and a Johnson noise from the resistor. When a DC voltage

is applied, the resonator damping is higher due to the dissipation in the resistor (Fig. 2

c)) but at the same time the Johnson noise generates a noisy capacitive force. This results
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in an effective temperature of the resonator strictly equal the the bath temperature as the

resistor is also in equilibrium with the bath (Fig. 2 d)). To the contrary, the presence of

the free electron noise, as well as a DC current flowing through the nanowire, generates an

additional noisy capacitive force that is not compensated by a change in damping. This

additional noise is responsible for an increase of the effective temperature and the higher

the free electron current, the higher the temperature.

The case λe/λC < −1, was studied in Ref.14 where it was shown that the electron beam

can inject energy into the nanocantilever and achieve a self sustained mechanical oscillation

regime. As the sign of the free electron transduction can be changed easily by illuminating

one side or the other of the nanowire, the sign of the backaction force will also change and

thus energy can also be extracted from the resonator. If the energy extraction is higher than

the added noise by the free electron current and λe/λC
>∼ 1, cooling below room temperature

is possible as shown in solid line in Fig. 2 d). Frequency tuning is possible at low resonance

frequency but with an opposite sign as the electrostatic damping tuning at high frequency

(Fig. 2 a)).

B. Experimental protocol

The estimation of the expected effective temperature and the determination of the dy-

namical regimes requires one to know the value of the spatial and voltage derivatives of the

current. A rigorous measurement of the backaction force requires to measure the x depen-

dance of both the secondary electron current and the transmitted current, especially since

these two current gradients have opposite signs and might cancel each other. For instance,

it is possible to modify the yield of secondary electron emission by changing the acceleration

voltage. At some specific values of the voltage, there exists a position where the number of

absorbed electrons is equal to the number of secondary emitted electrons. In this situation,

the secondary electron current and its spatial derivative are not zero whereas no backaction

should take place as the voltage at the apex is zero. Moreover, it is necessary to sweep

only one variable while maintaining the others constant. However, a change of the voltage

will usually induce a change in current but also a change in position due to the change of

the electrostatic deflection force. Therefore in the following, an experimental protocol will

be defined in order to obtain a reliable estimate of the experimental parameters from our
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previous experiments8,14,29.

1. DC current and voltage

The experiments were performed in a Hitachi S800 or a Orsay Physics e-CLIPSE. The

acceleration voltage was typically in the tens of kV and the beam current was about 100 pA

(measured with a faraday cup). By focusing the electron beam at the apex of a SiC nanowire

electrically connected to a Keithley 6517 electrometer, we measured the DC current flowing

through the nanowire. Measuring IS and IH is rather difficult. A measurement of IS can

be done with a secondary electron detector but usually the detector collects a limited part

of the solid angle of emission and can give angle-dependent, spurious results if the sample

surface is not flat. IH can be measured if an additional Faraday cup is properly positioned

below the sample. A measurement of INW is simpler and will give in a single measurement

the sum of IS and IH . By moving the electron beam spot along the nanowire diameter, we

observe a maximum current at the position where the beam crosses the thicker part of the

wire. In a range of 10 nm around the position of maximum current, this maximum doesn’t

change significantly (i.e. lower than 5% of variation). The maximum current INW flowing

through a SiC nanowire is lower than 50 pA. It varies from sample to sample and can be as

low as 2 pA. From the sign of the current, we were able to determine that the electrons flow

from the tungsten tip to the apex, i.e. in the case of SiC, more electrons are emitted from

the nanowire apex than absorbed.

The voltage is obtained indirectly by estimating the nanowire resistance by the method

detailed in ref.8,29. The typical resistance is about 1 GΩ and in some exceptional cases it

can reach up to 1 TΩ but we never performed extensive experiments on such highly resistive

samples. The typical DC voltage Ū is lower than 1V.

2. Voltage derivative of the current

The voltage derivative of the current can be measured by placing the electron beam in

the region of the nanowire where the spatial derivative of the current is zero. As already

mentioned above, by slowly moving the electron beam in the region where the beam crosses

the thicker part of the wire, INW is constant in a range of at least 10 nm. So the variation
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of INW in this region is :

δINW =
δU

R
= (

∂IS
∂x

+
∂IH
∂x

)δx+ (
∂IS
∂V

+
∂IH
∂V

)δU = 0 (21)

as Ib is constant and Ic ant Im are zero for slow displacements (i.e. ω = 0). So δU = 0

and ∂IS
∂x

+ ∂IH
∂x

= 0 in this region. Then, the position of the beam is fixed and a DC voltage

is applied to the tungsten tip. At this position a change of INW with the applied voltage

gives the voltage derivative of the sum of IS and IH as long as the nanowire deflection due

to the capacitive force doesn’t exceed 10 nm. This hypothesis can be easily checked by

taking SEM images of the entire nanowire first at zero voltage and various beam currents in

order to determine the maximum beam current allowed that does not induce electrostatic

bending; then for several sample voltages to measure its bending. The deflection depends

on the square law of the voltage, so the highest acceptable voltage can be easily deduced.

In our experiments, ∂IS
∂V

+ ∂IH
∂V

never exceeds 1 pA for a voltage change of 1V. This gives

an effective differential resistance above 1 TΩ. We deduce from this estimation that in the

expression of the impedance Z in Eq. 8 the voltage derivative of the free electron currents

can be safely ignored compared to the sample resistance.

In the regions of the nanowire where the spatial derivatives of the currents are not zero, the

voltage derivative cannot be measured independently. However, it is reasonable to consider

that ∂IS
∂V

+ ∂IH
∂V

is smaller at the edge of the nanowire than in the middle because INW and

thus Ū are smaller.

3. Spatial derivative of the current

As the typical current flowing through the nanowire is of the order of several tens of pA

and the spatial range where the current changes significantly at the edge is about 10 nm,

a rough estimate of the spatial derivative of the current is 1pA/nm. This value is an order

of magnitude higher than the spatial derivative of the field emission current in ref.29 for the

same DC current.

4. Other physical parameters

The method to estimate C and C’ has been explained elsewhere29. The capacitance is

usually around 1 fF which gives an electrical frequency cut-off between 1 kHz and 1 MHz.

13



So, in our experiments ωeRC can range from ∼ 0.1 (Doppler regime) to above 10 (resolved

side band regime).

|C ′| is lower or of the order of 1 pF/m. λC is approximately of the order of the distance

between the tip and the counter electrode and is independent of the beam current. λe

strongly depends on the electron beam position and is rather independent of the beam

current as Ū and the spatial derivative of the current are both proportional to the current.

The ratio eṼ /4kBT0 dominates at high beam current and tends to increase the effective

temperature. An estimation of the total current noise will be rather crude as it involves

many different processes not easily accessible experimentally. The SEM beam current will

be supposed to be shot noise limited. The current noise measured on the SED was white in a

frequency range around the resonance frequency and proportional to the collected secondary

electrons with a Fano factor between 2 and 3 (i.e. 2 or 3 times noisier than a pure shot

noise). Concerning ĨH , it can be reasonably guessed that it will also be super Poissonian

with a similar Fano factor and partially correlated with the electron beam shot noise.

C. Estimation of the effective temperature

At this stage, all the required parameters for the model have been reasonably estimated.

Now, analytical and numerical calculations can be performed in order to illustrate the

strength of the electron beam interaction in a typical example. We will consider a SiC

nanowire with a Young’s modulus of 500 Gpa, a density of 3210 kg/m3, a quality factor of

10 000, a length of 30 µm and a radius of 30 nm. Thus, the mass is equal to 8.2 ·10−17 kg

and the resonance frequency is equal to 128 kHz. The capacitance comes from a metallic

plate parallel to the nanowire at a distance of 10 µm. So an electrostatic calculation gives

C = 0.26 fF and C’ = 2.03 pF/m at 0 V. The nanowire resistance is 3 GΩ. The total beam

current is 100 pA with a width of 10 nm and Gaussian profile. The yield of electron absorp-

tion is chosen to be 10 % in the center where the thickness is higher, and is proportional to

the nanowire thickness. On the edge of the nanowire, for INW=6 pA, its spatial derivative

equals 0.3 pA/nm. As a safe estimate, we will consider that the total current noise is ten

times the shot noise of the total incident beam current. The true noise value is probably

lower, so the effects will be stronger experimentally than in our calculations.

With this choice of parameters, the calculation of the ratios involved in Eq. 20 gives: i)
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ωeRC ≈ 0.62; ii) Γ0/ΓU ≈ 1700, the electrostatic damping is negligible; iii) eṼ /4kBT0 ≈ 1.8,

the current noise is of the order of the thermal noise but is negligible compared to the

thermomechanical noise (1700 >> 1.8) because the capacitive transduction is too low. So

the electron beam doesn’t induce additional noise; iv) λC/λe ≈ 5000, the system is in the

strong free electron transduction regime inducing an increase of the damping. Then, the

effective temperature according to Eq. 20 is 4 times lower than the bath temperature at

this position, Te = 75 K for a bath at 300 K.

D. Numerical simulations

We performed numerical simulations with a self-consistant determination of the apex

voltage, position, capacitance and its spatial derivative as a function of the beam position.

Fig.3 a) represents the profile of the current absorbed by the nanowire for a Gaussian

incident beam at different positions perpendicular to the length of the wire. On one edge

of the nanowire, the electron beam reduces the damping leading to self-oscillation and the

effective temperature diverges as observed experimentally. On the other edge, the effective

temperature is reduced and the value of Teff is in good agreement with the analytical

calculation. This calculation demonstrates that for parameters compatible with typical

experiments, the cooling effect mediated by a capacitive force is important. This is the

main result of this article.

With this model, it is possible to identify the influence of each physical parameters.

For instance in Fig. 3 b), we swept the nanowire resistance and beam current to look for

the optimal parameters for a given position of the beam. In this conditions, λC and λe are

roughly constant and the optimum is a trade off between a high voltage for a high capacitive

transduction and a low current to limit the effective heating from the electrical noise (eṼ

term). We obtained that a nanowire with a resistance of 4 GΩ and a beam current of 3 nA

can be cooled down by two orders of magnitude (3 K).

The most important parameter to optimise is the position of the electron beam. In

Fig. 3 a), it can be seen that contrary to what could be intuitively guessed, the optimal

cooling is obtained for a beam position different than the one where the spatial derivative

of the current is maximal. A more careful analysis shows that optimizing the beam position

requires to maximize λe. For an electron beam with a Gaussian profile at fixed INW , it
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FIG. 3. a) Current flowing through the nanowire (doted line) and ratio of the effective temperature

on the bath temperature (solid line) as a function of the position of the electron beam for an incident

beam current of 100 pA. The red circle indicates the chosen position of the map in the figure b.

The shaded area represents the self-oscillation regime. The vertical dashed line indicates the beam

position where the spatial derivative of the current is maximal. The vertical dotted line indicates

the beam position where the cooling is maximal. b) Evolution of the effective temperature as a

function of the resistance and beam current. The white circle indicates the parameters used for

the profile in the figure a.

turns out that λe can be increased indefinitely. An increase of the difference between the

beam position and the nanowire center position and a concomitant increase of Ib in order to

maintain the absorbed current INW constant, will lead to a higher value of λe. In other word,

the further away the beam, the higher the cooling. However, experimentally, in most SEMs,

increasing the current is done by increasing the acceleration voltage or increasing the spot

size. Increasing the voltage might reduce the number of absorbed electrons and increasing the
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spot size will strongly decrease λe. Indeed, the reason why λe is an order of magnitude better

than what can be obtained in field emission NEMS8,29 comes essentially from the SEM high

resolution. Optimizing the beam current and position is strongly dependent on the electron

microscope performances and material properties. In our SEMs, λe is typically around 10

nm and can probably be improved by one order of magnitude. Then, it would be comparable

to the characteristic length obtained at low temperature in quantum point contact (QPC)

mechanical sensors25,32 or wide band scanning tunneling microscopes (STM)33 ranging from

2.5 nm down to 0.1 nm. However, using a SEM is as flexible as the off-board detection of

ref.32 and its main advantage is that it doesn’t require a cryogenic environment. Reaching

ground state cooling seems nevertheless rather hard with this technique and would definitely

require to work with a transmission electron microscope.

E. Motion sensing

If the electron beam is used for position sensing instead of cooling, the optimal conditions

are different. The expression of the secondary electron current from Eq. 6 reveals that using

this current as a position sensor like for instance in ref.13,14 might be problematic as it mixes

mechanical and electrical information. IS depends not only on x but also on U. x and U

are two independent dynamical variables related by the electromechanical equations. By

performing a Fourier transform of Eq. 6, leaving aside the noise terms and using Eq. 7, the

relation between the secondary current and the nanowire position becomes :

ÎS ≈ ∂IS
∂x

x̂− ∂IS
∂V

Z
∂I

∂x
x̂ (22)

This relation shows that ÎS and x̂ are proportional but the coefficient of proportionality

might depend on the frequency of interest since Z and ∂I
∂x

are frequency dependent. For

instance, calibrating the displacement by performing a line mode scan (i.e. slowly sweeping

the electron beam along a line perpendicular to the nanowire) while recording the secondary

emission current might be incorrect when studying the mechanical response at high fre-

quency. Moreover, the second term in Eq. 22 indicates that in the middle of the wire where

∂IS
∂x

is expected to cancel out, measuring the displacement is in principle still possible as the

electromechanical transduction ∂I
∂x

is non zero and dominated by the C’ term. Such posi-

tion might be interesting, if one wants to reduce the backaction force of the beam. For our
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sample, this term is negligible as |Z∂IS/∂V | << 1 and plays a role only for highly resistive

samples R >∼ 1TΩ or for a higher beam current.

Now, if we take into account the noise terms in Eq. 6, 7, 11 and 13, the Fourier transform

of the mechanical displacement is

ÎS = ĨS(ω) +
∂IS
∂x

χe(ω)C
′ŪZĨ +

∂IS
∂x

χe(ω)F̃T (23)

where the voltage derivative of IS has been neglected. If we follow the same line of reasoning

as in optomechanics10,11, the first term on the right hand side of Eq. 23 is the imprecision

noise current and the second term is the backaction noise force. The third term is the

quantity we need to measure. These terms are usually compared when referred back to the

input i.e. by dividing them by the transduction ∂IS
∂x

. For the previous typical sample we

used to calculate the effective temperature in Fig. 3, the thermomechanical motion at the

resonance is 1 nm/
√
Hz without the electron beam and 250 pm/

√
Hz when the beam is at

the optimal cooling position. The power spectrum density of the imprecision displacement

noise can be expressed as :

Simp
x =

SIS

(∂IS
∂x

)2
≃ 2eαλ2

S

Ibη
(24)

where λS is the the characteristic length of secondary electron current variation and will be

considered as close to λe, α is the Fano factor expressing the excess noise compared to the

shot noise, η is the yield of conversion of incident electron into secondary electrons. We will

use the same conservative estimate for the noise as previously so α = 10 and fix the yield

at 10 % as before. As expected the imprecision noise decreases when the incident beam

current increases. For our typical example, the imprecision displacement noise is lower than

12 pm/
√
Hz.

The power spectrum density of the backaction displacement noise is

Sba
x (ωe) ≃

(

C ′R2η

mωeΓe

)2

2eαI3b (25)

where we made the supplementary approximation | Z |= R. For our typical example, the

backaction displacement noise is 16 pm/
√
Hz very close to the imprecision displacement

noise and negligible compared to the thermomechanical noise. So this configuration is close

to the optimal beam current value as increasing further the current would reduce the impre-

cision noise but will increase the backaction noise and increase the damping making detection

more difficult. A rigorous analytical determination of the optimal current would require to
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estimate the cross correlation between the noise current and the backaction noise and will

depend on the frequency of interest as in optomechanics12(for example, at the resonance

Γe is in our case proportional to I2b ). This optimum can be obtained by minimizing the

ratio of the sum of the power spectrum density of the imprecision displacement noise, the

backaction displacement noise and their cross correlation, by the power spectrum density

of the thermomechanical noise. The total additional noise in our typical example is of the

order of several tens of pm/
√
Hz. It is still far from the best detection methods involving

electrons in vacuum such as quantum point contacts25 and STM33 which have a sensitivity

in the fm/
√
Hz. However, we consider our estimation as very conservative and despite this,

the noise is low enough to measure the thermomechanical noise with at least 20 dB of sig-

nal to noise ratio. Our total additional noise is comparable to calculations for the optimal

condition in current mixing in single electron transistor double clamped carbon nanotubes26

at low temperature and probably close to the performances of an off-board QPC at low

temperature32.

IV. CONCLUSIONS

We showed analytically that the capacitive interaction between a scanning electron mi-

croscope electron beam and a SiC nanowire mechanical resonator can have a strong influence

on the effective temperature of the resonator. Our numerical simulations with parameters

based on experimental conditions indicate that lowering the temperature below 4K can be

easily obtained. Interestingly, the beam position where maximum cooling efficiency takes

place is dependent on the total beam current and is not obtained where the spatial variation

of the current is maximum. The importance of measuring the absorbed electron current

on the nanowire instead of the secondary electron current has been highlighted to properly

measure the backaction force from the beam. We demonstrated that secondary electrons

can be used as position sensors if the induced voltage is not too important. A beam current

of 100 pA is close to the optimal condition where the backcation noise force and the impreci-

sion noise are minimized and have a value of the order of 10 pm/
√
Hz. Some improvements

are still necessary to compete with other techniques using vacuum electrons but a careful

choice of material parameters and geometry as well as the use of a transmission electron

microscope may strongly improve future results.
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