
HAL Id: hal-01858180
https://hal.science/hal-01858180v1

Preprint submitted on 20 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimal XP Algorithm for Hamiltonian Cycle on
Graphs of Bounded Clique-Width.

Benjamin Bergougnoux, Mamadou Moustapha Kanté, O-Joung Kwon

To cite this version:
Benjamin Bergougnoux, Mamadou Moustapha Kanté, O-Joung Kwon. An Optimal XP Algorithm for
Hamiltonian Cycle on Graphs of Bounded Clique-Width.. 2018. �hal-01858180�

https://hal.science/hal-01858180v1
https://hal.archives-ouvertes.fr

AN OPTIMAL XP ALGORITHM FOR HAMILTONIAN CYCLE ON GRAPHS
OF BOUNDED CLIQUE-WIDTH

BENJAMIN BERGOUGNOUX, MAMADOU MOUSTAPHA KANTÉ, AND O-JOUNG KWON

Abstract. In this paper, we prove that, given a clique-width k-expression of an n-vertex graph,
Hamiltonian Cycle can be solved in time nO(k). This improves the naive algorithm that runs
in time nO(k2) by Espelage et al. (WG 2001), and it also matches with the lower bound result by
Fomin et al. that, unless the Exponential Time Hypothesis fails, there is no algorithm running in
time no(k) (SIAM. J. Computing 2014).

We present a technique of representative sets using two-edge colored multigraphs on k vertices.
The essential idea is that, for a two-edge colored multigraph, the existence of an Eulerian trail
that uses edges with different colors alternately can be determined by two information: the number
of colored edges incident with each vertex, and the connectedness of the multigraph. With this
idea, we avoid the bottleneck of the naive algorithm, which stores all the possible multigraphs on
k vertices with at most n edges.

1. Introduction

Tree-width is one of the most well-studied graph parameters in the graph algorithm community,
due partly to its numerous structural and algorithmic properties (see the survey [3]). A celebrated
algorithmic meta-theorem by Courcelle [6] states that every graph problem expressible in monadic
second-order logic (MSO2) can be decided in linear time on graphs of bounded tree-width. Among
the problems expressible in MSO2, there are some well-studied and well-known NP-hard problems
such as Minimum Dominating Set, Hamiltonian Cycle, and Graph Coloring.

Despite the broad interest on tree-width, only sparse graphs can have bounded tree-width. But,
on many dense graph classes, some NP-hard problems admit polynomial-time algorithms, and many
of these algorithms can be explained by the boundedness of their clique-width. Clique-width is a
graph parameter that originally emerges from the theory of graph grammars [8] and the terminology
was first introduced by Courcelle and Olariu [10] (see also the book [7]).

Clique-width is defined in terms of the following graph operations: (1) addition of a single labeled
vertex, (2) addition of all possible edges between vertices labeled i and those labeled j, (3) renaming
of labels, and (4) taking the disjoint union of two labeled graphs. The clique-width of a graph is
the minimum number of labels needed to construct it. An expression constructing a graph with at
most k labels is called a k-expression. The modeling power of clique-width is strictly stronger than
the modeling power of tree-width. In other words, if a graph class has bounded tree-width, then it
has bounded clique-width, but the converse is not true.

Computing the clique-width of a graph is a problem which has received significant attention over
the last decade. Fellows et al. [14] showed that computing clique-width is NP-hard. For a fixed
k, the best known approximation algorithm is due to Hliněný and Oum [20]; it computes in time
O(f(k) · n3) a (2k+1 − 1)-expression for an n-vertex graph of clique-width at most k.

Date: August 15, 2018.
An extended abstract appeared in Algorithms and Data Structures, WADS 2017 [2]. B. Bergougnoux and M.M.

Kanté are supported by French Agency for Research under the GraphEN project (ANR-15-CE40-0009). O. Kwon is
supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova-
tion programme (ERC consolidator grant DISTRUCT, agreement No. 648527), and also supported by the National
Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050294).

1

Clique-width inherits most of the algorithmic properties of tree-width. Courcelle, Makowsky,
and Rotics [9] extended the meta-theorem of Courcelle [6] to graphs of bounded clique-width at a
cost of a smaller set of problems. More precisely, they showed that every problem expressible in
monadic second order logic with formula that does not use edge set quantifications (called MSO1)
can be decided in time O(f(k) ·n) in any n-vertex graph of clique-width k, provided a clique-width
k-expression of it is given.

For MSO1 problems, clique-width and tree-width have sensibly the same behavior. Indeed, many
problems expressible in MSO1 that admit a 2O(k) · nO(1)-time algorithms parameterized by tree-
width have been shown to admit 2O(k) · nO(1)-time algorithms, when a clique-width k-expression is
given. This includes famous problems like Minimum Dominating Set and Minimum Vertex
Cover [5, 19, 24], or even their connected variants and Feedback Vertex Set [1, 4, 11].

On the other hand, some fundamental problems are known to be expressible in MSO2 but not in
MSO1; well known examples are Max-Cut, Edge Dominating Set (EDS), Graph Coloring
(GC), and Hamiltonian Cycle (HC). A natural question is whether these problems admit algo-
rithms with running time f(k) · nO(1) (given a k-expression of the input graph). Fomin, Golovach,
Lokshtanov, and Saurabh [15] proved the W[1]-hardness of EDS, GC, and HC with clique-width as
parameter, which implies that these problems do not admit algorithms with running time f(k)·nO(1)

for any function f , unless W[1] = FPT. In 2014, the same authors [16] have proved that Max-Cut
and EDS admit nO(k)-time algorithms, and that they do not admit f(k) · no(k)-time algorithms
unless ETH fails. In the conclusion of [16], the authors state (without proving) a lower bound of
f(k) ·no(k) for HC under ETH and they left open the question of finding an algorithm with running
time f(k) · nO(k). At the time, the best known running time parameterized by clique-width for HC
and GC were respectively nO(k2) [13] and nO(2k) [21]. Recently, Fomin et al. [18] provided a lower
bound of f(k) · n2o(k) for GC.

Our Contribution and Approach. In this paper, we prove that there exists an algorithm solving
Hamiltonian Cycle in time nO(k), when a clique-width k-expression is given. A Hamiltonian cycle
of a graph G is a cycle containing all the vertices of G. The problem Hamiltonian Cycle asks,
given a graph G, if G contains a Hamiltonian cycle. Specifically, we prove the following.

Theorem 1.1. There exists an algorithm that, given an n-vertex graph G and a k-expression of G,
solves Hamiltonian Cycle in time O(n2k+4 · 22k(log2(k)+1) · k3 log2(nk)).

Our algorithm is a dynamic programming one whose steps are based on the k-labeled graphs H
arising in the k-expression of G. Observe that the edges of a Hamiltonian cycle of G which belong
to E(H) induce either a Hamiltonian cycle or a collection of vertex disjoint paths in G covering H.
Consequently, each partial solution of our algorithm consists of edges which induce a collection of
paths. As in [13], with each partial solution P, we associate an auxiliary multigraph such that its
vertices correspond to the labels of H and each edge (i, j) corresponds to a maximal path induced
by P with end-vertices labeled i and j.

Since H is a k-labeled graph arising in a k-expression of G, we have that two vertices x and
y with the same label in H have the same neighborhood in G − E(H) (the graph G without the
edges of H). It follows that the endpoints of a path in a partial solution are not important and
what matters are the labels of these endpoints. As a result, two solutions with the same auxiliary
multigraph are equivalent, i.e., if one is contained in a Hamiltonian cycle, then the other also.
From these observations, one easily deduces the nO(k2)-time algorithm, due to Espelage, Gurski,
and Wanke [13].

To obtain our nO(k)-time algorithm, we prove that two partial solutions are equivalent if their
auxiliary multigraphs have the same connected components, and the paths they induce have the

2

same number of endpoints labeled i, for all labels i. The running time of our algorithm follows from
the fact that there are at most nO(k) · 2O(k log2 k) non-equivalent partial solutions.

This equivalence is related to the existence of a two-colored Eulerian trail in multigraphs. Let
H be a k-labeled graph arising in the k-expression of G, and let P be a partial solution, which
is a disjoint union of paths that span all vertices of H. Let Q be a disjoint union of paths such
that the edges of each path in Q belong to E(G) \ E(H). Then, it is possible that P ∪ Q forms
a Hamiltonian cycle in G. In order to test whether P ∪ Q forms a Hamiltonian cycle, we create
an auxiliary multigraph by contracting each label class of H by one vertex, see Figures 2 and 3.
Informally, the vertex set of the auxiliary multigraph corresponds to the label classes of H, and the
edges correspond to either maximal paths in P, or to paths in Q that have their end-vertices in
common with the paths in P.

We consider, in the auxiliary multigraph, the edges corresponding to paths in P as red edges
and the edges from paths in Q as blue edges. Now, if P ∪ Q forms a Hamiltonian cycle, then it
should use paths of P and paths of Q that are between end-vertices of paths in P, alternately. So,
we can observe that P ∪ Q forms a Hamiltonian cycle in G if and only if there exists a red-blue
alternating Eulerian trail in the auxiliary multigraph. We deduce the equivalence by proving that
a multigraph contains a red-blue alternating Eulerian trail if and only if it is connected and each
vertex is incident with the same number of red and blue edges.

Using this equivalence between Hamiltonian cycles and red-blue alternating Eulerian trails, we
prove that two partial solutions P and P ′ of H are equivalent whenever their associated auxiliary
multigraphs have the same set of connected components, and also same degree sequence. Since, the
number of partitions of a k-size set is at most kk and the size of a partial solution is always bounded
by n, the number of non-equivalent partial solutions is then bounded by (2n)k · kk (the maximum
degree of an auxiliary multigraph is at most 2n because a loop is counted as two edges). The main
effort in the algorithm consists then in updating the equivalence classes of this equivalence relation
in terms of operations based on the clique-width operations.

Overview. In Section 2, we give basic definitions and notations concerning (multi)graphs and
clique-width. Our notions of partial solutions and of auxiliary multigraphs are given in Section 3.
In Section 4, we prove the equivalence between the existence of Hamiltonian cycles in the input graph
and the existence of red-blue alternating Eulerian trails in auxiliary multigraphs, and deduce that
it is enough to store (2n)k ·kk partial solutions at each step of our dynamic programming algorithm.
In Section 5, we show how to obtain from the results of Section 4 an nO(k)-time algorithm for
Hamiltonian Cycle. In Section 6, we give some intuitions for solving in time nO(k) the problems
Directed Hamiltonian Cycle given a k-expression. We end up with some concluding remarks
and open questions in Section 7.

2. Preliminaries

The size of a set V is denoted by |V |, and we write [V]2 to denote the set of all subsets of V of
size 2. We denote by N the set of non-negative integers. For two sets A and B, we let

A⊗B :=

{
∅ if A = ∅ or B = ∅,
{X ∪ Y | X ∈ A ∧ Y ∈ B} otherwise.

For a positive integer n, let [n] := {1, 2, . . . , n}.

Graph. We essentially follow Diestel’s book [12] for our graph terminology, but we deal only with
finite graphs. We distinguish graphs and multigraphs, and for graphs we do not allow to have
multiple edges or loops, while we allow them in multigraphs. The vertex set of a graph G is denoted
by V (G) and its edge set by E(G) ⊆ [V (G)]2. We write xy to denote an edge {x, y}.

3

Let G be a graph. For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X. For
F ⊆ E(G), we write G|F for the subgraph (V (G), F) and G−F for the subgraph (V (G), E(G)\F).
For an edge e of G, we simply write G − e for G − {e}. The degree of a vertex x, denoted by
degG(x), is the number of edges incident with x. The set of vertices adjacent to a vertex v is
denoted NG(x). A cut-edge in a connected graph G is an edge e such that G− e is disconnected. A
graph is non-trivial if it contains an edge, otherwise it is said trivial.

Multigraph. A multigraph is essentially a graph, but we allow multiple edges, i.e., edges incident
with the same set of vertices. Formally, a multigraph G is a pair (V (G), E(G)) of disjoint sets, also
called sets of vertices and edges, respectively, together with a map multG : E(G)→ V (G)∪ [V (G)]2,
which maps every edge to one or two vertices, still called its endpoints. The degree of a vertex
x in a multigraph G, is defined analogously as in graphs, except that each loop is counted twice,
and similarly for other notions. If there are exactly k edges e such that multG(e) = {x, y} (or
multG(e) = {x}), then we denote these distinct edges by {x, y}1, . . . , {x, y}k (or {x}1, . . . , {x}k).

For two multigraphs G and H on the same vertex set {v1, . . . , vk} and with disjoint edge sets, we
denote by G]H the multigraph with vertex set {v1, . . . , vk}, edge set E(G) ∪ E(H), and

multG]H(e) :=

{
multG(e) if e ∈ E(G),

multH(e) otherwise.

If the edges of G and H are colored, then this operation preserves the colors of the edges.

Walk. A walk of a graph is a sequence of vertices and edges, starting and ending at some vertices,
called end-vertices, where for every consecutive pair of a vertex x and an edge e, x is incident with
e. The vertices of a walk which are not end-vertices are called internal vertices. A trail of a graph
is a walk where each edge is used at most once. A walk (or a trail) is closed if its first and last
vertices are the same. Moreover, when the edges of a graph are colored in red or blue, we say that
a walk W = (v1, e1, . . . , vr−1, er−1, vr) is a red-blue walk, if for every i ∈ {1, . . . , r− 2}, the colors of
ei and ei+1 are different and the colors of e1 and er−1 are different, if the walk is closed. We adapt
all the notations to multigraphs as well.

For two walks W1 = (v1, e1, . . . , e`−1, v`) and W2 = (v′1, e
′
1, . . . , e

′
r−1, v

′
r) such that v` = v′1, the

concatenation of W1 and W2, denoted by W1−W2, is the walk (v1, e1, . . . , e`−1, v`, e
′
1, . . . , e

′
r−1, v

′
r).

For convenience sometimes, we use the shortcut (e1, e2, . . . , er−1) for a walk (v1, e1, . . . , vr−1, er−1, vr).
This is possible because an edge always determine the two vertices with which it is incident.

A path of a graph is a walk where each vertex is used at most once and its end-vertices are
distinct. A cycle of a graph is a closed walk where each vertex is used at most once. An Eulerian
trail in a graph is a closed trail containing all edges.

Clique-width. A k-labeled graph is a pair (G, labG) of a graph G and a function labG from V (G)
to [k], called the labeling function. We denote by lab−1G (i) the set of vertices in G with label i.
The notion of clique-width is defined by Courcelle and Olariu [10] and is based on the following
operations:

• creating a graph, denoted by i(x), with a single vertex x labeled with i ∈ N;
• for a labeled graph G and distinct labels i, j ∈ [k], relabeling the vertices of G with label i
to j, denoted by ρi→j(G);
• for a labeled graph G and distinct labels i, j ∈ [k], adding all the non-existent edges between
vertices with label i and vertices with label j, denoted by ηi,j(G);
• taking the disjoint union of two labeled graphs G and H, denoted by G⊕H, with

labG⊕H(v) :=

{
labG(v) if x ∈ V (G),

labH(v) otherwise.
4

A clique-width k-expression, or shortly a k-expression, is a finite well-formed term built with the
four operations above and using at most k labels. Each k-expression φ evaluates into a k-labeled
graph (val(φ), labval(φ)). The clique-width of a graph G, denoted by cw(G), is the minimum k such
that G is isomorphic to val(φ) for some k-expression φ. We can assume without loss of generality
that any k-expression defining a graph G uses O(n) disjoint union operations and O(nk2) unary
operations [10].

It is worth noticing, from the recursive definition of k-expressions, that one can compute in time
linear in |φ| the labeling function labval(φ) of val(φ), and hence we will always assume that it is given.

For example, the cycle abcdea of length 5 can be constructed using the 3-expression represented
as a tree-structure in Figure 1.

η1,3

⊕

ρ3→2

η2,3

⊕

η1,2

⊕

1(a) 2(b)

η1,3

⊕

3(c) 1(d)

3(e)

Figure 1. An irredundant 3-expression of C5.

The set of subexpressions of a k-expression φ, denoted by Sub(φ), is defined by the following
induction:

Sub(φ) :=

{φ} if φ := i(x) with i ∈ [k],

{φ} ∪ Sub(φ′) ∪ Sub(φ?) if φ = φ′ ⊕ φ?,

{φ} ∪ Sub(φ′) if φ = f(φ′) with f ∈ {ρi→j , ηi,j | i, j ∈ [k]}.
We say that a k-labeled graph (H, labH) arises in a k-expression φ ifH = val(φ′) and labH = labval(φ′),
for some φ′ ∈ Sub(φ).

A k-expression φ is called irredundant if for every subexpression ηi,j(φ′) of φ, there are no edges
in val(φ′) between the vertices labeled i and the vertices labeled j. Courcelle and Olariu [10] proved
that given a clique-width k-expression, it can be transformed into an irredundant k-expression in
linear time. The following useful properties of an irredundant k-expression will be used in Section 4.

Lemma 2.1. Let H be a k-labeled graph arising in an irredundant k-expression φ of a graph G.
For all u, v ∈ V (H) with labH(u) = i and labH(v) = j, we have the following.

(1) If i = j, then NG(u) \ V (H) = NG(v) \ V (H).
(2) If uv ∈ E(G)\E(H), then i 6= j and, for all x, y ∈ V (H) with labH(x) = i and labH(y) = j,

we have xy ∈ E(G) \ E(H).

Proof. (1) Assume that i = j. Let φ′ be the subexpression of φ such that H = val(φ′). As u
and v have the same label in H, for every subexpression of φ having φ′ as a subexpression, u and
v have the same label. Since edges are added only through the operation ηa,b, we conclude that
NG(u) ∩ (V (G) \ V (H)) = NG(v) ∩ (V (G) \ V (H)).

5

(2) If uv ∈ E(G) and i = j, then we have uv ∈ E(H) as the operation ηa,b add edges only between
vertices with distinct labels. Thus, if uv ∈ E(G) \ E(H), then we have i 6= j.

Assume that uv ∈ E(G) \ E(H). Let φ′ be the minimal (size wise) subexpression of φ such
that uv ∈ E(val(φ′)). It follows that φ′ = ηa,b(φ

?), with φ? ∈ Sub(φ), labval(φ′)(u) = a and
labval(φ′)(v) = b. Let D := val(φ?). Observe that we have V (H) ⊆ V (F) and E(H) ⊆ E(F).
Moreover, all vertices labeled i in H are labeled a in D and those labeled j in H are labeled b in
D. Since φ is irredundant, there are no edges in D between a vertex labeled a and one labeled b.
Thus, for all vertices x ∈ lab−1H (i) and y ∈ lab−1H (j), we have xy /∈ E(H) and xy ∈ E(G). �

3. Partial solutions and auxiliary graphs

Let G be a graph and (H, labH) be a k-labeled graph such that H is a subgraph of G.
A partial solution of H is a set of edges P ⊆ E(H) such that H|P is a union of vertex-disjoint

paths, i.e., H|P is acyclic and for every vertex v ∈ V (H), the degree of v in H|P is at most two. We
denote by Π(H) the set of all partial solutions of H. We say that a path P in H|P is maximal if
the degree of its end-vertices in H|P is at most one; in other words, there is no path P ′ such that
V (P) (V (P ′). Observe that an isolated vertex in H|P is considered as a maximal path.

A complement solution of H is a subset Q of E(G) \ E(H) such that G|Q is a union of vertex-
disjoint paths with end-vertices in V (H); in particular, for every vertex v in V (G) \ V (H), the
degree of v in G|Q is two. We denote by Π(H) the set of all complement solutions of H. A path
P in G with at least 2 vertices is an H-path if the end-vertices of P are in V (H) and the internal
vertices of P are in V (G)\V (H). By definition, isolated vertices in V (H) are not H-paths. Observe
that for a complement solution Q, we can decompose each maximal path Q of G|Q with at least 2
vertices into H-paths (not necessarily one).

Examples of a partial solution and a complement solution are given in Figure 2. Note that if
G has a Hamiltonian cycle C, then E(C) ∩ E(H) is a partial solution and E(C) ∩ (E(G) \ E(H))
is a complement solution. We say that a partial solution P and a complement solution Q form a
Hamiltonian cycle if (V (G),P ∪Q) is a cycle containing all the vertices of G.

H

lab−1
H (1) lab−1

H (2) lab−1
H (3) lab−1

H (4) lab−1
H (5)

Figure 2. Examples of a partial solution P (solid lines) and a complement solution
Q (dashed lines) forming a Hamiltonian cycle. Observe that H|P contains 5 maximal
paths and G|Q contains 5 H-paths (and only 4 maximal paths).

Auxiliary Multigraph. For P ∈ Π(H) ∪Π(H) and i, j ∈ [k], we define `ij and `i as follows.
• If P is a partial solution of H, then `ij is the number of maximal paths in H|P with end-
vertices labeled i and j, and `i is the number of maximal paths in H|P with both end-vertices
labeled i.

6

• If P is a complement solution of H, then `ij is the number of H-paths in G|P with end-
vertices labeled i and j, and `i is the number of H-paths in G|P with both end-vertices
labeled i.

Now, we define the auxiliary multigraph of P, denoted by auxH(P), as the multigraph with vertex
set {v1, . . . , vk} and edge set⋃

i,j∈[k]
i 6=j

{{vi, vj}1, . . . , {vi, vj}`ij}
⋃
i∈[k]

{{vi}1, . . . , {vi}`i}.

Moreover, if P is a partial solution of H, then we color all the edges of auxH(P) in red, and if P
is a complement solution, then we color the edges of auxH(P) in blue. An example of an auxiliary
multigraph is given in Figure 3.

v1 v2 v3 v4 v5

Figure 3. The union G1]G2 of auxiliary multigraphs G1 and G2 associated with
the partial solution (solid lines) and the complement solution (dashed lines) repre-
sented in Figure 2.

4. Relations between Hamiltonian cycles and Eulerian trails

Let G be an n-vertex graph and φ be an irredundant k-expression of G. Let H be a k-labeled
graph arising in the k-expression φ. Observe that H is a subgraph of G (disregarding the labels).
This section is dedicated to prove the properties of the following relation between partial solutions
of H based on the degree sequence and the connected components of their auxiliary multigraphs.

Definition 4.1. Let P1,P2 ∈ Π(H). We write P1 ' P2 if auxH(P1) and auxH(P2) have the same
set of connected components and for each vertex v in {v1, . . . , vk}, degauxH(P1)(v) = degauxH(P2)(v).

Observe that ' is an equivalence relation. For a set A ⊆ Π(H), we define reduceH(A) as the
operation which returns a set containing one representative of each equivalence class of A/ '.

The main idea of our algorithm is to call reduceH at each step of our dynamic programming
algorithm in order to keep the size of a set of partial solutions manipulated small, i.e., bounded by
nO(k). The running time of our algorithm follows from the following lemma.

Lemma 4.2. For every A ⊆ Π(H), we have reduceH(A) ≤ nk · 2k(log2(k)+1) and we can moreover
compute reduceH(A) in time O(|A| · nk2 log2(nk)).

Proof. To prove that reduceH(A) ≤ nk ·2k(log2(k)+1) , it is enough to bound the number of equivalence
classes of Π(H)/ '.

We claim that for every P ∈ Π(H), we have
∑

i∈[k] degauxH(P)(vi) ≤ 2|V (H)|. First observe that∑
i∈[k] degauxH(P)(vi) = 2|V (H)| when P = ∅, since each isolated vertex in H|P gives a loop in

auxH(P). Moreover, when P contains an edge, removing an edge from a partial solution P of H
7

increases
∑

i∈[k] degauxH(P)(vi) by two; indeed, this edge removal splits a maximal path of H|P into
two maximal paths. Therefore, any partial solution P satisfies that

∑
i∈[k] degauxH(P)(vi) ≤ 2|V (H)|;

in particular each vertex of auxH(P) has degree at most 2|V (H)|. As auxH(P) contains k vertices,
we deduce that there are at most (2|V (H)|)k ≤ (2n)k possible degree sequences for auxH(P).

Since the number of partitions of {v1, . . . , vk} is bounded by 2k log2 k. We conclude that ' parti-
tions Π(H) into at most nk · 2k(log2 k+1) equivalences classes.

It remains to prove that we can compute reduceH(A) in time O(|A| · nk log2(nk)). First observe
that for every P ∈ Π(H), we can compute auxH(P) in time O(nk). Moreover, we can also com-
pute the degree sequence of auxH(P) and the connected components of auxH(P) in time O(nk).
Thus, by using the right data structures, we can decide whether P1 ' P2 in time O(nk). Fur-
thermore, by using a self-balancing binary search tree, we can compute reduceH(A) in time O(|A| ·
nk log2(|reduceH(A)|)). Since log2(|reduceH(A)|) ≤ k log2(2nk), we conclude that reduceH(A) is
computable in time O(|A| · nk2 log2(nk)). �

The rest of this section is dedicated to prove that for a set of partial solutions A of H, the set
reduceH(A) is equivalent to A, i.e., if A contains a partial solution that forms a Hamiltonian cycle
with a complement solution, then reduceH(A) also. Our results are based on a kind of equivalence
between Hamiltonian cycles and red-blue Eulerian trails. The following observation is one direction
of this equivalence.

Lemma 4.3. If P ∈ Π(H) and Q ∈ Π(H) form a Hamiltonian cycle, then the multigraph auxH(P)]
auxH(Q) admits a red-blue Eulerian trail.

Proof. Suppose that P ∈ Π(H) and Q ∈ Π(H) form a Hamiltonian cycle C. Let M := auxH(P)]
auxH(Q). From the definitions of a partial solution and of a complement solution, there is a sequence
(P1, Q1, . . . , P`, Q`) of paths in P and Q such that

• P1, P2, . . . , P` are all the maximal paths in H|P ,
• Q1, Q2, . . . , Q` are all the H-paths in G|Q,
• P1, Q1, . . . , P`, Q` appear in C in this order,
• for each x ∈ [`], the two end-vertices of Px are the same as one end-vertex of Qx−1 and one
end-vertex of Qx (indices are considered modulo `).

Observe that each maximal path Px in H|P with end-vertices labeled i and j is associated with
a red edge in M , say ex with multM (ex) = {vi, vj} if i 6= j or multM (ex) = {vi} if i = j such
that the edges e1, . . . , e` are pairwise different and E(auxH(P)) = {e1, . . . , e`}. Similarly, each
H-path Qy of G|Q with end-vertices labeled i and j is associated with a blue edge fy in M with
multM (fy) = {vi, vj} if i 6= j or multM (fy) = {vi} if i = j such that the edges f1, . . . , f` are pairwise
different and E(auxH(Q)) = {f1, . . . , f`}. It is not difficult to see that (e1, f1, . . . , e`, f`) is a red-blue
Eulerian trail of auxH(P)] auxH(Q). �

Next, we prove the other direction. We use the properties of an irredundant k-expression described
in Lemma 2.1.

Lemma 4.4. Let P ∈ Π(H). If there exists a complement solution Q of H such that auxH(P)]
auxH(Q) admits a red-blue Eulerian trail, then there exists Q? ∈ Π(H) such that P and Q? form a
Hamiltonian cycle.

Proof. Let T = (va1 , r1, vc1 , b1, va2 , r2, vc2 , · · · , va` , r`, vc` , b`, va1) be a red-blue Eulerian trail of
auxH(P)] auxH(Q) with r1, . . . , r` ∈ E(auxH(P)) and b1, . . . , b` ∈ E(auxH(Q)). In the follow-
ing, the indexes are modulo `.

For each i ∈ [`], we associate ri with a maximal path Pi of H|P with end-vertices labeled ai and
ci and we associate bi with an H-path Qi of G|Q with end-vertices labeled ci and ai+1, such that
P1, . . . , P`, Q1, . . . , Q` are all pairwise distinct.

8

For every i ∈ [`], we construct from Qi an H-path Q?i of G by doing the following. Let u, v be
respectively the last end-vertex of Pi and the first end-vertex of Pi+1. Observe that u and the first
vertex of Qi are labeled ci, and v and the last vertex of Qi are labeled ai+1. We distinguish two
cases:

• Suppose that Qi = (x, xy, y), i.e., Qi uses only one edge. Since Q is a complement solution
of H, we have xy ∈ E(G) \E(H). By Lemma 2.1, we have uv ∈ E(G) \E(H). In this case,
we define Q?i = (u, uv, v).
• Assume now that Qi = (x, xy, y, . . . , w, wz, z) with w, y ∈ V (G) \ V (H). Since x and u
have the same label in H, by Lemma 2.1, we have NG(x) \ V (H) = NG(u) \ V (H). Hence,
u is also adjacent to y. Symmetrically, we have v is adjacent to w. In this case, we define
Q?i = (u, uy, y, . . . , w, wv, v), i.e., the path with the same internal vertices as Qi and with
end-vertices u and v.

In both cases, we end up with a path Q?i that uses the same internal vertices as Qi and whose
end-vertices are the last vertex of Pi and the first vertex of Pi+1. We conclude that

P1 −Q?1 − · · · − P` −Q?`
is a Hamiltonian cycle.

Let Q? be the set of edges used by the paths Q?1, . . . , Q?` . By construction, we have Q? ⊆
E(G) \E(H), and thus Q? ∈ Π(H). Observe that for every i ∈ [`], the labels of the end-vertices of
Q?i are the same as those of Qi. Consequently, we have auxH(Q?) = auxH(Q). �

It is well known that a connected multigraph contains an Eulerian trail if and only if every vertex
has even degree. The following lemma shows that a connected two-edge colored multigraph contains
a red-blue Eulerian trail if and only if each vertex is incident with the same number of edges for
both colors.

Let G be a multigraph whose edges are colored red or blue, and let R and B be respectively the
set of red and blue edges. For a vertex v ∈ V (G), we let rdegG(v) and bdegG(v) be respectively the
degree of v in G|R and G|B. Recall that a loop is counted twice in the degree of a vertex.

Lemma 4.5. Let G be a connected multigraph whose edges are colored red or blue. Then G has a
red-blue Eulerian trail if and only if for every vertex v, bdegG(v) = rdegG(v).

Proof. One easily checks that if G has a red-blue Eulerian trail, then for every vertex v, bdegG(v) =
rdegG(v). Indeed, if T = (v1, e1, v2, . . . , v`, e`, v1) is a red-blue Eulerian trail, then for 2 ≤ i ≤ `,
ei−1 and ei have different colors, and because e1 and e` have different colors, we can conclude that
the blue edges incident with a vertex v are in 1-to-1 correspondence with the red edges incident
with v (by counting twice the loops).

Let us now prove the other direction. Let m be the number of edges in G. If m = 0, then G
contains exactly one vertex v, because it is connected, and (v) is a red-blue Eulerian trail of G.
Assume now that m > 0 and for every vertex v, bdegG(v) = rdegG(v). Observe that we have m > 2.

We choose a red-blue trail T := (v1, e1, v2, e2, · · · , vi, ei, vi+1) with maximum i such that
(1) e1 is colored red, and
(2) the multigraph Gi := G −

(⋃
j∈[i]{ej}

)
contains exactly one non-trivial component C and

this component C contains v1 and vi+1.
We first observe that such a trail T exists. We choose any red edge e = vw. If e is not a cut-edge,

then G− e is connected, and (v, e, w) is such a red-blue trail. Suppose that e is a cut-edge of G. As
every vertex in G has even degree, the two connected components of G − e contain, each, exactly
one vertex with odd degree (the endpoints of e). But, this is not possible since the sum of degrees
of vertices of a connected graph is even and thus every connected graph has an even number of
vertices with odd degree.

9

Now, we consider the properties of Gi = G −
(⋃

j∈[i]{ej}
)
. Since T is a red-blue trail, we have

the following:
• For each v ∈ V (G) \ {v1, vi+1}, rdegGi

(v) = bdegGi
(v).

• If vi+1 6= v1 and ei is colored red (resp. blue), then bdegGi
(vi+1) = rdegGi

(vi+1) + 1 (resp.
rdegGi

(vi+1) = bdegGi
(vi+1) + 1) and bdegGi

(v1) = rdegGi
(v1) + 1.

• If vi+1 = v1 and ei is colored red (resp. blue), then bdegGi
(v1) = rdegGi

(v1) + 2 (resp.
bdegGi

(v1) = rdegGi
(v1)).

We claim that i = m− 1. Suppose for contradiction that i < m− 1. Note that there are at least
two edges in E(Gi) because i < m− 1.

We observe that there is at most one cut-edge in Gi incident with vi+1. Indeed, if there are two
cut-edges incident with vi+1, then one cut-edge f satisfies that Gi − f has a connected component
C that contains neither v1 nor vi+1. However, all vertices v in C satisfy rdegGi

(v) = bdegGi
(v)

by the assumption, and in particular, they have even degrees in Gi. Then it becomes a connected
component of Gi − f having exactly one vertex of odd degree, which is not possible. Therefore,
there is at most one cut-edge in Gi incident with vi+1.

Suppose that vi+1 6= v1 and ei is colored red. The proof is symmetric when ei is colored blue.
If vi+1 is incident with at least two blue edges in Gi, then we can choose a blue edge that is not
a cut-edge to extend the red-blue trail. Thus, we may assume that there is only one blue edge e
incident with vi+1 and it is a cut-edge of Gi. By the condition, vi+1 is not adjacent to any red edge
in Gi, and thus it has degree 1 in Gi. Therefore, Gi − e has only one non-trivial component, and it
implies that we can choose e as a next edge to extend the red-blue trail.

Suppose that vi+1 = v1 and ei is colored red. Since there are at least two blue edges incident
with vi+1 in Gi, we can choose a blue edge e that is not a cut-edge.

Assume now that vi+1 = v1 and ei is colored blue. Note that rdegGi
(v1) 6= 0 by the condition

that there is at least one non-trivial connected component containing v1 and vi+1, and thus there is
at least one red edge incident with vi+1 in Gi. We claim that there is at least one red edge among
them that is not a cut-edge. Suppose for contradiction that there is only one red edge incident to
vi+1 in Gi and it is a cut-edge in Gi. As bdegGi

(v1) = rdegGi
(v1), there is exactly one blue edge

incident to vi+1 in Gi. Since one of the two edges incident to vi+1 is not a cut-edge, the other one is
also not a cut-edge because all the vertices have even degree in Gi. This is a contradiction with the
assumption. Thus, we can choose a red edge e that is not a cut-edge to extend the red-blue trail.

In each case, we can extend the red-blue trail, which contradicts the maximality. Therefore
i = m− 1, and vi+1 should be connected to v1 by a blue edge f := vi+1v1. Thus,

(v1, e1, v2, e2, . . . , vi, ei, vi+1, f, v1)

is a required red-blue Eulerian trail. �

In order to prove the correctness of our algorithm, we need the following relation between subsets
of partial solutions.

Definition 4.6. Let A and B be two subsets of Π(H). We write A .H B if for every multigraph
M whose edges are colored blue, whenever there exists P1 ∈ B such that auxH(P1)]M admits a
red-blue Eulerian trail, there exists P2 ∈ A such that auxH(P2)]M admits a red-blue Eulerian trail.

The main idea of our algorithm for Hamiltonian Cycle, is to compute, for every k-labeled
graph H arising in φ, a set A ⊆ Π(H) such that A .H Π(H) with bounded size. Indeed, by
Lemmas 4.3 and 4.4, A .H Π(H) implies that if there exist P ∈ Π(H) and Q ∈ Π(H) such that
P and Q form a Hamiltonian cycle, then there exist P? ∈ A and Q? ∈ Π(H) such that P? and Q?
form a Hamiltonian cycle. The following lemma is the key of our algorithm.

Lemma 4.7. Let A ⊆ Π(H). Then reduceH(A) .H A.
10

Proof. Let P ∈ A and M be a multigraph whose edges are colored blue such that auxH(P)]M
admits a red-blue Eulerian trail. By definition, reduceH(A) contains a partial solution P? such that
P ' P?.

As auxH(P)]M contains a red-blue Eulerian trail, by Lemma 4.5, we have that
• auxH(P)]M is connected and
• for every i ∈ [k], degauxH(P)(vi) = degM(vi).

Since auxH(P) has the same set of connected components as auxH(P?), the multigraph auxH(P?)]
M is also connected. Moreover, for every i ∈ [k], we have

degauxH(P)(vi) = degauxH(P?)(vi) = degM(vi).

We conclude by Lemma 4.5, that auxH(P?)]M admits a red-blue Eulerian trail.
Thus for every P ∈ A and multigraph M with blue edges such that auxH(P)] M admits a

red-blue Eulerian trail, there exists P? ∈ reduceH(A) such that auxH(P?)]M admits a red-blue
Eulerian trail. Hence, we have reduceH(A) .H A. �

Lemma 4.8. Let A,B ⊆ Π(H). If A .H B, then reduceH(A) .H B.

Proof. One easily checks that .H is a transitive relation. Now, assuming that A .H B, we have
reduceH(A) . B because reduceH(A) .H A by Lemma 4.7. �

5. Hamiltonian Cycle problem

In this section, we present our algorithm solving Hamiltonian Cycle. Our algorithm computes
recursively, for every k-labeled graph H arising in the k-expression of G, a set AH such that
AH .H Π(H) and |AH | ≤ nk · 2k(log2(k)+1). In order to prove the correctness of our algorithm,
we need the following lemmas which prove that the operations we use to compute sets of partial
solutions preserve the relation .H .

Lemma 5.1. Let H = ρi→j(D). If AD .D Π(D), then AD .H Π(H).

Proof. First, observe that H has the same set of vertices and edges as D. Thus, we have Π(H) =
Π(D) and Π(H) = Π(D). Suppose that AD .D Π(D).

Let P ∈ Π(H) and M be a multigraph whose edges are colored blue such that auxH(P)]M
contains a red-blue Eulerian trail T . To prove the lemma, it is sufficient to prove that there exists
P? ∈ AD such that auxH(P?)]M contains a red-blue Eulerian trail.

Let f be a bijective function such that
• for every edge e of auxD(P) with endpoints v` and vi for some `, f(e) is an edge of auxH(P)
with endpoints v` and vj , and
• for every loop e with endpoint vi, f(e) is a loop of auxH(P) with endpoint vj .

By construction of auxD(P) and auxH(P), such a function exists.
We construct the multigraphM′ fromM and T by successively doing the following :
• For every edge e of auxD(P) with endpoints v` and vi, take the subwalkW = (v`, f(e), vj , ea, va)
of T . Replace ea inM by an edge e′a with endpoints vi and va.
• For every loop e with endpoint vi in auxD(P), take the subwalkW = (va, ea, vj , f(e), vj , eb, vb)
of T . Replace ea (respectively eb) inM by an edge e′a (resp. e′b) with endpoints va and vi
(resp. vi and vb).

By construction, one can construct from T a red-blue Eulerian trail of auxD(P)] M′. Since
AD .D Π(D), there exists P? ∈ AD such that auxD(P?)]M′ contains a red-blue Eulerian trail.
Observe that auxH(P) (respectively M) is obtained from auxD(P?) (resp. M′) by replacing each
edge associated with {vi, vk} or {vi} in auxD(P?) (resp. M′) with an edge associated with {vj , vk}
or {vj} respectively. We conclude that auxH(P?)]M admits a red-blue Eulerian trail. �

11

Lemma 5.2. Let H = D ⊕ F . If AD .D Π(D) and AF .F Π(F), then (AD ⊗AF) .H Π(H).

Proof. Observe that V (D) and V (F) are disjoint. Consequently, we have Π(H) = Π(D) ⊗ Π(F),
and for all PD ∈ Π(D) and PF ∈ Π(F), we have auxH(PD ∪PF) = auxH(PD)]auxH(PF). Suppose
that AD .D Π(D) and AF .F Π(F).

Let PD ∈ Π(D) and PF ∈ Π(F), and letM be a multigraph whose edges are colored blue such
that there exists a red-blue Eulerian trail T in auxH(PD ∪ PF)]M. It is sufficient to prove that
there exist P?D ∈ AD and P?F ∈ AF such that auxH(P?D ∪P?F)]M admits a red-blue Eulerian trail.

We begin by proving that there exists P?D ∈ AD such that auxH(P?D ∪ PF)]M contains a red-
blue Eulerian trail. In order to do so, we construct from auxH(PD ∪ PF)]M a multigraphM′ by
successively repeating the following : take a maximal sub-walk W of T which uses alternately blue
edges and red edges from auxH(PF)]M, remove these edges and add a blue edge between the two
end-vertices of W . Obviously, for every P ′D ∈ Π(D), if auxD(P ′D)]M′ admits a red-blue Eulerian
trail, then auxH(P ′D ∪ PF)]M contains a red-blue Eulerian trail also.

By construction of M′, the multigraph auxD(PD)]M′ contains a red-blue Eulerian trail. As
AD .D Π(D), there exists P?D such that auxD(P?D)]M′ contains a red-blue Eulerian trail. We
conclude that auxH(P?D ∪ PF)]M contains also a red-blue Eulerian trail.

Symmetrically, we can prove that there exists P?F ∈ AF such that auxH(P?D ∪ P?F)]M contains
a red-blue Eulerian trail. This proves the lemma. �

For two k-labeled subgraphs H and D arising in the k-expression of G such that H = ηi,j(D), we
denote by EHi,j the set of edges whose endpoints are labeled i and j, i.e., {uv ∈ E(H) | labH(v) =

i ∧ labH(v) = j}. For P ∈ Π(H), we denote by P + (i, j) the set of all partial solutions P ′ of Π(H)
obtained by the union of P and an edge uv in EHi,j . Observe that u and v must be the endpoints of
two distinct maximal paths of H|P . We extend this notation to sets of partial solutions; for every
A ⊆ Π(H), we denote by A+ (i, j), the set

⋃
P∈A(P+ (i, j)). It is worth noting that Π(D) ⊆ Π(H)

and thus the operator +(i, j) is well defined for a partial solution in Π(D).
Moreover, for every A ⊆ Π(D) and integer t ≥ 0, we define the set At as follows

At :=

{
A if t = 0,
reduceH(At−1 + (i, j)) otherwise.

Observe that each set P in At is a partial solution of H and |P ∩ EHi,j | = t.

Lemma 5.3. Let H = ηi,j(D) such that E(D)∩EHi,j = ∅. If AD .D Π(D), then we have A0
D ∪ · · ·∪

AnD .H Π(H).

Proof. Suppose that AD .D Π(D). We begin by proving the following claim.

Claim 5.3.1. Let A,B ⊆ Π(H). If A .H B, then A+ (i, j) .H B + (i, j).

Proof. Suppose that A .H B. Let P ∈ B+ (i, j) andM be a multigraph with blue edges such that
auxH(P)]M admits a red-blue Eulerian trail. Take e = vw ∈ EHi,j such that P ′ := P − e belongs
to B and v ∈ lab−1H (i) and w ∈ lab−1H (j). LetM′ be the multigraph obtained by adding a blue edge
f with endpoints vi and vj toM.

We claim that the multigraph auxH(P ′)]M′ admits a red-blue Eulerian trail. Note that there is
a path P ∈ P containing the edge e, and it is divided into two maximal subpaths in P−e, say P1 and
P2. Without loss of generality, we may assume that P1 contains v and P2 contains w. Let v′ and w′
be the other end vertices of P1 and P2, respectively, and let i′ := labH(v′) and j′ := labH(w′). Note
that auxH(P ′) can be obtained from auxH(P) by removing an edge vi′vj′ and adding two edges vivi′
and vjvj′ . So, we can obtain a red-blue Eulerian trail of auxH(P ′)]M′ from a red-blue Eulerian
trail of auxH(P)]M by replacing vi′vj′ with the sequence (vi′ , vi′vi, vi, vivj , vj , vjvj′ , vj′) where vivj
is the new blue edge inM′. It implies the claim.

12

Now, since A .H B, there exists P? ∈ A such that auxH(P?)]M′ admits a red-blue Eulerian
trail T . Let W be the subwalk of T such that W = (va, ea, vi, f, vj , eb, vb). Take two maximal paths
P1 and P2 in H|P? such that the end-vertices of P1 (respectively P2) are labeled a and i (resp. b
and j). Let P̂ be the partial solution of H obtained from P? by adding the edge in EHi,j between the
end-vertex of P1 labeled i and the end-vertex of P2 labeled j. By construction, we have P̂ ∈ A+(i, j)

and auxH(P̂)]M admits a red-blue Eulerian trail. We conclude that A+ (i, j) .H B + (i, j). �

Let Π(D) + t(i, j) be the set of partial solutions of H obtained by applying t times the operation
+(i, j) on Π(D). Since every partial solution of H is obtained from the union of a partial solution
of D and a subset of EHi,j of size at most n, we have Π(H) =

⋃
0≤t≤n(Π(D) + t(i, j)).

Since V (D) = V (H) and E(D) ⊆ E(H), we have A0
D = AD .H Π(D)+0(i, j). Let ` ∈ {1, . . . , n}

and suppose that A`−1D .H Π(D) + (` − 1)(i, j). From Claim 5.3.1, we have A`−1D + (i, j) .H
Π(D) + `(i, j). By Lemma 4.8, we deduce that A`D = reduce(A`−1D + (i, j)) .H Π(D) + `(i, j).

Thus, by recurrence, for every 0 ≤ ` ≤ n, we have A`D .H Π(D) + `(i, j). We conclude that
A0
D ∪ · · · ∪ AnD .H Π(H). �

We are now ready to prove the main theorem of this paper.

Theorem 5.4. There exists an algorithm that, given an n-vertex graph G and a k-expression φ of
G, solves Hamiltonian Cycle in time O(n2k+5 · 22k(log2(k)+1) · k3 · log2(nk)).

Proof. We assume that G is connected and it has at least 3 vertices, otherwise we can automatically
say that it is a No-instance. Since every k-expression can be transformed into an irredundant
k-expression in linear time, we may assume that φ is an irredundant k-expression.

We do a bottom-up traversal of the k-expression and at each k-labeled graph H arising in φ,
we compute a set AH ⊆ Π(H) such that |AH | ≤ nk2k(log(k)+1) and AH .H Π(H), by doing the
following :

• If H = i(v), then we have Π(H) = {∅} because E(H) = ∅. In this case, we set AH := {∅}.
Obviously, we have AH .H Π(H).
• If H = ρi,j(D), then we set AH := AD.
• If H = D ⊕ F , then we set AH := reduceH(AD ⊗AF).
• If H = ηi,j(D), then we set AH := reduceH(A0

D ∪ · · · ∪ AnD).
For the last three cases, we deduce, by induction, from Lemma 4.8 and Lemmas 5.1–5.3 that AH .H
Π(H). Moreover by the use of the function reduceH , by Lemma 4.2, we have |AH | ≤ nk ·2k(log(k)+1).

We now explain how our algorithm decides whether G admits a Hamiltonian cycle. We claim
that G has a Hamiltonian cycle if and only if there exist two k-labeled graphs H and D arising in
φ with V (H) = V (G) and H = ηi,j(D), and there exists P ∈ AD such that for every ` ∈ [k] \ {i, j},
we have degauxD(P)(v`) = 0 and degauxH(P)(vi) = degauxH(P)(vj) > 0.

First suppose that G contains a Hamiltonian cycle C and take the k-labeled graph H arising in
φ such that E(C) ⊆ E(H) and |E(H)| is minimal. Note that the operations of taking the disjoint
union of two graphs or relabeling cannot create a Hamiltonian cycle. Thus, by minimality, we have
H = ηi,j(D) such that

• D is a k-labeled graph arising in φ and i, j ∈ [k],
• E(C) \ E(D) 6= ∅.

It follows that E(C) \ E(D) ⊆ EHi,j . Let P := E(C) ∩ E(D) and Q := E(C) ∩ EHi,j . Observe
that P ∈ Π(D) and Q ∈ Π(D). By Lemma 4.3, the multigraph auxD(P)] auxD(Q) contains a
red-blue Eulerian trail. Since AD .D Π(D), there exists P? ∈ AD such that auxD(P?)] auxD(Q)
contains a red-blue Eulerian trail. As Q ⊆ EHi,j , we deduce that for every ` ∈ [k] \ {i, j}, we have
degauxD(P?)(v`) = 0 and degauxH(P?)(vi) = degauxH(P?)(vj).

13

For the other direction, suppose that the latter condition holds. Let Q be the graph on the vertex
set V (G) such that it contains exactly degauxH(P)(vi) many edges between the set of vertices labeled
i and the set of vertices labeled j. Observe that auxH(Q) consists of degauxH(P)(vi) many edges
between vi and vj . Therefore, by Lemma 4.5, auxH(P)] auxH(Q) admits a red-blue Eulerian trail.
Then by Lemma 4.4, there exists Q? ∈ Π(H) such that P and Q? form a Hamiltonian cycle, as
required.

Running time. Let H be a k-labeled graph arising in φ. Observe that if H = i(v) or H = ρi→j(D),
then we compute AH in time O(1).

By Lemma 4.2, for every A ⊆ Π(H), we can compute reduceH(A) in time O(|A| · nk2 log2(nk)).
Observe that for every k-labeled graph D arising in φ and such that AD is computed before AH ,
we have |AD| ≤ nk · 2k(log2(k)+1). It follows that :

• If H = D ⊕ F , then we have |AD ⊗ AF | ≤ n2k · 22k(log2(k)+1). Thus, we can compute
AH := reduceH(AD ⊗AF) in time

O(n2k+1 · 22k(log2(k)+1) · k2 log2(nk)).

• If H = ηi,j(D), then we can compute AH in time

O(nk+4 · 2k(log2(k)+1) · k2 log2(nk)).

First observe that for every partial solution P of H, we have |P + (i, j)| ≤ n2 and we can
compute the set P+(i, j) in time O(n2). Moreover, by Lemma 4.2, for every ` ∈ {0, . . . , n−
1}, we have |A`D| ≤ nk ·2k(log2(k)+1) and thus, we deduce that |A`D+(i, j)| ≤ nk+2·2k(log2(k)+1)

and that A`+1
D can be computed in time O(nk+3 · 2k(log2(k)+1) · k2 log2(nk)). Thus, we can

compute the sets A1
D, . . . ,AnD in time O(nk+4 · 2k(log(k)+1) · k2 log2(nk)). The running time

to compute AH from AD follows from |A0
D ∪ · · · ∪ AnD| ≤ nk+1 · 22k(log2(k)+1).

Since φ uses at most O(n) disjoint union operations and O(nk2) unary operations, we deduce that
the total running time of our algorithm is

O(n2k+5 · 22k(log2(k)+1) · k4 log2(nk)). �

6. Directed Hamitonian cycle

In this section, we explain how to adapt our approach for directed graphs. A k-labeled digraph
is a pair (G, labG) of a digraph G and a function labG from V (G) to [k]. Directed clique-width is
also defined in [8], and it is based on the four operations, where the three operations of creating a
digraph, taking the disjoint union of two labeled digraphs, and relabeling a digraph are the same,
and the operation of adding edges is replaced with the following:

• For a labeled digraph G and distinct labels i, j ∈ [k], add all the non-existent edges from
vertices with label i to vertices with label j (so we do not add edges of both directions
altogether).

A directed clique-width k-expression and directed clique-width are defined in the same way.
A directed Hamiltonian cycle of a digraph G is a directed cycle containing all the vertices of G.

The Directed Hamiltonian Cycle problem asks, for a given digraph G, whether G contains a
directed Hamiltonain cycle or not.

With the same approach, we can show the following.

Theorem 6.1. There exists an algorithm that, given an n-vertex digraph G and a directed clique-
width k-expression of G, solves Directed Hamiltonian Cycle in time nO(k).

14

Similar to the proof of Theorem 5.4, we recursively compute a set AH of bounded size such that
AH represents the set of all partial solutions of H, for every k-labeled graph H arising in the k-
expression of G. For Directed Hamiltonian Cycle, auxiliary graphs should be directed graphs.
Thus, to adapt our idea for undirected graphs, we need to prove the directed version of Lemma 4.5,
and prove auxiliary lemmas.

Let G be a directed multigraph whose edges are colored red or blue, and let R and B be respec-
tively the set of red and blue edges. For a vertex v ∈ V (G), we define that

• rdeg+G(v) and rdeg−G(v) are respectively the outdegree and indegree of v in G|R,
• bdeg+G(v) and bdeg−G(v) are respectively the outdegree and indegree of v in G|B.

Lemma 6.2. Let G be a connected directed multigraph whose edges are colored red or blue. Then G
has a red-blue Eulerian trail if and only if for every vertex v, bdeg+G(v) = rdeg−G(v) and bdeg−G(v) =

rdeg+G(v).

Proof. The walks here are all directed. The idea for proving Lemma 6.2 is the same as the one of
Lemma 4.5. If T = (v1, e1, v2, . . . , v`, e`, v1) is a red-blue Eulerian trail, then for 2 ≤ i ≤ `, ei−1 and
ei have different colors, and moreover e1 and e` have distinct colors. Thus, we can conclude that

• for every vertex v, bdeg+G(v) = rdeg−G(v) and bdeg−G(v) = rdeg+G(v).
For the other direction, suppose that for every vertex v, bdeg+G(v) = rdeg−G(v) and bdeg−G(v) =

rdeg+G(v). Since each vertex has equal indegree and outdegree, the graph contains an Eulerian trail
(not necessarily a red-blue one), and it implies that G is strongly connected.

We choose a red-blue trail T := (v1, e1, v2, e2, · · · , vi, ei, vi+1) with maximum i such that
(1) e1 is colored red, and
(2) the multigraphGi := G−

(⋃
j∈[i]{ej}

)
contains strongly connected components C1, C2, . . . , Ct,

where at at least one is non-trivial, and such that
• vi+1 ∈ V (C1) and v1 ∈ V (Ct),
• for each x ∈ [t− 1], there is exactly one edge from Cx to Cx+1 and there are no other
edges between distinct strongly connected components in C1, C2, . . . , Ct.

We first observe that such a trail T exists. We choose any red edge e = (v, w). If G−e is strongly
connected, then we are done. Otherwise, let C1, C2, . . . , Ct be the strongly connected components
of G − e which form an acyclic ordering; that is, there is an edge from Ci to Cj with i 6= j if and
only if i < j. Note that C1 contains only outgoing edges in G − e. If C1 does not contain v and
w, then each vertex of C1 has equal indegree and outdegree, and it is a contradiction. Since v also
contributes an outdegree in the edge vw, we can deduce that w is contained in C1. In the similar
reason, v is contained in Ct.

Note that every vertex of C1 has same indegree and outdegree in G. Thus, there is exactly one
outgoing edge from C1 to C2 ∪ · · · ∪Ct. If there is an outgoing edge from C1 to a component other
than C2, then C2 have only outgoing edges to C3 ∪ . . . ∪ Ct, which is impossible. Thus, there is
exactly one edge from C1 to C2. The same argument can be repeated, and we can deduce that for
each x ∈ [t − 1], there is exactly one edge from Cx to Cx+1 and there are no other edges between
distinct strongly connected components in C1, C2, . . . , Ct. Therefore (v, e, w) is a required red-blue
trail.

Now, we consider the properties of Gi = G −
(⋃

j∈[i]{ej}
)
. Since T is a red-blue trail, we have

the following:
• For each v ∈ V (G) \ {v1, vi+1}, bdeg+Gi

(v) = rdeg−Gi
(v) and bdeg−Gi

(v) = rdeg+Gi
(v).

• If vi+1 6= v1 and ei is colored red (resp. blue), then
– bdeg+Gi

(vi+1) = rdeg−Gi
(vi+1) + 1 (resp. rdeg+Gi

(vi+1) = bdeg−Gi
(vi+1) + 1),

– bdeg−Gi
(vi+1) = rdeg+Gi

(vi+1) (resp. rdeg−Gi
(vi+1) = bdeg+Gi

(vi+1)),
15

– bdeg−Gi
(v1) = rdeg+Gi

(v1) + 1 and bdeg+Gi
(v1) = rdeg−Gi

(v1).
• If vi+1 = v1 and ei is colored red (resp. blue), then

– bdeg−Gi
(v1) = rdeg+Gi

(v1) + 1 (resp. bdeg−Gi
(v1) = rdeg+Gi

(v1)),
– bdeg+Gi

(v1) = rdeg−Gi
(v1) + 1 (resp. bdeg+Gi

(v1) = rdeg−Gi
(v1)).

We claim that i = m − 1. Suppose for contradiction that i < m − 1. Let C1, C2, . . . , Ct be
the strongly connected components stated in the second condition. We divide cases depending on
whether t = 1 or not.

(Case 1. t = 1.) In this case, C1 is strongly connected. So we can simply extend T by choosing
a next edge which has the color differ from the color of ei.

(Case 2. t ≥ 2.) If C1 consists of one vertex, then there is a unique edge from v1 to C2 in Gi
which color differs from the color of ei, and we can choose this edge as a next edge. Suppose C1

contains at least two vertices. Then we can choose a next edge as an edge in C1 that has a color
different from that of ei.

In each case, we can extend the red-blue trail, which contradicts the maximality. Therefore
i = m− 1, and vi+1 should be connected to v1 by a blue edge f := vi+1v1. Thus,

(v1, e1, v2, e2, . . . , vi, ei, vi+1, f, v1)

is a required red-blue Eulerian trail. �

We define partial solutions and auxiliary multigraphs similarly at the exception that a directed
path from a vertex labeled i to a vertex labeled j in a partial solution corresponds to a directed
edge (vi, vj) in the auxiliary multigraph. Based on Lemma 6.2, the set of connected components
and the degree sequence are important. Thus we can follow the lines of the proof for undirected
graphs, and easily deduce that one can solve Directed Hamiltonian Cycle in time nO(k), where k is
the directed clique-width of the given digraph.

7. Conclusion

We have proved that, given a k-expression, one can solve Hamiltonian Cycle in time nO(k).
At this point, the behavior of clique-width towards fundamental problems expressible in MSO2 are
well-understood. One major open question related to clique-width remains the complexity of its
computation and its approximation within a constant factor.

We can avoid this long standing open question by using a related parameter like rank-width.
This parameter was introduced by Oum and Seymour [23] and admits an efficient algorithm to
approximate it within a constant factor. Moreover, the clique-width of a graph is always bigger
than its rank-width, and in some graph, clique-width can be exponentially bigger than rank-width.
On the other hand, rank-width is harder to manipulate and, to the best of our knowledge, there is
no optimal algorithm known for rank-width under ETH, even for basic problems such as Vertex
Cover and Dominating Set, where the best algorithms run in time 2O(k2) · nO(1) and the best
lower bound under ETH are 2o(k) · nO(1).

One successful way to work with rank-width is through the notion of d-neighbor equivalence
introduced in [5]. The d-neighbor equivalence was the key in the design of efficient algorithms to
solve some well-studied and well-known problems expressible in MSO1 such as Vertex Cover,
Dominating Set [5, 22], their connected variants, and Feedback Vertex Set [1]. Is this notion
also useful for the design of fast XP algorithms, parameterized by rank-width/clique-width, for
problems expressible in MSO2 but not in MSO1?

We conclude with one question. A digraph D is an out-tree if D is an oriented tree with only
one vertex of indegree zero (called the root). The vertices of out-degree zero are called leaves of D.
The Min Leaf Out-Branching problem asks for a given digraph D and an integer `, whether there

16

is a spanning out-tree of D with at most ` leaves. This problem generalizes Hamiltonian Path
(and also Hamiltonian Cycle) by taking ` = 1. Ganian, Hliněný, and Obdržálek [17] showed
that there is an n2

O(k) time algorithm for solving Min Leaf Out-Branching problem, when a
clique-width k-expression of a digraph D is given. We ask whether it is possible to drop down the
exponential blow-up from 2O(k) to O(k).

References

[1] B. Bergougnoux and M. M. Kanté. Rank based approach on graphs with structured neighborhood. CoRR,
abs/1805.11275, 2018.

[2] B. Bergougnoux, M. M. Kanté, and O. Kwon. An optimal xp algorithm for hamiltonian cycle on graphs of
bounded clique-width. In Algorithms and Data Structures, pages 121–132. Springer International Publishing,
2017.

[3] H. Bodlaender. A partial k -arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1-2):1–45,
1998.

[4] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential time algorithms for
connectivity problems parameterized by treewidth. Inform. and Comput., 243:86–111, 2015.

[5] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for locally checkable vertex subset
and vertex partitioning problems. Theoret. Comput. Sci., 511:66–76, 2013.

[6] B. Courcelle. The monadic second-order logic of graphs IV: definability properties of equational graphs. Annals
of Pure and Applied Logic, 49(3):193–255, 1990.

[7] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order logic, volume 138 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 2012. A language-theoretic approach,
With a foreword by Maurice Nivat.

[8] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. Journal of Computer
and System Sciences, 46(2):218–270, 1993.

[9] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded
clique-width. Theory Comput. Syst., 33(2):125–150, 2000.

[10] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101(1-
3):77–114, 2000.

[11] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O. Wojtaszczyk. Solving connec-
tivity problems parameterized by treewidth in single exponential time (extended abstract). In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science—FOCS 2011, pages 150–159. IEEE Computer Soc.,
Los Alamitos, CA, 2011.

[12] R. Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics. Springer, third edition, 2005.
[13] W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-width bounded graphs

in polynomial time. In Graph-theoretic concepts in computer science (Boltenhagen, 2001), volume 2204 of Lecture
Notes in Comput. Sci., pages 117–128. Springer, Berlin, 2001.

[14] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-width is NP-complete. SIAM J. Discrete
Math., 23(2):909–939, 2009.

[15] F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh. Intractability of clique-width parameterizations.
SIAM J. Comput., 39(5):1941–1956, 2010.

[16] F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh. Almost optimal lower bounds for problems
parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563, 2014.

[17] R. Ganian, P. Hliněný, and J. Obdržálek. Clique-width: when hard does not mean impossible. In 28th Interna-
tional Symposium on Theoretical Aspects of Computer Science, volume 9 of LIPIcs. Leibniz Int. Proc. Inform.,
pages 404–415. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2011.

[18] P. A. Golovach, D. Lokshtanov, S. Saurabh, and M. Zehavi. Cliquewidth III: the odd case of graph coloring
parameterized by cliquewidth. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 262–273, 2018.

[19] F. Gurski. A comparison of two approaches for polynomial time algorithms computing basic graph parameters.
CoRR, abs/0806.4073, 2008.

[20] P. Hliněný and S. Oum. Finding branch-decompositions and rank-decompositions. SIAM J. Comput., 38(3):1012–
1032, 2008.

[21] D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied
Mathematics, 126(2-3):197–221, 2003.

17

[22] S. Oum, S. H. Sæther, and M. Vatshelle. Faster algorithms for vertex partitioning problems parameterized by
clique-width. Theoret. Comput. Sci., 535:16–24, 2014.

[23] S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514–
528, 2006.

[24] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic programming on tree decompositions using
generalised fast subset convolution. In Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen,
Denmark, September 7-9, 2009. Proceedings, pages 566–577, 2009.

Université Clermont Auvergne, LIMOS, CNRS, Aubière, France
Email address: benjamin.bergougnoux@uca.fr

Email address: mamadou.kante@uca.fr

Department of Mathematics, Incheon National University, Incheon, South Korea
Email address: ojoungkwon@gmail.com

18

mailto:benjamin.bergougnoux@uca.fr
mailto:mamadou.kante@uca.fr
mailto:ojoungkwon@gmail.com

	1. Introduction
	2. Preliminaries
	3. Partial solutions and auxiliary graphs
	4. Relations between Hamiltonian cycles and Eulerian trails
	5. Hamiltonian Cycle problem
	6. Directed Hamitonian cycle
	7. Conclusion
	References

