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Route to Drift Wave Chaos and Turbulence in a Bounded Lowg Plasma Experiment
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The transition scenario from stability to drift wave turbulence is experimentally investigated in a
magnetized lows plasma with cylindrical geometry. It is demonstrated that the temporal dynamics
is determined by the interaction and destabilization of spatiotemporal patterns, in particular, traveling
waves. The analysis of the temporal and the spatiotemporal data shows that the bifurcations sequence
towards weakly developed turbulence follows the Ruelle-Takens scenario. [S0031-9007(97)04530-4]

PACS numbers: 52.35.Kt, 05.45.+b, 52.35.Ra

Itis an essential feature of bounded plasmas to establigfiagnostics in thermionic discharges an ion temperature
edge localized gradients in the density, the space chargdose to gas temperature was inferred [6], ile/,T; = 40.
potential, and the particle temperatures. The magnetizetihe drift wave characteristic length scales are set by the
plasma is then subjected to a class of low-frequencyeduced gyroradiug, = 1.0 cm and the inverse density
electrostatic fluid drift instabilities, the collisional drift gradient length L, ! = d(Inn)/dr = 1/r = 0.5 cm™!
waves. The dynamics of collisional drift waves is based7]. The time scale is given by the drift wave frequency
on the tight coupling of fluctuations caused Byx B * = (k,T./eB)L,'/r = 4.3 X 10* rad/s [7] which
and diamagnetic drifts perpendicular to the magnetic fields below the ion cyclotron frequencyw. = 1.7 X
and a resistive parallel electron response. Linear drifi0’ rad/s. It is shown below that part of the fluctuation
waves travel predominantly in the transverse directiorspectra may well exceed. and the low-frequency
with electron diamagnetic drift velocity, have a radial approximation starts to fail.
eigenmode structure, and tend to establish axially standing We now identify the control parameter that determines
modes. Despite important recent progress in theory [1lihe drift wave stability properties. It was shown previ-
and experiment [2], the nature of the drift wave turbulenceously [8] that a positively biased separation grid gives rise
is still far from being understood. In particular, little is to a static radial electric field, in the magnetized plasma
known of the strongly nonlinear regime in between thecolumn. The resultingg, X B rotation strongly desta-
linear instability onset and the fully developed turbulencebilizes collisional drift waves, mainly due to centrifugal
In this paper, we describe an experimental study oforces acting on the ion fluid [2,8]. In our experiment,
the transition from a stable state to weakly developedmissive probe measurements have revealed a sheath struc-
drift wave turbulence in a bounded cylindrical lggv- ture at the grid establishing a parabolic radial potential pro-
plasma. When the control parameter is increased, thile. The shearlesE, X B rotation of the plasma column
transition follows a well-defined scenario, analogously tois then determined by the grid bias and gy = 0-8 V
the already classical observations in neutral fluids [3](well below the argon ionization potential) we find a mo-
Of high general interest in spatially extended, dissipativenotonous increase of the angular velocity of the column
systems is the relationship between the temporal dynamids the rangewgxp = B~ 'd¢,/dr = (2-6) X 10* rad/s
and spatiotemporal patterns [4], for instance, travelingof the same order a®*). This makesU, a suitable ex-
waves, and we thus devote special attention to thisernal parameter that controls the plasma rotation and thus
important subject. the stability properties (thereby the dynamical state) of

The drift wave experiment was performed in a triplerotation-induced collisional drift waves.
plasma device with a magnetized central chamber [5]. In Biased Langmuir probes located at the radial position
one chamber a thermionic argon discharge is operated ag of the maximum density gradient are used for the
plasma source (gas pressute= 8 X 10”4 mbar). The measurement of density fluctuations to investigate the
weakly ionized plasma diffuses into the central section andemporal and the spatiotemporal drift wave dynamics. For
forms a magnetized column (magnetic fiddd= 70 mT)  the latter, a novel diagnostic tool was developed [5], a
of length! = 1.6 m with a Gaussian radial density profile circular probe array consisting of 64 probes. The probe
n(r) = noexp(—r?/2r3) of width ry =2.0cm. The array data has a temporal resolutidn = 1 us and a
plasma column is bounded on both ends by transparespatial resolution of 0.4 cm. In cylindrical geometry, the
grids separating it from the source chambers. In the centeizimuthal boundary conditions are periodic and the drift
of the column the electron temperatur€js= 1.2 eV and waves are restricted to integer azimuthal mode numbers
the electron density ia, = 2 X 10'® m ™3, From laser The Nyquist limit of the probe array is themy, = 32.
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We first restrict the discussion to the temporal dynamicsf;; = if;s = jfi with i,j € N, where each frequency
of drift waves. In Fig. 1, for increasing control parameter, f;; corresponds to an originally damped daughter
time series of a single negatively biased probe, its powewave. The phase space attractor of such a quasiperi-
spectrum, and the phase space diagram are shown. Tbdic state is a two-torus and the time series shows no
phase space reconstruction is made by delay time embederiodicity [Fig. 1(b)]. The subsequent bifurcation to
ding [9] with parameterd (embedding dimension) and  mode locking [11] happens at = 0.56 [Fig. 1(c)]. In
(delay time) determined by the so-called fill factor crite-comparison to the quasiperiodic state the frequency power
rion [9]. The normalized control parameter is defined byspectrum is greatly simplified. There are only two strong
€ = (U, — Ug)/Ug, WhereUy,. = 3.5 Visthe (critical) peaks (and higher harmonics) left gt = 7.9 kHz and
grid bias of the onset of the drift instability. The transition f, = 15.8 kHz = 2f,, where the higher frequency peak
scenario to chaos and turbulence is observed as followss the stronger one. Such a subharmonic spectrum is a
The first Hopf bifurcation occurs at the linear instability hallmark of higher periodic behavior, as apparent from
onset of a drift mode at = 0.0. The drift mode saturates the double loop phase space attractor and the time series
by generating higher harmonics as shown in Fig. 1(aith a strict periodicity two. A further increase of the
for e = 0.14. The phase space attractor is a limit cyclecontrol parameter leads to the gradual dissolution of the
and the frequency power spectrum is sharply peaked ahode-locked state [Fig. 1(d)]. Inspecting the time series,
the mode frequency; = 13.5 kHz (Doppler shifted by it is found that the periodicity of the series experiences
fexs = 3.0 kHz) and its higher harmonics which are a slow evolution until it is occasionally interrupted (at
close or in excess of the ion cyclotron frequency. Ther = 0.9 ms) in Fig. 1(d). This means that the periodic
next Hopf bifurcation ate = 0.33 introduces a second orbit shown in Fig. 1(c) has become unstable [12] and
drift mode with frequencyf; = 6.9 kHz [Fig. 1(b), the excursions to irregular behavior broaden the spectrum,
note the increased Doppler shift]. This mode is non-4ncrease the noise level, and fill up previously empty
linearly unstable and is the result of the nonlinearregions of the phase space attractor. A further increase of
saturation [10] of the previously excited mode atthe control parameter leads to strongly irregular behavior
f3 = 18.8 kHz. Because of the parametric interaction[Fig. 1(e)] and finally to turbulence [Fig. 1(f)] with a
of the two waves [10] with incommensurate frequenciesproad, noiselike frequency power spectrum, intermittent
the power spectrum is multipeaked at sum and differfluctuations, and a scattered phase space distribution.
ence of integer multiples of the two mode frequencieDuring the transition to turbulence the maximum relative
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FIG. 1. Temporal dynamics of the transition to weakly developed turbulence. In each subfigure, the time series of density
fluctuations, its power spectrum (the dashed line indicates the ion cyclotron frequefcyand the phase space contour are
shown (delay time embedding in hete= 3 dimensions with{X,Y,Z} = {n(¢),n(t + 7),n(r + 27)} where r varies between

9-11 samples). The control parameter values aree (&) 0.14, (b) € = 0.50, (c) e = 0.57, (d) e = 0.74, (e) € = 0.86, and

(f) € = 0.93.
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density fluctuation level increases fraivin < 10% upto  pattern n(x,7) becomes quasiperiodic after the second
50%, the latter indicating strong turbulence. At this point, Hopf bifurcation [Fig. 2(b)]. Here an additionat = 1

it is already reasonable to suggest the above describedode with a frequency; = 7.1 kHz (incommensurate
chain of events as being the classical Ruelle-Takens route f3) is in nonresonant three-wave interaction with the
to turbulence [3] previously observed in theoretical drift;m = 3 mode. This is clearly seen in the power spectrum
wave studies, too [13]. of the quasiperiodic state where, besides the fundamental

The spatiotemporal dynamics of the transition to tur-m = 1 andm = 3 modes, a whole set of forced daughter
bulence is shown in Fig. 2. Spatiotemporal patterns ofvaves is found (most pronounced= 2 but alsom = 4
the density fluctuationa(x, t) are shown for increasing andm = 5 due to nonlinear interaction of the higher har-
control parameter together with the frequency-wave nummonics). The bifurcation from the quasiperiodic to the
ber (full) spectra estimated by discrete Fourier transformmode-locked state is a transition from nonresonant inter-
of n(x,r) (itisx € [0,27w]andt € [0, T] with n(0,7) =  action of them = 1 andm = 3 modes to the resonant in-
n(2m,t) and N = T/Ar > 1). After the first Hopf bi- teraction of then = 1 andm = 2 modes, initiated by an
furcation, then(x, r) diagram is periodic and shows a co- eventual resonance overlap of foroed= 2 modes. The
herent traveling wave with mode number = 3 and a  spatiotemporal pattera(x, r) is two periodic in space and
frequencyfs; = 19 kHz [Fig. 2(a)]. The spatiotemporal time [Fig. 2(c)] and in the spectrum a strong peak occurs
atm = 2 and a weaker one at = 1. The other spec-
tral components are just higher harmonics in frequency
and wave number, as required for resonant coupling. This
two-periodic spatiotemporal pattern is remarkably stable.
It needs a significant increase of the control parameter to
destabilize the structure as shown in Fig. 2(d). Occasion-
ally the periodicity (and thereby the spatiotemporal sym-
metry) of n(x, ) is broken by small phase dislocations,
respectively, defects [4] [in Fig. 2(d) emphasized by a
box]. These defects have a relatively short lifetime of the
order of the period duration of the = 1 mode and lead
to the broadening of the spectrum around the two domi-
nant peaks. The further increase of the control parameter
results in the total loss of the spatiotemporal symmetry
of n(x,r) and a turbulent state is established [Fig. 2(e)].
The resultant spectrum is broad banded in frequency and
wave number.

The most important ergodic phase space measures, i.e.,
the (correlation) dimension [14] and the spectrum of Lya-
punov exponents [15], have been estimated. The result is
shown in Figs. 3(b) and 3(c). At each Hopf-bifurcation
point the attractor dimensionality increases by one indicat-
ing an additional degree of freedom (equivalent to addi-
tional drift mode). The dimensionality is reduced by one
during the transition from the quasiperiodic to the mode-
locked state since the trajectories do no longer cover the
surface of the torus but form a double loop [cf. Fig 1(c)].
The destabilization of the mode-locked state fQr>
0.7 becomes apparent by a steep increase of the dimen-
sionality that fits the scaling laW,(e) = DM + y(e —
)34, whereDY! = 1.1 = 0.1 is the dimensionality of
the mode-locked state. The Lyapunov spectrum Fig. 3(c)
shows how the stability properties of the different attrac-
0 tors change. The limit cycle has a spectr(in—, —) and
time (ms) frequency (kH2) the negative Lyapunov exponents decrease while the mode

saturates, indicating a gain of stability. The second Hopf

FIG. 2. Spatiotemporal dynamics of the transition scenario tgjfurcation changes the spectrum (@O0, —) as required

weakly developed turbulence. Spatiotemporal density fluctuag,. 5 nwo-torus with an additional invariant direction in

tions (left, gray-scale coded) and power spectra (right). Con- . .
trol pgramgtery values are %&) - 813 (peﬁodic), ((g) 6) —  phase space. The bifurcation to the mode-locked state

0.49 (quasiperiodic), (C)e = 0.62 (mode lock), (d)e = 0.75  reestablishes th@, —, —) spectrum similar to that of the
(chaotic), and (e = 1.01 (weakly turbulent). limit cycle. With the steep increase of the dimensionality
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FIG. 3. (a) Biorthogonal global entropyf,qs of the data
set Fig. 2. (b) Correlation dimensioh, and (c) Lyapunov
spectrumi; of the data set partially shown in Fig. 1. Lines are
drawn to guide the eye.

a positive Lyapunov exponent arises indicating the loss of
stability in phase space, i.e., chaotic behavior. The Lya-

punov spectrum then has the structi#te 0, —, —, —) in

plexity after the second Hopf bifurcation, where a large
number of daughter waves are driven by the nonresonant
interaction of two modes. The destabilization of the
mode-locked state and the transition to spatiotemporal
chaos becomes apparent by a steady increasg,pffor
e > 0.53, meaning increasing spatiotemporal disorder.
We note that the BD as knear spatiotemporal analysis
tool yields results that qualitatively agree with the ergodic
measures of thaonlinearphase space description.

To summarize, the drift wave experiments in an axially
bounded rotating low3 plasma column reveal aa pri-
ori unexpected similarity to Rayleigh-Bénard convection
cell experiments [18]. The transition to chaos and turbu-
lence follows clearly the Ruelle-Takens scenario and the
destabilization of the mode-locked state is related to the
occurrence of defects in the spatiotemporal pattern. Fully
developed turbulence means strong spatiotemporal disor-
der. The analysis of the ergodic phase space measures
and the global biorthogonal entropy reveals the entangle-
ment of the temporal and the spatiotemporal dynamics.
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