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The transition scenario from stability to drift wave turbulence is experimentally investigated in a
magnetized low-b plasma with cylindrical geometry. It is demonstrated that the temporal dynamics
is determined by the interaction and destabilization of spatiotemporal patterns, in particular, traveling
waves. The analysis of the temporal and the spatiotemporal data shows that the bifurcations sequence
towards weakly developed turbulence follows the Ruelle-Takens scenario. [S0031-9007(97)04530-4]
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It is an essential feature of bounded plasmas to establ
edge localized gradients in the density, the space cha
potential, and the particle temperatures. The magnetiz
plasma is then subjected to a class of low-frequen
electrostatic fluid drift instabilities, the collisional drift
waves. The dynamics of collisional drift waves is base
on the tight coupling of fluctuations caused byE 3 B
and diamagnetic drifts perpendicular to the magnetic fie
and a resistive parallel electron response. Linear dr
waves travel predominantly in the transverse directio
with electron diamagnetic drift velocity, have a radia
eigenmode structure, and tend to establish axially standi
modes. Despite important recent progress in theory [
and experiment [2], the nature of the drift wave turbulenc
is still far from being understood. In particular, little is
known of the strongly nonlinear regime in between th
linear instability onset and the fully developed turbulence
In this paper, we describe an experimental study
the transition from a stable state to weakly develope
drift wave turbulence in a bounded cylindrical low-b

plasma. When the control parameter is increased, t
transition follows a well-defined scenario, analogously t
the already classical observations in neutral fluids [3
Of high general interest in spatially extended, dissipativ
systems is the relationship between the temporal dynam
and spatiotemporal patterns [4], for instance, travelin
waves, and we thus devote special attention to th
important subject.

The drift wave experiment was performed in a triple
plasma device with a magnetized central chamber [5].
one chamber a thermionic argon discharge is operated
plasma source (gas pressureP ­ 8 3 1024 mbar). The
weakly ionized plasma diffuses into the central section an
forms a magnetized column (magnetic fieldB ­ 70 mT)
of lengthl ­ 1.6 m with a Gaussian radial density profile
nsrd ­ n0 exps2r2y2r2

0 d of width r0 ­ 2.0 cm. The
plasma column is bounded on both ends by transpare
grids separating it from the source chambers. In the cen
of the column the electron temperature isTe ­ 1.2 eV and
the electron density isne ­ 2 3 1016 m23. From laser
0031-9007y97y79(20)y3913(4)$10.00
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diagnostics in thermionic discharges an ion tempera
close to gas temperature was inferred [6], i.e.,TeyTi ø 40.
The drift wave characteristic length scales are set by
reduced gyroradiusrs ­ 1.0 cm and the inverse densit
gradient length L21

n ­ dsln ndydr ­ 1yr ­ 0.5 cm21

[7]. The time scale is given by the drift wave frequen
vp ­ skbTeyeBd L21

n yr ­ 4.3 3 104 radys [7] which
is below the ion cyclotron frequencyvci ­ 1.7 3

105 radys. It is shown below that part of the fluctuatio
spectra may well exceedvci and the low-frequency
approximation starts to fail.

We now identify the control parameter that determin
the drift wave stability properties. It was shown prev
ously [8] that a positively biased separation grid gives r
to a static radial electric fieldEr in the magnetized plasm
column. The resultingEr 3 B rotation strongly desta
bilizes collisional drift waves, mainly due to centrifug
forces acting on the ion fluid [2,8]. In our experimen
emissive probe measurements have revealed a sheath
ture at the grid establishing a parabolic radial potential p
file. The shearlessEr 3 B rotation of the plasma column
is then determined by the grid bias and forUg ­ 0 8 V
(well below the argon ionization potential) we find a m
notonous increase of the angular velocity of the colu
in the rangevE3B ­ B21dfpydr ­ s2 6d 3 104 radys
(of the same order asvp). This makesUg a suitable ex-
ternal parameter that controls the plasma rotation and
the stability properties (thereby the dynamical state)
rotation-induced collisional drift waves.

Biased Langmuir probes located at the radial posit
r0 of the maximum density gradient are used for t
measurement of density fluctuations to investigate
temporal and the spatiotemporal drift wave dynamics.
the latter, a novel diagnostic tool was developed [5]
circular probe array consisting of 64 probes. The pro
array data has a temporal resolutionDt $ 1 ms and a
spatial resolution of 0.4 cm. In cylindrical geometry, th
azimuthal boundary conditions are periodic and the d
waves are restricted to integer azimuthal mode numberm.
The Nyquist limit of the probe array is thenmNyq ­ 32.
© 1997 The American Physical Society 3913
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We first restrict the discussion to the temporal dynami
of drift waves. In Fig. 1, for increasing control paramete
time series of a single negatively biased probe, its pow
spectrum, and the phase space diagram are shown.
phase space reconstruction is made by delay time emb
ding [9] with parametersd (embedding dimension) andt
(delay time) determined by the so-called fill factor crite
rion [9]. The normalized control parameter is defined b
e ­ sUg 2 UgcdyUgc, whereUgc ­ 3.5 V is the (critical)
grid bias of the onset of the drift instability. The transitio
scenario to chaos and turbulence is observed as follo
The first Hopf bifurcation occurs at the linear instabilit
onset of a drift mode ate ­ 0.0. The drift mode saturates
by generating higher harmonics as shown in Fig. 1(
for e ­ 0.14. The phase space attractor is a limit cyc
and the frequency power spectrum is sharply peaked
the mode frequencyf3 ­ 13.5 kHz (Doppler shifted by
fE3B ø 3.0 kHz) and its higher harmonics which are
close or in excess of the ion cyclotron frequency. Th
next Hopf bifurcation ate ­ 0.33 introduces a second
drift mode with frequencyf1 ­ 6.9 kHz [Fig. 1(b),
note the increased Doppler shift]. This mode is no
linearly unstable and is the result of the nonlinea
saturation [10] of the previously excited mode a
f3 ­ 18.8 kHz. Because of the parametric interactio
of the two waves [10] with incommensurate frequencie
the power spectrum is multipeaked at sum and diffe
ence of integer multiples of the two mode frequencie
density
e

FIG. 1. Temporal dynamics of the transition to weakly developed turbulence. In each subfigure, the time series of
fluctuations, its power spectrum (the dashed line indicates the ion cyclotron frequencyvci), and the phase space contour ar
shown (delay time embedding in hered ­ 3 dimensions withhX, Y , Zj ­ hnstd, nst 1 td, nst 1 2tdj where t varies between
9–11 samples). The control parameter values are (a)e ­ 0.14, (b) e ­ 0.50, (c) e ­ 0.57, (d) e ­ 0.74, (e) e ­ 0.86, and
(f) e ­ 0.93.
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fij ­ if3 6 jf1 with i, j [ N, where each frequency
fij corresponds to an originally damped daughte
wave. The phase space attractor of such a quasipe
odic state is a two-torus and the time series shows
periodicity [Fig. 1(b)]. The subsequent bifurcation to
mode locking [11] happens ate ­ 0.56 [Fig. 1(c)]. In
comparison to the quasiperiodic state the frequency pow
spectrum is greatly simplified. There are only two stron
peaks (and higher harmonics) left atf1 ­ 7.9 kHz and
f2 ­ 15.8 kHz ­ 2f1, where the higher frequency peak
is the stronger one. Such a subharmonic spectrum is
hallmark of higher periodic behavior, as apparent from
the double loop phase space attractor and the time se
with a strict periodicity two. A further increase of the
control parameter leads to the gradual dissolution of th
mode-locked state [Fig. 1(d)]. Inspecting the time serie
it is found that the periodicity of the series experience
a slow evolution until it is occasionally interrupted (a
t ø 0.9 ms) in Fig. 1(d). This means that the periodic
orbit shown in Fig. 1(c) has become unstable [12] an
the excursions to irregular behavior broaden the spectru
increase the noise level, and fill up previously empt
regions of the phase space attractor. A further increase
the control parameter leads to strongly irregular behavi
[Fig. 1(e)] and finally to turbulence [Fig. 1(f)] with a
broad, noiselike frequency power spectrum, intermitte
fluctuations, and a scattered phase space distributi
During the transition to turbulence the maximum relativ
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density fluctuation level increases from̃nyn , 10% up to
50%, the latter indicating strong turbulence. At this point
it is already reasonable to suggest the above describ
chain of events as being the classical Ruelle-Takens ro
to turbulence [3] previously observed in theoretical drif
wave studies, too [13].

The spatiotemporal dynamics of the transition to tu
bulence is shown in Fig. 2. Spatiotemporal patterns
the density fluctuationsnsx, td are shown for increasing
control parameter together with the frequency-wave num
ber (full) spectra estimated by discrete Fourier transfor
of nsx, td (it is x [ f0, 2pg andt [ f0, Tg with ns0, td ­
ns2p , td and N ­ TyDt ¿ 1). After the first Hopf bi-
furcation, thensx, td diagram is periodic and shows a co-
herent traveling wave with mode numberm ­ 3 and a
frequencyf3 ­ 19 kHz [Fig. 2(a)]. The spatiotemporal

FIG. 2. Spatiotemporal dynamics of the transition scenario
weakly developed turbulence. Spatiotemporal density fluctu
tions (left, gray-scale coded) and power spectra (right). Co
trol parameter values are (a)e ­ 0.13 (periodic), (b) e ­
0.49 (quasiperiodic), (c)e ­ 0.62 (mode lock), (d)e ­ 0.75
(chaotic), and (e)e ­ 1.01 (weakly turbulent).
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pattern nsx, td becomes quasiperiodic after the secon
Hopf bifurcation [Fig. 2(b)]. Here an additionalm ­ 1
mode with a frequencyf1 ­ 7.1 kHz (incommensurate
to f3) is in nonresonant three-wave interaction with th
m ­ 3 mode. This is clearly seen in the power spectru
of the quasiperiodic state where, besides the fundame
m ­ 1 andm ­ 3 modes, a whole set of forced daughte
waves is found (most pronouncedm ­ 2 but alsom ­ 4
andm ­ 5 due to nonlinear interaction of the higher har
monics). The bifurcation from the quasiperiodic to th
mode-locked state is a transition from nonresonant int
action of them ­ 1 andm ­ 3 modes to the resonant in-
teraction of them ­ 1 andm ­ 2 modes, initiated by an
eventual resonance overlap of forcedm ­ 2 modes. The
spatiotemporal patternnsx, td is two periodic in space and
time [Fig. 2(c)] and in the spectrum a strong peak occu
at m ­ 2 and a weaker one atm ­ 1. The other spec-
tral components are just higher harmonics in frequen
and wave number, as required for resonant coupling. T
two-periodic spatiotemporal pattern is remarkably stab
It needs a significant increase of the control parameter
destabilize the structure as shown in Fig. 2(d). Occasio
ally the periodicity (and thereby the spatiotemporal sym
metry) of nsx, td is broken by small phase dislocations
respectively, defects [4] [in Fig. 2(d) emphasized by
box]. These defects have a relatively short lifetime of th
order of the period duration of them ­ 1 mode and lead
to the broadening of the spectrum around the two dom
nant peaks. The further increase of the control parame
results in the total loss of the spatiotemporal symmet
of nsx, td and a turbulent state is established [Fig. 2(e
The resultant spectrum is broad banded in frequency a
wave number.

The most important ergodic phase space measures,
the (correlation) dimension [14] and the spectrum of Ly
punov exponents [15], have been estimated. The resu
shown in Figs. 3(b) and 3(c). At each Hopf-bifurcatio
point the attractor dimensionality increases by one indic
ing an additional degree of freedom (equivalent to add
tional drift mode). The dimensionality is reduced by on
during the transition from the quasiperiodic to the mod
locked state since the trajectories do no longer cover
surface of the torus but form a double loop [cf. Fig 1(c)
The destabilization of the mode-locked state forec .

0.7 becomes apparent by a steep increase of the dim
sionality that fits the scaling lawD2sed ­ Dml

2 1 gse 2

ecd3y4, whereDml
2 ­ 1.1 6 0.1 is the dimensionality of

the mode-locked state. The Lyapunov spectrum Fig. 3
shows how the stability properties of the different attra
tors change. The limit cycle has a spectrums0, 2, 2d and
the negative Lyapunov exponents decrease while the m
saturates, indicating a gain of stability. The second Ho
bifurcation changes the spectrum tos0, 0, 2d as required
for a two-torus with an additional invariant direction in
phase space. The bifurcation to the mode-locked st
reestablishes thes0, 2, 2d spectrum similar to that of the
limit cycle. With the steep increase of the dimensionali
3915
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FIG. 3. (a) Biorthogonal global entropyHbd of the data
set Fig. 2. (b) Correlation dimensionD2 and (c) Lyapunov
spectrumli of the data set partially shown in Fig. 1. Lines ar
drawn to guide the eye.

a positive Lyapunov exponent arises indicating the loss
stability in phase space, i.e., chaotic behavior. The Ly
punov spectrum then has the structures1, 0, 2, 2, 2d in
the appropriately enlarged embedding space. The evo
tion of the dimensionality and the Lyapunov spectrum co
firms quantitatively the Ruelle-Takens transition scenar

We finally investigate the spatiotemporal dynamics b
means of a linear technique called biorthogonal decomp
sition (BD), also known as proper orthogonal decompo
tion [16]. The wave fieldnsx, td is decomposed in a real
weighted sum of purely spatial and temporal eigenmode

nsx, td ­
NX

k­1

akfksxdckstd (1)

with sfk, fld ­ sck , cld ­ dkl being the eigenmodes of
the two-point spatial and temporal correlation function
In case of degeneracyak ­ ak11 they are identical to
traveling waves [16]. In a complementary investigatio
[17] the BD already proved being a powerful data analys
instrument suggesting a set of differential equations th
describe the nonlinear coupling and the destabilizati
of waves. In Refs. [16] an entropy-type measure of th
spatiotemporal complexity was introduced:

Hbd ­ 2
1

ln N

NX
k­1

pk ln pk [ f0, 1g , (2)

where pk ­ a2
ky

P
n a2

n [ f0, 1g are the normalized
squared weights. In Fig. 3(a) the dependence ofHbd
of the control parametere is shown. For both a single
mode and the mode-locked stateHbd ø 0.2 while the
global entropy indicates increasing spatiotemporal co
3916
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plexity after the second Hopf bifurcation, where a large
number of daughter waves are driven by the nonresona
interaction of two modes. The destabilization of the
mode-locked state and the transition to spatiotempor
chaos becomes apparent by a steady increase ofHbd for
e . 0.53, meaning increasing spatiotemporal disorder
We note that the BD as alinear spatiotemporal analysis
tool yields results that qualitatively agree with the ergodi
measures of thenonlinearphase space description.

To summarize, the drift wave experiments in an axially
bounded rotating low-b plasma column reveal ana pri-
ori unexpected similarity to Rayleigh-Bénard convection
cell experiments [18]. The transition to chaos and turbu
lence follows clearly the Ruelle-Takens scenario and th
destabilization of the mode-locked state is related to th
occurrence of defects in the spatiotemporal pattern. Ful
developed turbulence means strong spatiotemporal diso
der. The analysis of the ergodic phase space measu
and the global biorthogonal entropy reveals the entangl
ment of the temporal and the spatiotemporal dynamics.
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