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Abstract

The article uses two examples to explore the statement that, contrary to the
common wisdom, the properties of singular cardinals are actually more intuitive
than those of the regular ones. 1

0 Introduction

Infinite cardinals can be regular or singular. Regular cardinals and especially successors
of regular cardinals, tend to lend themselves to easier and better understood combinato-
rial methods and hence are often considered as being in some sense easier. For example,
Todd Eisworth in his Handbook of Set Theory article [6] artfully exposes difficulties one
has in dealing with the combinatorics of the successors of singulars and explains on a
number of examples why the methods used at a successor of a regular most often cannot
work when dealing with the successor of a singular. Indeed, it is known that in many
situations, dealing with singular cardinals and their successors has to involve techniques
beyond combinatorics and forcing, and it notably requires large cardinals. This is true
even for such seemingly elementary properties as the calculation of the size of the power
set of the cardinal κ as a function of the size of the power sets of the cardinals below,
which is basically the content of the famous Singular Cardinal Hypothesis and which has
lead to some of the deepest results throughout set theory. In fact, the common wisdom
and the thesis of [6] are that if the universe is close to L then the singular cardinals and
their successors are “manageable”, and the opposite is true in the models obtained by
using strong enough large cardinal hypothesis.

We shall explore the antithesis, which is that (a) in some situations singular cardinals
are more manageable than the regular ones and (b) in some models obtained from large
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cardinals the successors of singulars actually behave quite close to how they do in L,
even if we do our best to mess up L by changing the cardinal arithmetic drastically.
Our exposition will involve two examples, one for each one of (a) and (b), which we now
explain.

1 Tree embeddings

In this part of the paper we discuss an issue that we investigated with Väänänen in [5],
inspired by work that he had initiated in a number of earlier papers, concentrating there
on ℵ1 and other regular cardinals. In contrast, we worked with κ a singular cardinal of
countable cofinality and obtained a surprisingly different situation.

Consider rooted trees of height and cardinality κ, which we call κ-Trees 2. We are
interested in κ-Trees which in addition do not have κ-branches, which we call bounded.
We studied the natural notion of reduction, which is simply a strict-order preserving
function from one tree to another. The existence of a reduction from T to T ′ is denoted by
T ≤ T ′. Furthermore, we write T < T ′ if both T ≤ T ′ and T ′ 6≤ T hold. Considerations
of tree reductions have arisen in the context of model theory and descriptive set theory,
as we now explain. Any undefined or unreferenced notion can be found in [5], where in
particular we give ample references to EF games and chain models.

A relational structure of size λ can be considered as an element of 2λ. To understand
the classification of such models up to isomorphism one uses the Ehrenfeucht-Fräıssé
(EF) games, especially in the countable case. There is an older method of classification,
using the fact that for two fixed countable models the set of all isomorphisms between
them is Fδσ, and hence the set of pairs of models that are non-isomorphic is co-analytic.
In fact the set,

{(A,B) : A,B countable models and ∃f : A ∼= B}

is the same set as the set of pairs (A,B) of countable models for which II has a winning
strategy in the EF game. This analysis made it possible to attach to each pair (A,B) of
non-isomorphic countable models a rank, called Scott watershed S(A,B), which in this
case is an ordinal α < ω1.

The rank can be thought of as a clock of the EF game in the following sense: during
the EF game the Nonisomorphism player I has to go down this clock at every stage,
starting at α itself, and a condition of winning for I is that he has not run out of time
before the lack of an isomorphism has been exposed. This game is called the dynamic
EF game of rank α+ 1 and denoted by EFDα+1. The fact that S(A,B) = α+ 1 means
that II wins EFDα (and hence EFDβ for any β < α), while I wins EFDα+1 (and hence
EFDβ for any β > α).

For uncountable models, say of size ℵ1, one can generalise the Ehrenfeucht-Fräıssé
Theorem by considering games of length ω1. One is then tempted to find the corre-
sponding notion of the Scott watershed. It turns out that it is no longer enough to use

2This is different than the usual κ-trees, which are also required to have levels of size < κ.
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the ordinals, as the game is transfinite. The right notion this time is that of bounded
ℵ1-Trees, the class of which we shall denote by Tℵ1 . If T ≤ T ′ then it is easier for II to
win EFDT than EFDT ′ . Respectively, if T ≤ T ′ then it is easier for I to win EFDT ′

than EFDT . Finally, if II wins EFDT and I wins EFDT ′ , then one can prove T < T ′.
In [7] it was shown by Hytinnen and Väänänen that the analogue of the Scott watershed
exists also in the uncountable case. Naturally, the importance of (Tℵ1 ,≤) in this context
led to a systematic study of its structural properties and a development of the descriptive
set theory of the space 2ω1 based on Tℵ1 . The theory of (Tλ,≤) for λ successor of regular
is also quite known, although it is not completely parallel to that of (Tℵ1 ,≤).

When moving to the singular cardinals in [5], the surprise was that new possibilities
opened up. Firstly, it is possible to make links between chain models and the infinitary
logic Lκκ. For κ of singular cofinality one can develop model theory of Lκκ based on
the concept of a chain model, as was done by C. Karp and her successors. A chain
model is an ordinary model A equipped with a presentation of A as a union of a chain
A0 ⊆ A1 . . . ⊆ An ⊆ . . . for n < ω. The chain is not assumed to be elementary. Let us
denote such a system as (An). The point of chain models is the following modification
of the truth definition of Lκκ

(An) |= ∃x̄ϕ(x̄) ⇐⇒ there are n < ω and ā ∈ An with A |= ϕ(ā), (1)

where x̄ is a sequence of length < κ. If we restrict to chain models, the model theory
of Lκκ is very much like that of Lω1ω. For example, one can prove the Completeness
Theorem using consistency properties, and one can also prove undefinability of well
order, Craig Interpolation Theorem, Beth Definability Theorem, etc. (None of these
theorems is true for the classical Lκκ logic). In [5] we extended Scott’s analysis of
countable models to chain models of size κ. In particular, we considered versions of EF
game for (chain) models of a singular cardinality κ of countable cofinality and discovered
that the relevant clock trees of these games are bounded κ-Trees.

In fact the main point of this is that κ-Trees for κ as above have properties that
make them rather similar to ordinals. The reason for this is that there is a natural
notion of rank. Using this notion we can for example show that the universality number
of bounded κ-Trees under reduction is just κ+, and that within each rank in [1, κ+) the
universality number is just ω. This is in sharp contrast with the situation of λ-Trees
where λ is a regular cardinal. For example for λ = ℵ1 Mekler and Väänänen [10] have
established that the universality number for bounded λ-Trees under reduction cannot be
computed in ZFC, and the consistency of this number being equal to 1 for λ = ℵ1 is not
known.

2 Universal graphs

In this section we shall discuss an embedding question which comes from an even more
familiar object than trees, namely graphs. Given a cardinal κ, we are interested to know
what is the smallest size of a family of graphs of size κ which embeds every graph of size
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κ as an induced subgraph. This is known as the universality number. For κ = ℵ0 this
number is 1, as the random graph is a universal countable graph. For uncountable κ the
situation becomes sensitive to the axioms of set theory. Namely, by the classical results
in model theory on the existence of saturated and special models (see [1]), in the presence
of GCH there is a universal graph on every infinite κ, and in fact κ = 2<κ suffices. On
the other hand, a result of Shelah mentioned in [11] and described in [8], is that adding
ℵ2 Cohen reals to a model of CH makes the universality number of graphs at ℵ1 equal
to ℵ2. This is an easy proof, in fact Shelah says in the abstract of [11] “The consistency
of the non-existence of a universal graph of power ℵ1 is trivial. Add ℵ2 generic Cohen
reals.”, and instead he concentrates on a much more complex proof of the consistency
of the existence of a universal graph at ℵ1 and the negation of CH (which in fact was
not right in [11]. Shelah corrected his proof in [12] and Mekler gave a different proof in
[9]). Other successors of regulars behave in a similar way, although neither Mekler’s nor
Shelah’s proof seem to carry over from ℵ1 to larger successors of regulars. Namely, in [4]
Džamonja and Shelah obtained the consistency of the universality number of graphs at
κ+ for an arbitrary large regular κ being equal κ++ while 2κ is as large as desired. The
negative consistency results directly translate to other successors of regulars and even
to a class of them, and to let the reader appreciate the way Cohen’s forcing is used, we
give a rendition of that argument here. (The proof of Theorem 2.1 presented in [8] is
less formal.)

Theorem 2.1 (Shelah, see [8]) Suppose that κ<κ = κ and let P be the forcing to add
λ many, with cf(λ) ≥ κ++ and λ ≥ 2κ

+
, Cohen subsets to κ. Then the universality

number for graphs on κ+ in the extension by P is λ.

Proof. First notice that in the extension we have that 2κ = 2κ
+

= λ, and hence the
total number of graphs on κ+ is at most λ, so the universality number for graphs on κ+

is also ≤ λ. Now we show that it is ≥ λ. Suppose to the contrary, that {Hγ : γ < γ∗}
for some γ∗ < λ in the extension are graphs with universe κ+ that are universal for
graphs on κ+. By standard arguments about the factoring of the Cohen forcing and
using cf(λ) ≥ κ++, we may assume that all graphs Hγ are from the ground model. Let
〈Aji : i ∈ [κ, κ+), j < κ++〉 be a 1-1 enumeration of the first κ++ Cohen subsets of κ
added by P, where the indexing is chosen for the convenience in the argument to follow.
For each j < κ++ we define in the extension a graph Gj on κ+ by letting for α < i < κ+

there be an edge between α and i iff α < κ ≤ i and α ∈ Aji . For each j let hj be an
embedding of Gj to some Hγj . Note that there is a club C of κ++ such that for all j ∈ C
of cofinality κ+, hj � [κ + 1) is in V [Aki : i ∈ [κ, κ+), k < k∗] for some k∗ < j. Then for
any j ∈ C we have

Ajκ = {α < κ : (α, κ) are an edge in Gj} =

{α < κ : (hj � [κ+ 1)(α), hj � [κ+ 1)(κ)) are an edge in Hγj},

which is an object in V [Aki : i ∈ [κ, κ+), k < k∗], a contradiction. F2.1
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Using a standard argument about Easton forcing we can see that it is equally easy
to get negative universality results for graphs at a class of regular cardinals:

Theorem 2.2 Suppose that the ground model V satisfies GCH and C is a class of regular
cardinals in V , while F is a non-decreasing function on C satisfying that for each κ ∈ C
we have cf(F (κ)) ≥ κ++. Let P be Easton’s forcing to add F (κ) Cohen subsets to κ
for each κ ∈ C. Then for each κ ∈ C the universality number for graphs on κ+ in the
extension by P is F (κ).

Proof. Recall that the forcing notion P is constructed as follows: for each κ ∈ C we have
the forcing Pκ which adds F (κ) Cohen subsets to κ, using functions of size < κ from
κ×F (κ) to {0, 1} with the extension given by the extension of functions. Then P is the
Easton product of {Pκ : κ ∈ C}, which means that each condition p ∈ P is an element
of Πκ∈CPκ with support spt(p) satisfying |spt(p) ∩ θ| < θ for every regular cardinal θ.
Denoting by pκ the projection of condition p on the coordinate κ, each condition in P
can be viewed as a function on triples (κ, α, β) where p(κ, α, β) is defined as pκ(α, β).
Then standard arguments show that for every regular θ the forcing breaks into P≤θ×P>θ
where P≤θ = {p � (κ, α, β) : κ ≤ θ} and P>θ = {p � (κ, α, β) : κ > θ}, and that P>θ is
θ-closed while P≤θ satisfies the θ+-chain condition.

Now let κ ∈ C and suppose for a contradiction that in the extension by P we have
a universal family {Hγ : γ < γ∗} of graphs on κ+ for some γ∗ < F (κ). Since P>κ+

is κ+-closed, it does not add any new subsets to κ+, and hence the universal family is
added by P≤κ+ . We shall once more use an argument about factoring, in that for every
θ < F (κ) we can consider P≤κ+ as the product

Q≤θ = {p ∈ P≤κ+ : (κ, α, β) ∈ dom(p) =⇒ β ≤ θ}
× Q>θ = {p ∈ P≤κ+ : (κ, α, β) ∈ dom(p) =⇒ β > θ}.

Since cf(F (κ)) ≥ κ++, there is some θ < F (κ) such that all graphs Hγ are added by
Q≤θ. Now we can basically repeat the argument from the proof of Theorem 2.1: let
〈Aji : i ∈ [κ, κ+), j < F (κ)〉 be a 1-1 enumeration of the Cohen subsets of κ added by
Q>θ and for each j < κ++ we define in the extension a graph Gj on κ+ by letting for
α < i < κ+ there be an edge between α and i iff α < κ ≤ i and α ∈ Aji . For each j let
hj be an embedding of Gj to some Hγj . Note that there is a club C of F (κ) such that
for all j ∈ C of cofinality ≥ κ+, hj � [κ + 1) is in V [Aki : i ∈ [κ, κ+), k < k∗] for some
k∗ < j. Then for every j ∈ C

Ajκ = {α < κ : (α, κ) are an edge inGj} =

{α < κ : (hj � [κ+ 1)(α), hj � [κ+ 1)(κ)) are an edge in Hγj},

which is an object in V Q≤θ [Aki : i ∈ [κ, κ+), k < k∗], a contradiction. F2.2

Things change at the successor of a singular! Positive results analogous to the
Džamonja-Shelah [4] were obtained for κ of countable cofinality by Džamonja and She-
lah in [3] and for arbitrary cofinality by Cummings, Džamonja, Magidor, Morgan and
Shelah in [2]. We quote that general result:
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Theorem 2.3 (Cummings et al. [2]) If κ is a supercompact cardinal, λ < κ is a
regular cardinal and Θ is a cardinal with cf(Θ) ≥ κ++ and κ+3 ≤ Θ there is a forcing
extension in which cf(κ) = λ, 2κ = 2κ

+
= Θ and there is a universal family of graphs on

κ+ of size κ++.

However, it is not known in Theorem 2.3 if the universality number is exactly κ++.
For all we know, in that model there could be a universal graph on κ+. Worse, we do
not know how to imitate the negative universality presented in Theorems 2.1 and 2.2
above. We do not know how to obtain a model in which the relevant instances of GCH
fail and the universality number of graphs is 2λ for λ the successor of a singular. We have
given Shelah’s argument about the Cohen forcing in gory detail to invite the reader to
think if anything like this can be produced at a singular κ. Initial results by Cummings
and Magidor (private communication) indicate that a naive generalization might not be
possible. Perhaps there is some sort of singular cardinal hypothesis-like behaviour here.
Perhaps we cannot just monkey around with the universality number for graphs at the
successor of singular even when we are basically as far from L as we can possibly be, at
least as far as the power set function is concerned?

3 Conclusion

We have discussed two problems where the intuition of the singular cardinal being in
a sense more difficult than a regular one, seems to be completely false. In fact, the
truth seems to be that although the properties of the singular cardinals are harder
to discover, once we have done that difficult discovery, these properties are actually
nicer than their analogues at the regular cardinals. Some other results but the ones
presented here can be viewed with this idea in mind, for example does not the whole
story of the Singular Cardinal Hypothesis including the celebrated theorem of Shelah
[(∀n < ω)2ℵn < ℵω] =⇒ 2ℵω < ℵω4 , does not this story say that the singulars are in fact
more intuitive than the regulars? Erdös has said something to the extent of the infinite
being the easy part, and the finite the difficult one. If the infinite is the limit of the
finite, a singular cardinal is a limit of the successors of regulars, and maybe it is at such
limits that the unruly universe of set theory wishes to express its more tame behaviour.
It seems possible that by investigating finer combinatorics than that expressed by the
power set function we may find combinatorial versions of SCH which are just outright
true.
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[4] Mirna Džamonja and Saharon Shelah. On the existence of universal models. Arch.
Math. Logic, 43(7):901–936, 2004.
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