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Prostate Volume Segmentation in TRUS using
Hybrid Edge-Bhattacharyya Active Surfaces

Vincent Jaouen∗, Julien Bert, Konstantinos A. Mountris, Nicolas Boussion,
Ulrike Schick, Olivier Pradier, Antoine Valeri and Dimitris Visvikis

Abstract—Objective: We present a new hybrid edge and
region-based parametric deformable model, or active surface, for
prostate volume segmentation in transrectal ultrasound (TRUS)
images. Methods: Our contribution is threefold. First, we develop
a new edge detector derived from the radial bas-relief approach,
allowing for better scalar prostate edge detection in low contrast
configurations. Second, we combine an edge-based force derived
from the proposed edge detector with a new region-based force
driven by the Bhattacharyya gradient flow and adapted to
the case of parametric active surfaces. Finally, we develop a
quasi-automatic initialization technique for deformable models
by analyzing the profiles of the proposed edge detector response
radially to obtain initial landmark points towards which an
initial surface model is warped. Results: We validate our method
on a set of 36 TRUS images for which manual delineations
were performed by two expert radiation oncologists, using a
wide variety of quantitative metrics. The proposed hybrid model
achieved state-of-the art segmentation accuracy. Conclusion: Re-
sults demonstrate the interest of the proposed hybrid framework
for accurate prostate volume segmentation. Significance: This
paper presents a modular framework for accurate prostate
volume segmentation in TRUS, broadening the range of available
strategies to tackle this open problem.

Index Terms—Image segmentation, Ultrasonic imaging, De-
formable models, Brachytherapy

I. INTRODUCTION

A. Context

Prostate cancer is the most frequent cancer and the third
cause of cancer-related mortality in men of 50 years of age
or above worldwide. In France, Germany and Switzerland,
incident rates have been consistently increasing since 1990
by 4-5% each year [1]. Among available treatments, low-dose
rate permanent prostate brachytherapy (LDR-B) has emerged
as one of the most effective methods for treating localized
cancers. LDR-B consists in delivering radiation directly within
the gland, by permanently inserting grain-sized radioactive
seeds inside the prostate. A typical procedure requires dose
planning prior to the operation or alternatively just before
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Fig. 1. Schematic representation of a typical brachytherapy procedure.
Radioactive implants (seeds) are inserted under TRUS guidance. Multiple
parallel transverse slices in the xy plane are acquired with a motorized stepper
to cover the entire prostate volume. Modified image by Cancer Research UK,
distributed under a CC BY-SA 4.0 license.

implantation to determine the accurate number and position-
ing of brachytherapy seeds adapted to the patient. Batch of
seeds are inserted one after another using needles across the
perineum according to the planning. In a clinical setup, the
insertion procedure is supervised under continuous transrectal
ultrasound (TRUS) guidance (Fig. 1) [2], [3].

Prostate volume segmentation (PVS) is a critical task of the
brachytherapy procedure. It is for example necessary during
dose planning before the operation, alongside the delineation
of neighboring Organs at Risk (OAR) urethra and rectum, to
calculate a dose plan in order to optimize the dose delivered
to the tumor while minimizing adverse effects to the OARs.

Manual delineation from TRUS images is the most common
practice in clinical routine during surgery. It is however
particularly tedious in 3D, especially when repeated several
times along the operation, increasing the total duration of the
surgery in unacceptable proportions. Due to the low quality of
TRUS images, alternative image modalities such as CT or MRI
can be considered to perform PVS outside the operating room,
at the expense of superior time and cost. The American Society
for Brachytherapy also objects that ”TRUS potentially offers
the only practical option for performing on-line dosimetric
analysis during the procedure” [4]. There is therefore a
clear need for automatic or semi-automatic TRUS-based PVS
methods that could perform this task with satisfying accuracy,
repeatability and speed

B. TRUS-based prostate volume segmentation challenges

The prostate gland globally appears in B-mode TRUS
images as a hypoechoic (dark) walnut-shaped region at the



(a) Example mid-plane TRUS images in 12 patients

(b) Example basal slice (c) Example apical slice

Fig. 2. Limitations of TRUS prostate volume segmentation. (a) General
overview. (b) Example basal slice. Manual delineation by a radiation oncol-
ogist is superimposed as a red contour, showing the common practice of
including a part of the seminal vesicles (light gray region near the bottom).
(c) Example apical slice, showing poor to invisible prostate contours.

center of the field of view (FOV), surrounded by more echoic
(bright) medium. However, its accurate segmentation is made
difficult by the low quality of the images obtained. Two major
difficulties can be identified. The first main difficulty lies in
accurate prostate edge detection. Edge signal in TRUS is of
low to very low quality, depending on the subject and the
image region considered. Fig. 2a shows mid-plane transverse
slices for 12 different patients who underwent LDR-B. In these
images, variations in image intensity are not only caused by the
prostate interface, but also by various undesired artifacts such
as hyperechoic, patient dependent, calcifications. Echoic shad-
ows along the beamline, located behind hyperechoic regions,
create spurious strong edges, the most consistent of which
being caused by the urethra that crosses the gland transversally
along the z axis, following the conventions of Fig. 1. This
creates a strong edge response from the center towards the
anterior region of the prostate. Also, whereas edges are usually
well defined around the mid-gland region, they are often very
difficult to identify around base and apex, where the echoicity
of the prostate becomes similar to surrounding tissues (Fig. 2b-
c). A less reported issue is the uneven reliability of prostate
edges depending on their relative orientation to the beam.
Edges orthogonal to the beam axis (y direction) tend to be
less visible than those parallel to it (x direction). In a 2D
transverse view, this translates by well identified edges in the
anterior and posterior regions of the FOV, and by weak to
invisible edges in the lateral regions.

Another major difficulty of TRUS lies in the intersubject
variability of the prostate characteristics. The shape and vol-
ume of the gland can vary substantially from one patient

(a) Variability of shapes in manually delineated mid-gland
contours

(b) Prostate intensity distributions in 14 patients

Fig. 3. Variability of prostate image characteristics.

to another. Fig. 3a shows manual delineations of 2D mid-
gland contours in our image data set (36 patients). In these
patients, the prostate volume varied from 17 cm3 to 54 cm3

(mean: 41±10 cm3). More importantly, distributions of image
intensity show important variations depending on acquisition
parameters (gain, probe quality, probe frequency) and patient-
specific properties (tissue echoicity, calcifications). Fig. 3b
shows nonparametric estimations of intensity ditributions in-
side the gland, limited to a representative subset of 14 patients
for clarity. Mean intensity, standard deviation and global shape
of the distribution strongly depend on the patient considered.

C. Computer-aided segmentation

Various segmentation methods have been proposed to per-
form TRUS-based PVS, which are summarized in compre-
hensive reviews of the literature [5]–[7]. The lack of publicly
available dataset with reliable ground truth and standardized
validation metrics, and the diversity of acquisition setups found
in the clinic make comparisons of results issued from different
groups difficult. Up to this date, no method can be considered
as a gold standard, due mainly to the variety of the difficulties
encountered in this modality. Because of the lack of consensus
segmentation strategy, the majority of PVS methods make
use of a combination of several paradigms such as shape or
regularization priors, image statistics, classification, clustering,
or edge detection, alongside with variable amount of user inter-
action [6], [7]. The objective of these ”hybrid” approaches is to



address the many challenges met in TRUS in a complementary
fashion. Because of the different kinds of information used,
these methods are often formalized under modular deformable
model (DM) frameworks like active contours [8]–[15] or
level-sets [16]–[22]. In DM approaches, an initial geometric
model is subjected to regularity (internal) constraints and a
combination of image-derived (external) terms in order to
converge towards the boundary of the prostate volume. The
challenges of such models then lie in appropriately selecting
and weighting ad-hoc external and internal terms while reduc-
ing the amount of patient-dependent parameter tuning and user
interaction. DMs also typically evolve in non-convex energy
landscapes, which makes their accurate initialization critical.

D. Outline of Present Work

In this article, we propose a new hybrid edge and region-
based parametric deformable model, or active surface, for
PVS. Our contribution is threefold. First, we develop a new
prostate edge detector derived from the radial bas-relief (RBR)
approach [23]. We generalize this concept to define analogues
of image derivatives by decomposing the RBR in orthogonal
directions, that we embed in the structure tensor formalism
[24] to yield improved prostate edge detection.

Second, we combine this edge term with a region-based
force driven by the Bhattacharyya distance [25] in a narrow
band at the vicinity of the active surface. The idea of using the
Bhattacharyya gradient flow for prostate segmentation was first
proposed in [18] under the level-set framework. However, it
was applied to match template prostate intensity distributions,
which cannot be applied in presence of highly heterogeneous
datasets such as ours. We derive a simplified expression for the
Bhattacharyya flow that depends only on the distance between
normalized kernel densities of inner and outer prostate regions.
We note that a narrow band Bhattacharyya hybrid level-set
model was proposed very recently for hip joint segmentation
in MR images [26]. However, our approach differs in that we
substantially modified the formulation of this region term in
the case of discrete parametric surfaces.

Finally, we develop a new initialization technique for
prostate deformable models. Taking advantage of the water-
tightness of the prostate and its relatively low shape complex-
ity, we analyze its radial edge profiles in polar coordinates to
define initial landmark points towards which an initial surface
model is warped. By doing so, we enable fast and reproducible
initialization, requiring only that the prostate is approximately
located at the middle of the field of view (FOV) and that the
base and apex slice are selected.

We validate our method on a set of 36 3D TRUS images us-
ing manual delineations from two expert radiation oncologists,
using a wide variety of quantitative metrics.

This paper is organized as follows. In the next section, we
introduce related image processing concepts. In section III,
we describe our proposed active surface model. The validation
setup used in our experiments is presented in section IV. In
section V, we present the results obtained on our clinical
dataset. We finally discuss the results and conclude this article
in section VI.

II. RELATED WORKS

In this section, we briefly discuss the general characteris-
tics of deformable models and introduce related TRUS-based
methods, motivating our implementation choices.

Deformable models (DMs) such as active contours [27]
have been extensively used for TRUS-based prostate segmen-
tation [19], [21]. Their ability to combine shape and image
information like edge or image statistics under a common
framework make them appealing in a context where difficulties
of different nature must be addressed. DMs are dynamic
geometric models superimposed onto the image domain and
evolving under the simultaneous effects of regularizing and
image-derived terms. Their evolution can be considered from a
variational point of view, in which an energy functional is iter-
atively minimized, or equivalently from a force-balance point
of view, in which the net force acting on the model reaches
zero at equilibrium. The model forces are then designed to
equilibrate at the boundary of the region(s) of interest. In this
article, we consider the force-balance point of view, and focus
on the case of 3D object segmentation in volumetric images.

A DM can be represented either parametrically by a set of
connected vertices defined in the subpixel 3D domain [28],
[29], or implicitly as the zero-level set of a 3D hyper-surface
defined in the volumetric image domain [30]. In general, two
advantages can be attributed to level-set formulations: ease of
implementation, as calculations of derivatives are performed
in the image domain, and topological flexibility of the model,
allowing the surface boundaries to split or merge. This last
property is not relevant to 3D PVS as the topology of the
prostate is known to be a 1−connected (watertight) object,
and may constitute a drawback if spurious changes in topology
occur owing to e.g. noise. For this reason, in this work, we
use parametric models where the 1−connectedness of the
segmentation is guaranteed, following several works [9], [15].

Regardless of its implementation, the DM evolution can be
formulated by an Euler-Lagrange evolution partial differential
equation of a model S subjected to forces [31]:

St =
∑
i αiF

int
i +

∑
j βjF

ext
j ,

S(t = 0) = S0,
(1)

where S0 is the initial model, subscript ·t denotes partial
derivative with respect to Euler time t, F inti are the internal
forces controlling the smoothness of the model, F extj are the
image-derived external forces, and αi and βj are weights that
control the relative influence of these terms. The design of
deformable models thus consists in selecting the appropriate
combination and weighting of model forces alongside with
providing accurate initialization. We recall in the following
paragraphs some of the choices made by previous TRUS-based
PVS approaches.

A. Internal forces

Internal forces can be based on various smoothness mea-
sures. For example one can define analogues of respectively
tension and rigidity using the first and second spatial deriva-
tives of a surface model with respect to arclength parameters
[27]. Mean curvature motion [32] is also a popular regularizer



of level-set approaches, where a force proportional to the local
mean curvature is applied in the direction normal to the model.
Tension and mean curvature force are analogous [31] and often
found in practical implementations of deformable models for
TRUS-based PVS [11]. However, models subjected to these
forces shrink and collapse to spherical points with increasing
Euler time in absence of image forces [33]. Special care must
therefore be taken in order to obtain the desired smoothing
effect while maintaining attachment to data.

Higher order forces provide softer regularization effect,
being less prone to provoking the collapse of the model while
preventing the apparition of irrealistic sharp discontinuities
such as corners [34]. A few authors proposed to implement
higher order internal terms in TRUS-based PVS based e.g. on
differences in local curvature within the framework of discrete
explicit dynamic models [8] [14], [15], [35].

B. Statistical region-based forces

Complementary to internal forces, external forces constitute
the attachment to image data part of the model. They can
be divided into two categories: region-based forces and edge-
based forces. Region-based forces (RBF) like the Chan and
Vese (CV) model [36] take advantage of variations in image
statistics between the prostate and the background by maxi-
mizing a statistical distance between the two regions, e.g. dif-
ferences in mean intensity values or between-region variance.
RBF are typically robust to noise, as they do not rely on local
edge information. However, due to the global nature of the
analysis, they may fail in handling intensity heterogeneities.
Localizing statistical analysis within a neighborhood of each
model node [37] can partly alleviate this problem. RBF-based
models were applied to prostate imaging using global [22] and
localized versions [19], [21] of the CV approach. Alternatively,
other statistical distances were also considered [18], [38]. In
particular, Xu et al. maximized the Bhattacharyya distance
between the background and a template prostate intensity
distribution using the level set framework [18], yielding higher
discriminative power compared to CV models [25]. The Bhat-
tacharyya gradient flow is applicable to a large category of
probability laws, which makes it relevant for TRUS-based PVS
where distributions of intensity do not follow a known pattern
between patients. Our proposed approach includes a region
term based on the Bhattacharyya distance. However, due to
the intersubject variability of the prostate characteristics, as
illustrated in Fig. 3b, we do not follow the strategy proposed
in [18] where a template distribution is defined from training
data and describe in section III-C an alternative approach.

C. Local edge-based forces

RBF may fail due to their sensitivity to image hetero-
geneities. For this reason, they are generally used in combi-
nation with local edge-based forces (EBF) in coupled hybrid
edge-region frameworks. The rationale is to take advantage of
robustness to noise through RBF while increasing accuracy
around edges with EBF.

Classical gradient-based detectors are often used for prostate
edge detection [6], [10], [13], [15], [19]. However, due to the

Fig. 4. Radial bas relief edge maps obtained by superimposing to the TRUS
image its enlarged, negated version. Top: Original TRUS image. Middle: Edge
detection with gradient magnitude. Bottom: RBR edge map.

low quality of the gradient signal in ultrasound images, other
edge detectors based on higher level information are also con-
sidered, such as coefficients of the dyadic wavelet transform
[12], [22], gradient vector flow [39], instantaneous coefficient
of variation [40], interacting multiple model (IMM) [41], or
contrast between line segments along the direction normal to
the model [14], [21], [42]. We are particularly interested in
this work in the radial-bas relief (RBR) approach [23], upon
which our model is based. RBR exploits the fact that the
prostate is located at the center of the FOV and appears darker
than the surrounding tissues. By superimposing to the original
image its radially enlarged and negated version, a binary edge
map can be obtained after thresholding, showing prostate edge
response where classical gradient-based detectors would fail
(Fig. 4). However, RBR maps cannot be directly embedded in
deformable models as they generally contain spurious edges
and provide only rough estimates of the boundary. In section
III-B, we propose a new edge detector based on the RBR
approach and applicable to deformable models.

D. Initialization

Another critical aspect of deformable models is initializa-
tion, as they are prone to converge towards local minima along
the course of their evolution. TRUS-based PVS methods range
from manual interaction independent of image data [43] to
fully automatic methods [22]. A common intermediate practice
is found in the use of semi automatic initialization, where
landmark points are selected on the prostate boundary usually
around the mid-gland region and at base and apex [11], [15]. In
section III-E, we propose a new quasi-automatic initialization
method based on our modified RBR edge detector, where only
base and apex slices need to be identified.



E. Alternative PVS strategies

Other strategies for PVS were proposed based on multiple
2D segmentations propagated from one slice to the other
across the volume [10], [19], [21], [22], [44], [45]. Wang
et al. propagated an initial segmentation result obtained at
mid-gland, where the prostate is easily detected, towards basal
and apical slices [10]. Due to poor performance in peripheral
slices, the authors also proposed to reslice the prostate volume
in a rotational way to take advantage of the relative symmetry
of the gland, lowering variations between subsequent slices.
This idea was followed and adapted by other authors [19],
[44], [45]. Reslicing approaches are however prone to accumu-
lation of error along the propagation. Also, rotational reslicing
is applied to isotropic 3D volumes with equal pixel size. In
many clinical setups including ours, volumes are anisotropic
as they are reconstructed from multiple subsequent 2D images
acquired with a mechanical stepper [1], which lead to much
larger spacing along the stepper axis than across the 2D planes,
thereby reducing the practicality of rotational reslicing.

III. METHODS

A. General formulation

We propose a new hybrid deformable model driven by three
competing forces : rigidity internal forces, region-based forces
based on the Bhattacharyya distance, and edge-based forces
based on a modified radial bas-relief edge detector.

Let S(m,n, t) be an active surface represented as a mapping
of a bivariate parameter (m,n) on a grid superimposed onto
the image domain, where t is the evolution Euler time. The
general formulation of our model is:

St =
(
α1Frigid + α2〈 ~Fedge, ~N〉+ α3Fregion

)
~N , (2)

where 〈·, ·〉 is the dot product, ~N is the normal direction to the
contour, Frigid is the internal rigidity force, Fregion is the region-
based force, ~Fedge is the edge-based force field, and αi are the
corresponding weighting parameters of these forces. The three
force terms are described in more detail in the remainder of
this section.

B. Edge Detection with Bas-Relief Structure Tensor

We introduce a new prostate edge detector for TRUS
inspired from the radial bas-relief (RBR) approach. We first
recall the different steps of the original RBR method in 2D
images.

Let I2D(x, y) be a 2D TRUS image with intensity values
scaled between 0 and 1 and showing the prostate at the center
of the FOV of coordinates O2 = (0, 0). A scalar (grayscale)
radial bas-relief image R2D is obtained by summing the
original image with its negated, radially enlarged version:

R2D = I2D(x, y) + 1− I2D(rx, ry), (3)

where r is a scale factor, usually set to around 110% [23].
To obtain a binary edge map, the radial bas-relief image is

Fig. 5. Left: Workflow of the original RBR approach. Right: Workflow of
our proposed method for scalar edge detection in TRUS images.

processed in several steps summarized in the left part of Fig.
5, which can be formulated by:

RBR = 1− CnMOT1(R2D). (4)

First, pixels with R2D(x, y) > 1 are set to 0 through operator
T1. The resulting image is then binarized using a 2 class Otsu
threshold operator O, the output of which is in turn smoothed
by successive applications of dilations and erosions using a
morphological operator M. Finally, a connected components
operator Cn suppresses image islands with a number of voxels
below a specified value n, producing binary RBR edge maps
as illustrated in Fig. 4.

In this work, rather than seeking to obtain a binary edge
map, we derive a scalar edge detector for 3D TRUS images
from the bas-relief principles. The different steps of the
procedure are described in the right part of Fig 5.

Let I(x, y, z) be a 3D TRUS image. We first extract
orthogonal bas-relief components by enlarging the image along
the x, y and z directions:

Rx = I(x, y, z) + 1− I(rx, y, z)

Ry = I(x, y, z) + 1− I(x, ry, z)

Rz = I(x, y, z) + 1− I(x, y, rz). (5)

Bas-relief mapsRx,Ry andRz show maximum intensity near
the prostate boundary along each axis. Figs. 6(a-d) show a
comparison between bas-relief images and smoothed gradient



amplitude (absolute values) in the mid-gland plane. Both maps
highlight prostate boundaries. The echoic shadow induced
by the urethra, visible in the x component of the gradient
magnitude, is almost suppressed in the corresponding bas-
relief image. This is explained by the fact that the enlargement
shift is proportional to x, which takes low value around the
center of the FOV. Prostate edges also appear stronger in the
lateral regions of the FOV.

(a) Gradient amplitude, x component (b) Gradient amplitude, y component

(c) Bas-relief image, x component (d) Bas-relief image, y component

(e) Principal eigenvalue (λ1) (f) Principal eigenvalue, stick filtered

Fig. 6. (a-d) Comparison of edge detection using gradient amplitude and
bas-relief. (e) Principal eigenvalue of the Bas-Relief Structure Tensor (f) After
stick filtering (stick length: 101, stick width: 1). Gray levels were scaled for
better clarity.

In order to derive a scalar edge detector for TRUS, we
define a structure tensor built upon the orthogonal bas-relief
components. The structure tensor, or second moment matrix,
is a well studied object in image processing that characterizes
local image orientations [46], [47]. It is expressed as:

Jρ = Gρ ∗ ∇I∇IT , (6)

where ∗ denotes convolution, ·T is the transposition operator
and Gρ is a Gaussian kernel of scale ρ. Gaussian regularization
yields more homogeneous orientation estimation across space
and helps partially filling gaps of scale ρ in regions where
gradient information is missing.

Considering that bas-relief maps encode amplitudes of im-
age variations in the three directions of space, we propose an
analogous tensor expression based on bas-relief information,
the Bas-Relief Structure Tensor (BReST):

Bρ(x, y, z) := Gρ ∗

 R2
x RxRy RxRz

RyRx R2
y RyRz

RzRx RzRy R2
z

 . (7)

The largest (or principal) eigenvalue λ1 of Bρ provides a
measure of the amplitude of maximum variations in the image
[48], that we use as our edge detector. Fig. 6e shows example
edges obtained from the BReST. The edge map can be refined
through additional processing. For example, boundary gaps
can be further filled using a 2D stick filter [49] applied on a
slice by slice basis (Fig. 6f).

For this edge information to be used by a deformable
model, we derive a 3D edge-based force field from the
principal eigenvalue λ1. To this end, we use the Vector Field
Convolution (VFC) method [50]. VFC is a computationally
efficient generalization of the popular Gradient Vector Flow
[31], which produces smooth vector fields oriented towards
image edges. A VFC field is obtained by convolving a scalar
edge map with a Vector Field Kernel (VFK), a vector kernel of
size s whose vectors point towards its center with decreasing
magnitude d−γ , where d is the distance to center and γ is the
attenuation parameter.

The proposed external force field is expressed as:

~Fedge = α3 (λ1 ∗ K) /||λ1 ∗ K||, (8)

where K is the VFK. Normalization is performed so that force
vectors have unit Euclidean norm, the strength of the force
applied to the model being modulated by parameter α3 of eq.
(2).

C. Region-based force using the Bhattacharyya distance

We now consider the statistical region-based force acting
on the deformable model in combination with the edge-based
force.

The oriented active surface S divides the image
I(x) = I(x, y, z) into two mutually exclusive sub-regions Ωin
and Ωout. The sub-region Ωin corresponds to voxels inside the
surface that approximate the prostate volume, whereas Ωout
approximates the background. Following an idea originally
proposed in the level-set framework [25], our statistical region
force is based on the maximization of the Bhattacharyya
distance between distributions of intensity in these two image
regions.

The Bhattacharyya distance is computed between two prob-
ability density functions (PDF) inside and outside of the
surface model pin(k|S) and pout(k|S), k ∈ RN , where RN is
a N -dimensional feature space embedding N image features
such as intensity, gradient or texture information. It is defined
as − logB , where:

B =

∫
k∈RN

√
pin(k|S)pout(k|S) dk (9)

is the Bhattacharyya coefficient. In this work, we take N = 1
and consider image intensity as the only feature. A kernel
density estimation of the PDF of I can be written as:

pin(k|S) =

∫
Ωin

Kσ(k − (I(x)) dx∫
Ωin

dx
, (10)

pout(k|S) =

∫
Ωout

Kσ(k − (I(x)) dx∫
Ωout

dx
, (11)



where Kσ is a Gaussian kernel of bandwidth σ. A Bhat-
tacharyya region force is derived by taking the first variation
of B with respect to S [25], [31]:

Fregion = −1

2

(
B(S)

(
1

Ain
− 1

Aout

)
+∫

k∈R
Kσ (k − I(x))L(k|S) dk

)
, (12)

where Ain and Aout denotes the volumes (number of voxels)
of Ωin and Ωout respectively and

L(k|S) =
1

Ain

√
pin(k|S)

pout(k|S)
− 1

Aout

√
pout(k|S)

pin(k|S)
(13)

is the weighted difference between the square roots of the
likelihood ratios pin/pout and pout/pin.

The Bhattacharyya gradient flow of eq. (12) was originally
proposed in the level-set framework [25], in which inner and
outer regions are defined straightforwardly, using the signed
distance to the boundary of the deformable model as the level-
set function. Our surface model is implemented as a parametric
surface, constituted of a set of vertices Vi(x, y, z) defined in
the subpixel domain. The equivalent implementation of eq.
(12) in an explicit framework would require computationnally
expensive surface rasterization such as found in [29] in order
to determine inner and outer image voxels. In this work, we
consider an alternative strategy in which we simplify this
statistical region term using several approximations.

We first assume that the initialization of the DM is suffi-
ciently accurate so that we can restrict statistical analysis in
regions Ωin and Ωout to two approximately parallel narrow
bands Ωbin and Ωbout of thickness b mm around S [51]. This
has the effect of eliminating the influence of prostate and
background heterogeneities beyond the narrow band.

To further reduce the sensitivity of the approach to hetero-
geneities, we increase the local intensity contrast by perform-
ing local image normalization. The image I is normalized by
applying the following linear transformation:

Î =
I − µI
σI

, (14)

where local means µI and standard deviations σI are esti-
mated using an averaging window of size Lx×Ly×Lz mm3.

We also suppose that the inner and outer narrow bands
are of approximately equal volume, i.e. Ain ≈ Aout = A.
This simplification makes the region force independent on the
differences between Ain and Aout and eq. (12) boils down to:

Fregion =− 1

2A

∫
k∈R

Kσ

(
k − Î(x)

)
·

(√
pin(k|S)

pout(k|S)
−

√
pout(k|S)

pin(k|S)

)
dk (15)

To compute this region force in a parametric framework,
we approximate the PDFs in the narrow band pin(k|S) and
pout(k|S) by sampling intensity values at regular intervals
along the normal to the surface ~Ni at each vertex Vi using

Fig. 7. Estimation of inner and outer probability density estimations of
image intensity in a narrow band around the surface model (solid white).
Image values are sampled at regular intervals (white dots) along the normal
to each vertex (yellow nodes) to obtain the sampled intensity distribution.

(a) (b)

Fig. 8. Effect of local intensity normalization on sampled densities pin(k|S)
and pout(k|S) in the inner and outer narrow band of the prostate surface
for the 14 patients shown in Fig. 3. (a) Average density estimations before
normalization (b) Average density estimations after normalization. Error bars
indicate one standard deviation.

bicubic interpolation. We then normalize Fregion between −1
and 1 to obtain the final region force applied to the model,
weighted by parameter α2 of eq. (2).

Fig. 7 shows a closeup representation of the narrow band
near the boundary of the deformable model, where sub-regions
Ωin and Ωout are reduced to banded regions Ωbin and Ωbout.
The white dots along the inner and outer normal at each vertex
represent the different sampling points at which intensity is
interpolated to sample pin(k|S) and pout(k|S). Fig. 8 shows
the effect of local normalization on the sampled density
estimations pin(k|S) and pout(k|S) in the 14 patients shown in
Fig. 3. As previously, in this example the surface model S con-
sidered is the manually delineated ground truth surface. The
local normalization reduces the variability of the distributions
among subjects while preserving shape differences between
inner and outer regions.

D. Internal force

We consider in this work high order rigidity forces acting
on the deformable surface model to increase resistance to twist
while reducing its tendency to collapse to a point. The internal
force Frigid is expressed as:

Frigid = −α1∆̃2S, (16)



(a) (b)

(c) (d)

Fig. 9. Quasi-automatic initialization of the surface model using peak analysis
of radial bas-relief edge profiles. (a) Equal angle sampling at mid-gland (b)
Peak locations of radial edge profiles, α = 1◦. (c) Outlier removal using [53].
(d) Curve regularization and landmark selection.

where α1 is the weighting parameter of eq. (2) and ∆̃S is the
surface Laplacian:

∆̃S = Smm + Snn. (17)

The surface Laplacian is approximated at each vertex Vi of the
triangulated surface using the umbrella operator L(Vi) [52]:

L(Vi) =
1

n

∑
j∈Ni

Vj − Vi, (18)

where n is the valence (number of neighbors) of the neigh-
borhood Ni of Vi.

We implement the model evolution using a classical semi-
implicit finite different scheme, where internal force motion is
computed implicitly and external force motion explicitly [27].

E. Model initialization based on polar edge analysis

The initialization of deformable models is a critical part of
their design, as they are prone to fall into local minima along
the course of their evolution. In this section, we propose a new
quasi automatic initialization technique for 3D TRUS images
based on the modified bas-relief edge detector described
in section III-B. We analyze radial edge profiles in polar
coordinates to identify 2D landmark points in the (x, y) mid-
gland plane towards which an initial prostate model is warped.

The proposed approach requires only that the base and apex
slices zbase and zapex are determined by the user and that the
prostate center is approximately located at the center of the
FOV, of coordinates (x0, y0) in the transaxial slices.

First, using the edge detection procedure defined in section
III-B, we obtain 3D edge maps corresponding to the principal
eigenvalue λ1(x, y, z) of the BReST Bρ.

Given knowledge of the base and apex slices zbase and
zapex, we identify the mid-gland slice as z0 = (zbase + zapex)/2.
As the prostate shape varies slowly along the transverse axis
near the mid-gland, where edges are usually well-defined,
transverse slices in the vicinity of z0 also contain relevant

edge signal. For this reason, we strengthen the mid-gland 2D
edge map λ1(x, y, z0) by integrating λ1 along the z axis in
the neighborhood of the central slice:

λ̃mid(x, y) =

∫ z0+δz

z0−δz
λ1(x, y, z) dz, (19)

where the value δz was empirically chosen to two consecutive
slices of 1 mm in our experiments.

We then look for maximum edge responses of λ̃mid(x, y)
along radial line profiles using equal angle sampling around
the center of the FOV (x0, y0) to determine locations of
candidate landmark points (Fig. 9a). To this end, we transform
λ̃mid into polar coordinates using bicubic interpolation. The
angular step was set in our experiments to α = 1◦, yielding
360 candidate landmark points. Fig. 9b shows an example
mid-gland edge map λ̃mid where landmark candidates are
superimposed. Maximum radial edge response is obtained
mostly around prostate edges.

As shown in this example, some outlier points can appear
for angles where the edge signal is too weak. In order to
remove these outliers, we apply a point cloud denoising
algorithm based on neighborhood processing using the mean
µp and standard deviation σp of the K nearest neighbour
distances of each candidate point [53]. An edge point p is
considered an outlier if the average distance to its K nearest
neighbour is outside µp±mσp, where K = 30 and m = 0.25
are two parameters determined empirically. Fig. 9c shows the
effect of outlier rejection, where remaining points are located
on the prostate contour. The points are then connected to form
a 1D curve C(x, y). To obtain a smooth estimate of the mid-
gland contour without shrinking the curve, we resample C to
provide even spacing between its nodes and regularize it using
the one-dimensional analogue of the internal force described
in section III-D for two-dimensional surfaces [27]. Fig. 9d
shows the final curve obtained. To enforce the robustness of
the proposed approach to outliers, the mid-gland landmark
candidates are reduced to 24 points by taking the average
coordinates of the points belonging to C in sub-quadrants of
15◦ along the contour (Fig. 9d). Two additional landmark
points are finally selected at base (x0, y0, zbase) and apex
(x0, y0, zapex).

We obtain an initial surface model S0 defined in the
volumetric image domain by warping an oblate ellipsoid
towards the landmarks using thin plate spline warping with

(a) Axial view (b) Oblique view

Fig. 10. 3D illustration of the warping of an ellipsoid surface model towards
image landmarks points. The initial oblate ellipsoid is shown in wireframe,
the warped surface in yellow and the manually delineated ground truth surface
in red.



point-to-point correspondence [54]. We superimpose to the
volumetric image a triangulated surface model E0 of an oblate
ellipsoid centered at (x0, y0, z0) whose semi-principal axes
(ax, ay, az) are defined so that E0 is enclosed within the 26
image landmark points. In our experiments, we set (ax, ay, az)
to 2/3 of the maximum image landmark coordinate in the
corresponding dimension. Source vertices are identified on
the ellipsoid model that correspond to the 26 destination
landmarks. Fig. 10 shows tridimensional views of the initial
ellipsoid and the result of thin plate spline deformation for
the image shown in Fig. 9. The manually delineated surface
is also shown for comparison.

IV. VALIDATION SETUP

A. Image acquisition

Transverse TRUS images were collected at the Brest Uni-
versity hospital, Brest, France during the examination of 36
patients undergoing preimplant brachytherapy planning (2231
transaxial 2D images in total). For each patient, series of
transverse 2D TRUS images were acquired at 1-mm intervals
using a BK Medical Flex Focus 500 ultrasound station using a
Biplane Endocavity Z848 TRUS probe. The pixel size of each
transverse slice was 0.152 mm×0.156 mm. The TRUS probe
was placed on a stepper, allowing to move along the transverse
axis to acquire parallel transverse slices that covered the entire
prostate volume.

Manual delineations of the prostate boundary were per-
formed in every transverse slice by two radiation oncologists
from the Brest University Hospital with full expertise on the
brachytherapy protocol, hereafter referred to as as E1 and E2.
These reference contours were used to reconstruct 3D prostate
volumes that we considered as surrogates of ground truth to
assess the accuracy of the proposed approach.

B. Pre-processing

Due to the protocol followed at the Brest University hos-
pital, a point grid was overlaid to B-mode acquisitions in all
the transverse images of our data set, visible for example in
Fig. 2c. To suppress its influence, we pre-filtered all the image
slices with a 2D median filter of dimension 5× 5 pixels.

C. Quantitative metrics

We performed quantitative reference-based comparative
studies to evaluate the segmentation accuracy of the proposed
hybrid deformable model. Given the lack of consensus vali-
dation metrics [6], we considered various volume-based and
distance-based metrics to ease comparison with other works.
For volume-based metrics, we considered the Dice Similarity
Coefficient (DSC) [6], Percent Volume Error (PVE) [41],
Percent Volume Difference (PVD) [41] and Sensitivity (SE)
[6]. For distance-based metrics, we considered the Hausdorff
distance (HD) [6] and the mean absolute distance (MAD) [6],
expressed in milimeters. Descriptions of each metric can be
found in the corresponding referenced article.

We divided the gland into three sectors: base, mid-gland and
apex to provide more detailed analysis of the performance of

the method in the different regions of the prostate [41], [45].
We used the following proportions along the transverse axis:
30% for base, 40% for mid-gland, and 30% for apex.

D. Parameters

As for any deformable model, the proposed hybrid active
surface is associated with parameters that are summarized
and briefly described in Table I. In our experiments, these
parameters were set equally for all images and determined in
order to maximize the DSC score on average among the 36
patients of the data set through empirical parameter tuning,
where Expert E1 was used as a reference. To provide better
insight on how these parameters may be adapted to specific
cases, we also give indicative ranges of values for some
influential parameters. The ranges shown are minimum and
maximum values which led to a maximum DSC score, i.e.
superior to the average score obtained with the values set for
our experiments, in at least one image of the data set.

TABLE I
LIST OF PARAMETERS ASSOCIATED WITH THE METHOD.

Symbol Description Chosen values,
[indicative range]

Deformable model
nit∆t Iterations × time step 200
α1 Rigidity force strength 50, [40, 60]
α2 Edge force strength 0.5, [0, 1]
α3 Region force strength 1, [0, 1]
Edge force
r Bas-relief scale factor 1.09, [1.08, 1.1]
ρ Structure tensor smoothing 1 mm isotropic
s VFK size 7.5 mm isotropic
γ VFK attenuation 2, [1.5, 3]
Region force
b Narrow band thickness 3 mm
Lx × Ly × Lz Normalization window 10× 10× 1 mm3

Initialization
δz Adjacency to mid-gland 2 mm
m Outliers: deviation from mean 0.25
K Outliers: number of neighbors 30

V. RESULTS

We implemented the method using MATLAB. The average
processing time, including initialization and excluding base
and apex slice selection, was 40±4 seconds on average using
a Intel Core i7 CPU. This time is compatible with the clinical
requirements of the LDR-B procedure.

Fig. 13 shows segmentations results obtained in two dif-
ferent images of the data set. The manual reference volume
obtained through successive delineations of the prostate in
every transverse slice is superimposed for visual comparison.

Table II summarizes the quantitative results obtained for the
entire data set using the proposed active surface with respect
to the two expert delineations E1 and E2. Results showing the
agreement between the two experts are also shown, referred to
as ”E2 vs E2”. Expert E1 is arbitrarily used as the reference
for non-symmetric metrics (PVD and SE).

Segmentation results are presented in more detail in Fig. 12
for each patient and each metric, where Expert E1 is taken as



TABLE II
SEGMENTATION ACCURACY FOR 36 PATIENT 3D TRUS IMAGES

(MEAN±STANDARD DEVIATION).

Metric Total Base Mid Apex
E1
DSC 0.92±0.02 0.87±0.04 0.96±0.01 0.86±0.07
PVE 8.4±1.8 13.4±4.4 4.1±1.2 13.9±6.8
PVD -4.0±5.4 -20.2±11.7 -1.5±3.5 6.8±15.1
SE 0.93±0.03 0.95±0.04 0.97±0.02 0.83±0.11
MAD 1.42±0.40 2.41±0.75 0.77±0.25 1.33±0.56
HD 4.03±1.22 6.09±1.59 2.68±0.96 3.88±1.99
E2
DSC 0.91±0.02 0.84±0.07 0.96±0.02 0.85±0.08
PVE 10.1±2.5 15.9±7.2 4.5±1.6 15.4±7.6
PVD 1.6±8.4 -24.6±25.2 3.1±3.7 15.3±17.7
SE 0.89±0.05 0.94±0.04 0.94±0.03 0.79±0.12
MAD 1.40±0.41 2.15±0.49 0.84±0.35 1.41±0.79
HD 4.30±1.37 5.91±1.32 3.10±1.43 4.35±2.52
E1 vs E2
DSC 0.92±0.02 0.87±0.04 0.96±0.02 0.89±0.05
PVE 10.0±2.7 13.1±3.5 4.4±2.3 10.6±4.9
PVD -3.3±9.1 11.8±10.4 -3.9±5.7 -13.6±14.6
SE 0.91±0.04 0.82±0.07 0.97±0.02 0.95±0.05
MAD 1.51±0.46 2.31±0.63 0.84±0.49 1.63±0.81
HD 4.79±2.14 6.41±1.76 3.26±2.47 5.27±3.39

TABLE III
INITIALIZATION ACCURACY FOR 36 PATIENT 3D TRUS IMAGES

(MEAN±STANDARD DEVIATION).

Metric Total Base Mid Apex
DSC 0.87±0.03 0.79±0.06 0.93±0.03 0.81±0.06
PVE 12.9±3.1 21.2±5.7 7.5±2.6 18.6±6.2
PVD 6.9±7.3 22.1±17.1 -0.8±6.7 1.3±23.6
SE 0.84±0.05 0.70±0.10 0.93±0.05 0.81±0.10
MAD 2.31±0.47 3.19±0.83 1.43±0.46 2.64±0.76
HD 6.45±1.69 7.49±1.81 5.79±2.38 6.32±2.12

Fig. 11. Sensitivity of initial segmentation results to perturbation of base and
apex slice selection. Results shown are expressed in terms of mean DSC as a
function of the distance between manually selected slices and the actual base
and apex, as determined by expert E1 . A surface is interpolated between the
points to ease visualization.

the reference. To compare the relative improvement achieved
by the active surface with respect to the proposed initialization
stage, average segmentation results obtained with the initial
model before its evolution under eq. (2) are shown in Table
III, where E1 is used as a reference.

After surface evolution, an average global DSC with respect
to expert delineation E1 (resp. E2) of 0.92± 0.02 (resp.
0.91± 0.02) was obtained across the entire prostate volume.
In the most central slices representing 40% of the gland, the
approach led to a DSC of 0.96 ± 0.01 (resp. 0.96 ± 0.02)
on average. Scores were lower at the gland extremities, with
comparable average DSC of 0.87±0.04 around the base (resp.
0.84 ± 0.07) and of 0.86 ± 0.07 (resp. 0.85 ± 0.08) around
apex. By comparison, the initial model achieved a global
DSC accuracy of 0.87 ± 0.03 (base: 0.79 ± 0.06, mid-gland:
0.93± 0.03, apex: 0.81± 0.06) with respect to expert E1.

The general ranking between base, mid-gland and apex
sectors is confirmed by the other metrics. The two contour-
based metrics (Hausdorff distance and MAD) were consistent
with volumetric metrics, with higher MAD and Hausdorff in
the peripheral slices. PVD scores assess the relative volumetric
deviation of the segmentation to the reference. No signifi-
cant deviation of PVD from 0% was obtained at mid-gland.
However, a general overestimation of the basal region led to
negative PVD values. Sensitivity was high around mid-gland
and base, whereas it was lower around apex, further suggesting
a systematic underestimation of this sector. On the other hand,
the method tended to underestimate the apical sector of the
prostate. This observation is further supported by individual
results of Fig. 12e, where it can be better appreciated. The
underestimation of the apex is particularly visible in the
example results shown in Fig. 13, where reference E1 was
not fully enclosed by the active surface around the top of the
image.

The comparison between the two expert delineations E1 and
E2 followed a similar pattern. For instance, higher overlap
was found in the central slices (DSC of 0.96 ± 0.02) than
in the peripheral slices (DSC of 0.87 ± 0.04 for base and of
0.89±0.05 for apex). Sensitivity of E2 with respect to E1 was
especially low around the base, suggesting a general tendency
of expert E1 to label more voxels as prostate in these regions.
Interestingly, quantitative scores obtained by comparing E1 to
E2 were not significantly better than those reported with the
proposed approach.

The only step of the workflow that is not automated is the
selection of the basal and apical slices, on which depends
the construction of the initial model. We therefore studied
the robustness of initialization to potential errors made in
selecting these two parameters. To this end, we perturbed the
choice of base and apex slice and studied the corresponding
segmentation accuracy achieved by the initial surface. Fig.
11 shows the average DSC score of the initial surface as a
function of the distance ∆Base,∆Apex, in number of slices,
between the actual base and apex obtained from ground truth
and the slices selected during the initialization stage. For
clarity, we restrict the analysis to outward expansion from the
center, i.e: more background slices are selected with increasing
values of ∆Base or ∆Apex. As expected, segmentation accuracy
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Fig. 12. Quantitative segmentation results obtained on the 36 patients data set, where expert E1 was used as a reference. Results are divided into base,
mid-gland and apex.

drops with increasing ∆Base and ∆Apex. Errors of up to 4 slices
around the base and of up to 2 slices around the apex have
nevertheless minimal impact on initialization accuracy.

(a) (b)

Fig. 13. Example segmentation results. Active surface is shown in yellow,
surrogate of ground truth based on slice-by-slice delineation (by expert E1)
is shown in red.

VI. DISCUSSION

Comparing the above results with other PVS approaches is
a difficult task, as there is still today a clear lack of public
labeled data set allowing to perform fair comparative evalu-
ations between available methods. We followed the strategy
adopted by the majority of recent works in the field by re-
porting segmentation performances based on a wide variety of
quantitative metrics. In the current state of PVS validation, one
must be careful when concluding on the absolute superiority

of one approach based on these values, as there exists a large
discrepancy in validation setups between centers.

Nevertheless, considering values reported in other recent
works [6], [7], [15], [45] we confidently situate the proposed
approach among the state of the art in prostate TRUS seg-
mentation. In particular, the quantitative scores obtained in the
central sector of the prostate, constituted of 16 ± 3 slices on
average, are comparable to results reported in single 2D mid-
gland slices in a recent work on 2D prostate segmentation [20].
High segmentation performances in this sector of the prostate
can be stressed by considering only the mid-gland slice, where
the method obtained area DSC scores of 0.98±0.01 on average
(not shown in the results table).

Reference delineation was performed manually on a slice-
by-slice basis, which is the most common clinical practice. It
is therefore a very tedious task which cannot be achieved in
reasonable time without bringing uncertainty on the resulting
surrogate of ground truth. This is particularly visible in Fig.
13, where a spurious ”staircase” effect can be observed in
the reference volume due to rough shape variations from one
slice to the other. On the other hand, our model being a
parametric active surface, it inherently produces closed and
smooth prostate contours, which approximate better the natural
shape of the gland.

Due to the invisibility of prostate tissue in ultrasound images
around base and apex, lower performances of our approach in
these regions relative to the central slices were expected. The
two expert delineations E1 and E2 also showed poor agreement
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in these sectors. Importantly, the global agreement between E1
and E2 was comparable to results obtained using the proposed
quasi-automatic approach.

The general overestimation of the basal region led to
higher sensitivity and lower DSC. This is partly explained
by the fact that, depending on user expertise and patient-
dependent requirements, the manually segmented basal region
can include more or less of the adjacent seminal vesicles. A
common clinical practice is to retain only the part closest to
the prostate, to an extent that is dependent on user experience.
In our experiments, expert E1 included more of the seminal
vesicles than expert E2, which translated in higher overlap
with segmentation results. As the seminal vesicles are indis-
tinguishable from the prostate tissue before they separate from
the gland further along the z axis, it is unlikely that any current
automatic method could accurately discriminate them from the
prostate. Nevertheless, to increase performance in peripheral
regions, the proposed model can be made more accurate by e.g.
setting more landmarks or attractive anchor points around the
base and apex [19]. However, we believe that such additional
complexity would have shadowed the main contributions of
this article.

We proposed to combine a new prostate edge detector
based on the Bas-Relief Structure Tensor (BReST) with a
Bhattacharyya gradient flow using parametric active surfaces.
The external forces obtained can be applied to any type
of deformable model to facilitate its evolution towards the
boundaries of the prostate [31]. We also developed a robust
initialization strategy based on the BReST edge detector,
which only requires the selection of the basal and apical slice.
The proposed initialization stage allows for high segmentation
accuracy in the central sector of the prostate (table III). This
was expected as our initialization method exploits the detec-
tion of prostate edges at mid-gland. Naturally, initialization
accuracy is lower in peripheral slices where no image data
is used. The hybrid model then evolves from this initial
stage to improve segmentation accuracy in all three sectors

Fig. 15. Global DSC score achieved per patient in extreme cases where only
the edge force

(
1
1
, 0
1

)
or the region force

(
0
1
, 1
1

)
is used to control model

evolution. Expert E1 was used as a reference.

of the gland. The proposed method achieved state of the art
segmentation results despite the variablity of our dataset in
terms of prostate shape, edge strength or global statistics.

The major burden of deformable models is parameter tun-
ing. Due the highly heterogeneous nature of the data set
at our disposal, where images were acquired with variable
probe parameters, it was difficult to obtain standard values
leading to nearly optimal segmentation in all subjects. Ad-hoc
parameter values were given in table I which led to the average
results presented in this paper. The values reported are likely
to allow for similarly accurate segmentation in other images.
However, parameters may naturally be tuned to each subject
for increased performance. The parameters most influential on
model evolution are α2 and α3, which control the relative
strength of the edge-based force (EBF) and of the region-based
force (RBF). In order to obtain the best weighting scenario
between these forces, we studied their respective influence on
segmentation accuracy. To this end, we kept the total external
force weight α† = α2 + α3 constant and studied the average
DSC results obtained by varying the ratios α2/α† and α3/α†
between 0 and 1. Fig. 14 shows the corresponding results
by steps of 1/6. Poor performance was observed when the
model relied only on the RBF (Fig. 14, leftmost point). This
is mainly caused by the short attractive range of the RBF
due to the limited spatial extent of the narrow band. When
the statistical distance between the inner and outer regions
of the narrow band is due to within region heterogeneities,
the model may evolve in arbitrary directions, which can lead
to erroneous segmentation. The BReST-based EBF, of greater
capture range, allowed for accurate segmentation results with-
out the help of the region term (Fig. 14, rightmost point). The
best weighting was nevertheless achieved when both forces
were considered (α2/α† = 1/3 and α3/α† = 2/3), with
notable improvement brought by the RBF around the basal
and apical regions, wherein edge information is of lower
quality. To further support the use of a hybrid model, DSC
results corresponding to the two extreme scenarios of full RBF
without EBF and full EBF without RBF are shown for every
patient in Fig. 15. Cases for which the surface collapsed in
the full RBF scenario (DSC scores of 0.6 or less) penalized
the average DSC scores shown in Fig. 14, shadowing the fact



that it achieved comparable or better performance than the full
EBF configuration in approximately half of the subjects. Both
these terms are therefore in general useful and complementary,
despite cases where, for example, spurious or missing edge
information would lead to erroneous edge-driven forces, or
where statistically indistinguishable background and prostate
would cause their merging by the Bhattacharyya gradient
force.

The new BReST-based edge detector enables more robust
prostate edge detection compared to classical gradient-based
approaches. Its only requirement is that the prostate must
be located approximately at the center of the FOV, which is
always the case in clinical practice. Additional refinement for
the calculation of the BReST can be considered. For example,
the morphological processing step used in the original radial
bas-relief approach can help provide cleaner edge maps. Also,
the edge influence on model evolution can be weighted in
inverse proportion with the distance to mid-gland, as edges are
usually better defined at mid-gland than in peripheral slices.
Preliminary explorations indeed showed some improvement
by considering such refinements. The initialization step can
also be improved by using more elaborated initial surfaces
than the proposed ellipsoid. For example, tapered ellipsoids
[41] or template models built from average co-registered
segmentations can be considered. We assumed that the mid-
gland image is located exactly at equal distance between base
and apex. This may actually not be true, and the best contrasted
slice was often found closer to base. However, we consider
that the results shown with the proposed approximations are
sufficient to highlight the advantages of the proposed hybrid
model without additional and more complex refinements. More
generally, there is always a compromise to be found between
the amount of complexity specific to the problem at stake and
the generality of the methods developed.

VII. CONCLUSION

We have proposed a parametric deformable model for
accurate prostate volume segmentation in TRUS. The proposed
approach is based on a combination of new edge and region
image forces tailored for prostate imaging. To reduce the
variability of results induced by initialization, we have also
proposed a quasi automatic initialization scheme based on the
analysis of prostate edges at mid-gland. Results using fixed
parameters on a large dataset of 36 patients demonstrated
the relevance of the proposed approach for achieving state
of the art segmentation performance with very limited user
interaction. We hope in future works to automatize parameter
tuning based on image data to optimize performance on a
case-by-case basis and avoid cumbersome and time-consuming
exploration of the parameter space.
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Meriaudeau, “A survey of prostate segmentation methodologies in
ultrasound, magnetic resonance and computed tomography images,”
Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp.
262–287, Oct. 2012.

[7] Raman Preet Singh, Savita Gupta, and U. Rajendra Acharya, “Segmen-
tation of prostate contours for automated diagnosis using ultrasound
images: A survey,” Journal of Computational Science, 2017.
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