
HAL Id: hal-01858033
https://hal.science/hal-01858033v1

Preprint submitted on 18 Aug 2018 (v1), last revised 14 Mar 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite element method with local damage on the mesh
Michel Duprez, Vanessa Lleras, Alexei Lozinski

To cite this version:
Michel Duprez, Vanessa Lleras, Alexei Lozinski. Finite element method with local damage on the
mesh. 2018. �hal-01858033v1�

https://hal.science/hal-01858033v1
https://hal.archives-ouvertes.fr


Finite element method with local damage on the mesh ∗

Michel Duprez†, Vanessa Lleras‡ and Alexei Lozinski§

August 18, 2018

Abstract

We consider the finite element method on locally damaged meshes allowing for some distorted cells
which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange
finite elements, we show that the usual a priori error estimates remain valid on such meshes. We
also propose an alternative finite element scheme which is optimally convergent and, moreover, well
conditioned, i.e. its conditioning is of the same order as that of a standard finite element method on
a regular mesh of comparable size.

1 Introduction

We are interested in the finite element method on meshes containing some isolated degenerated cells.
The meshes of this type can be encountered in bio-mechanical applications where the objects with very
complicated geometry (as a human face) should be meshed, and the mesh generators or mesh morphing
techniques are not always able to satisfy the usual regularity constraints (see e.g. [8, p.3]). Our work is a
preliminary study in which we propose a suitable finite element approximation in such situations without
requiring to reconstruct a high quality mesh everywhere. We restrict ourselves to the simplest model: the
Poisson equation with Dirichlet boundary conditions{

−∆u = f in Ω,
u = 0 on ∂Ω

(1)

where Ω is a bounded polygonal (resp. polyhedral) domain in Rn, n = 2 (resp. n = 3), ∂Ω is its boundary,
and f ∈ L2(Ω) is a given function. We only consider the standard piecewise linear continuous finite
elements on a simplicial mesh without hanging nodes. The formal (quite usual) definitions of the exact
and approximated solutions to (1) in the appropriate functional spaces are given in the beginning of Section
2.

The first goal of the present work is to highlight that we can recover the optimal convergence of the
finite element method even if the mesh contains several isolated almost degenerated simplexes. More
precisely, we shall assume that the majority of the simplexes in the mesh are regular in the usual Ciarlet
sense [11] but there are some distorted simplexes that are typically adjacent to regular mesh cells and
well separated from one another by layers of regular cells. The formal assumptions will be given in the
beginning of Section 2. To prove the optimal convergence of the standard finite element method, we
shall construct a modification of the nodal interpolation operator replacing the standard interpolating
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polynomial on a degenerated cell by another one obtained by averaging the interpolated function on a
patch of cells surrounding the degenerated one.

Although the standard finite element method turns out optimally convergent on the locally damaged
meshes, as outlined above, it can suffer from bad conditioning of the stiffness matrix. Indeed, the gradient
operator can have an arbitrary large norm on the space of piecewise polynomial functions on a mesh con-
taining very elongated cells even if all the cells are of approximately the same diameter h. The same issue
of bad conditioning can be found in recent finite element methods on geometrically unfitted meshes such as
CutFEM, cf. the review in [10]. The mesh is allowed to be cut by the domain boundary in this approach
giving rise to eventually very narrow computational cells, and consequently to very ill-conditioned stiff-
ness matrices. The workaround consists in introducing some stabilization terms which come in (at least)
two forms: (i) an augmented Lagrangian type approach involving the polynomial extension from “good”
(uncut) to “bad” (cut) cells [13]; (ii) ghost penalty terms on the facets [9] of the cut cells which reduce the
jumps betweens the gradients of the finite element solution between the “bad” and “good” cells. In both
cases, the goal is to make the finite element solution on a “bad” cell to be aligned with its counterpart
on a neighboring “good” cell. In the present paper, we inspire ourselves from both approaches described
above and propose an alternative finite element discretization in which the approximated solution on the
degenerated cells is made to be aligned with that on neighboring regular cells. We are able to prove that
such a scheme is optimally convergent and well conditioned, i.e. its conditioning is of the same order as
that of a standard finite element method on a usual regular mesh of comparable size, provided the number
of degenerated cells remains uniformly bounded.

The present article is a contribution to the already rich literature studying the influence of the the
mesh cell geometry on the convergence of finite element approximations. The optimal H1-convergence has
been proved in [21] for second order elliptic equation and in [20] for linear elasticity equations under the
minimum angle condition in 2D: there exists α0 ∈ (0, π) such that for any mesh cell K,

0 < α0 6 αK , (2)

where αK is the minimum angle of K. In [6, 5], this condition was generalized to the higher dimensions.
If we denote by hK the diameter of K and ρK the diameter of the largest ball contained in K, then (2) is
equivalent to already mentioned Ciarlet condition [11]: there exists c0 such that for all mesh cells K

hK/ρK 6 c0. (3)

The conditions above were further relaxed in several ways. Three groups (see [3, 4, 14]) have proposed
independently in 1976 a weaker assumption called the maximum angle condition: there exists β0 ∈ (0, π)
such that for any mesh cell K

βK 6 β0 < π, (4)

where βK is the maximum angle of K. The first condition (2) implies the second (4). The second condition
was generalized for higher dimensions in [15, 18].

Furthermore, it is shown in [12] that even the maximum angle condition may be not necessary. More
precisely, if a degenerated triangulation is included in a non-degenerated one, then optimal convergence
rates. The convergence on appropriate anisotropic meshes is studied in [2]. A sufficient condition for
convergence (not necessarily of optimal order) was derived in [16] under the name of the circumradius
condition: maxK RK → 0 as h → 0 where RK is the circumradius of the mesh cell K. Both the maxi-
mum angle and circumradius conditions for O(hα) convergence are generalized in [17]. It is proved that
the triangulations can contain many elements violating these conditions as long as their maximum angle
vertexes are sufficiently small size. However, one cannot hope for an optimal convergence on completely
arbitrary meshes: an example of a heavily distorted mesh family stemming from [3] has been recently
analyzed in [19] showing rigorously that the finite element method may fail to converge at all. The present
paper propose yet another choice of assumptions on the mesh in the spirit of, but different from [12],
guaranteeing the optimal convergence.
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The rest of the paper is organized as follows: in Section 2, we prove that one can allow degenerated cells,
which violate Condition (2) or (4), if they are isolated in some sense. We shall establish in Subsection
2.1 the optimal L2- and H1-convergence of the standard finite elements method on such meshes. We
also recall, in Subsection 2.2, the well known fact that the presence of degenerated cells may induce a
large conditioning number of the stiffness matrix. We then propose in Section 3 a modified finite element
method that preserves the optimal convergence while ensuring a good conditioning. We conclude with
some numerical illustrations in Section 4.

2 Approximation by linear finite elements under local mesh dam-
age assumption

Let us first recall the notions of the weak and approximated solutions to System (1). We call a weak
solution in V := H1

0 (Ω) to System (1) a function u ∈ V such that

a(u, v) = l(v) for all v ∈ V, (5)

where the bilinear form a and the linear form l are defined for all u, v ∈ V by

a(u, v) :=

∫
Ω

∇u · ∇v dx and l(v) :=

∫
Ω

fv dx.

It is well known that System (1) admits a unique weak solution thanks to Lax-Milgram lemma.
Consider now a simplicial mesh Th on Ω without hanging nodes. This means that Ω̄ = ∪K∈ThK with

each mesh cell K ∈ Th being a simplex (triangle in 2D, tetrahedron in 3D) and every two mesh cells
K1,K2 ∈ Th being either disjoint or sharing a vertex, an edge, or a face (in 3D). We recall that ρK denotes
the diameter of the largest ball contained in a mesh cell K. Moreover, hω will denote the diameter of any
bounded domain ω and we set h = maxK∈Th hK . As mentioned in the Introduction, we will assume that
the cells of mesh Th satisfy Ciarlet Condition (3) up to some isolated cells.

Assumption 1. Let c0 > 0 and Kdeg
1 , ...,Kdeg

I be the degenerated cells violating Ciarlet Condition (3),
i.e. for i ∈ {1, ..., I}

Kdeg
i ∈ Th and hKdeg

i
/ρKdeg

i
> c0.

Each Kdeg
i is included in a patch Pi, which is a union of mesh cells, star-shaped with respect to a ball of

diameter ρPi
such that

hPi
/ρPi

6 c1.

We denote by P̃i ⊃ Pi the larger patch composed of mesh cells sharing at least a vertex with Pi. Then

• The patches P̃i are mutually disjoint, i.e. P̃i and P̃j have no common cells for i 6= j.

• The number of cells in each P̃i is bounded by a constant M .

The intersection of boundaries ∂Pi and ∂Ω is either empty, or is reduced to a point, or is a subset of one
side of the polygon/polyhedron Ω containing an (n− 1)-dimensional ball of radius ≥ c2hPi

.

Notational warning. In what follows, the letter C will stand for constants which depend only on the
generalized mesh regularity in the sense of Assumption 1 (unless stated otherwise). This means that C
can depend on c0, c1, c2, and M , but otherwise independent from the choice of mesh Th. As usual, the
value of C can change from one line to another.

An example of patches Pi and P̃i is given in Fig. 1. We illustrate there a typical situation of a
degenerated triangle Kdeg

i (dashed in red) adjacent to a regular triangle Knd
i (dashed in grey). The patch

Pi is then formed of these two triangles Kdeg
i and Knd

i . It is obviously star-shaped with respect to a
ball (for example, the largest ball inscribed in Knd

i ). Its chunky parameter hPi
/ρPi

is close to that of
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surrounding regular triangles. Note, however, that Assumption 1 allows for more general configurations,
for example, a patch can contain several degenerated cells.

Knd
i Ki,1

Ki,2

Ki,3

Ki,4

Ki,5

Ki,6

Ki,7

Ki,8

Ki,9

Ki,10

Ki,11 Ki,12

Figure 1: Example of configuration: patch Pi (dashed), patch P̃i (all the cells), non-degenerated cell Knd
i

(gray) of the patch Pi.

We now set the finite element space on mesh Th and the finite element approximation to System (1).
Let

Vh := {vh ∈ V : vh|K ∈ P1(K) ∀K ∈ Th},

where P1(K) is the space of polynomials of degree ≤ 1 on cell K. Consider the following finite element
approximation to System (5): find uh ∈ Vh such that:

a(uh, vh) = l(vh) for all vh ∈ Vh. (6)

2.1 A priori error estimate

In what follows, | · |i,A and ‖ · ‖i,A denote the semi-norm and the norm associated to Hi(A).

Theorem 2. Let u ∈ V and uh ∈ Vh be the solutions to System (5) and System (6), respectively. Then,
under Assumption 1,

|u− uh|1,Ω ≤ Ch|u|2,Ω. (7)

Moreover, if Ω is convex,
‖u− uh‖0,Ω ≤ Ch2|u|2,Ω. (8)

The proof of this theorem is completely standard (cf. [11, 7]) provided one has constructed an in-
terpolant to Vh satisfying the optimal error estimates. We thus go directly to the construction of such
an interpolation operator which we shall call Ĩh and properly introduce in Definition 1. The necessary
properties of this operator will be established in the Proposition 1. We start with some technical lemmas.

Lemma 1. Under Assumption 1, for any v ∈ H2(Ω) ∩H1
0 (Ω) on any patch Pi there exists a polynomial

Qih(v) on Pi of degree ≤ 1 vanishing on ∂Pi ∩ ∂Ω such that

|v −Qih(v)|1,Pi
≤ ChPi

|v|2,Pi
, ‖v −Qih(v)‖0,Pi

≤ Ch2
Pi
|v|2,Pi

, ‖v −Qih(v)‖L∞(Pi) ≤ Ch
2−n/2
Pi

|v|2,Pi
.

(9)

Proof. We consider first the case of the patch Pi lying completely inside Ω. We take then Qih(v) on Pi
as the Taylor polynomial Q2v, cf. Definition (4.1.3) from [7], averaged over the ball of diameter ρPi

mentioned in Assumption 1. The estimates (9) for Qih(v) = Q2v are thus given by Proposition (4.3.2) and
Bramble-Hilbert Lemma (4.3.8) from [7].
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We now turn to the case when the boundary ∂Pi intersects ∂Ω in only one point, say x. The polynomial
Qih(v) should vanish at x so that we correct Q2v by subtracting from it its value at point. We set thus
Qih(v) = Q2v− ch where ch = Q2v(x). Since v(x) = 0, we have by the above mentioned properties of Q2v

|ch| = |Q2v(x)− v(x)| 6 ‖Q2v − v‖L∞(Pi) 6 Ch2−n/2|v|2,Pi

which entails
‖Qihv − v‖0,Pi

6 ‖Q2v − v‖0,Pi
+ |ch||Pi|1/2 6 Ch2|v|2,Pi

and
‖Qihv − v‖L∞(Pi) 6 ‖Q

2v − v‖L∞(Pi) + |ch| 6 Ch|v|2,Pi
.

The H1 semi-norm of the error is not affected by the constant ch, so that the announced estimate for
|Qihv − v|1,Pi

is also valid.
The last case to consider is when ∂Pi has a non-empty intersection with a side, say Γ, of ∂Ω, which is

not reduced to one point. We recall that ∂Pi ∩Γ is assumed then to contain a ball of radius of order hPi
.

We introduce the polynomial ch of degree 6 1 that coincides with Q2v on ∂Pi ∩ Γ and does not vary in
the direction perpendicular to Γ. Setting Qih(v) = Q2v− ch we see immediately that Qih(v) vanishes on Γ.
Moreover, thanks to our geometrical assumptions and the fact that v vanishes on ∂Pi ∩ Γ,

‖ch‖L∞(Pi) 6 C‖ch‖L∞(∂Pi∩Γ) = C‖Q2v − v‖L∞(∂Pi∩Γ) 6 Ch
2−n/2
Pi

|v|2,Pi
.

We can thus prove the desired estimates for ‖Qihv − v‖0,Pi
and ‖Qihv − v‖L∞(Pi) as in the previous case.

Finally, by an inverse inequality,

‖∇ch‖L∞(Pi) 6
C

hPi

‖ch‖L∞(∂Pi∩Γ) 6 Ch
1−n/2
Pi

|v|2,Pi

so that
|Qihv − v|1,Pi

6 |Q2v − v|1,Pi
+ ‖∇ch‖L∞(Pi)|Pi|

1/2 6 Ch|v|2,Pi
.

We also recall the usual interpolation error estimates on regular cells for the standard Lagrange inter-
polation operator Ih to the space of piecewise linear functions, cf. [11, 7].

Lemma 2. Under Assumption 1, we have on each mesh cell K ∈ Th outside of patches Pi

|v − Ih(v)|1,K ≤ Ch|v|2,K , ‖v − Ih(v)‖0,K ≤ Ch2|v|2,K , ‖v − Ih(v)‖L∞(K) ≤ Ch2−n/2|v|2,K , (10)

for any v ∈ H2(K).

Definition 1. For all v ∈ H2(Ω)∩H1
0 (Ω), let Ĩh(v) be the function in Vh that coincides with Qih(v) from

Lemma 1 on each patch Pi, and with the standard Lagrange interpolation Ihv on all the cells K ∈ Th out
of the extended patches P̃i, i.e. Ĩh(v)(x) = v(x) at all the mesh nodes x ∈ Ω̄ \ ∪i∈{1,...,I}P̃i.

Note that Ĩh(v) is uniquely defined also on the mesh cells from P̃i \ Pi, i = 1, . . . , I although they are
not explicitly mentioned above. Indeed, all the vertices of such cells are shared either with a patch Pi or
with a regular cell from Ω̄ \ ∪i∈{1,...,I}P̃i. Since the values of Ĩh(v) are given at all these nodes by the

definition above, the piecewise linear function Ĩh(v) is well defined everywhere.

We now prove the global interpolation estimates for the interpolation operator Ĩh.

Proposition 1. Under Assumption 1, we have for all v ∈ H2(Ω) ∪H1
0 (Ω)

|v − Ĩh(v)|1,Ω ≤ Ch|v|2,Ω, ‖v − Ĩh(v)‖0,Ω ≤ Ch2|v|2,Ω.
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Proof. The contributions to the interpolation errors on the patches Pi and on the mesh cells outside the
patches P̃i (where the interpolators Ĩh and Ih coincide) are already covered by Lemmas 1 and 2. It remains

to bound the error on mesh cells in P̃i \ Pi.
Let K ∈ Th and K ⊂ P̃i \ Pi. By the triangle inequality and Lemma 2,

|v − Ĩh(v)|1,K ≤ |v − Ih(v)|1,K + |Ih(v)− Ĩh(v)|1,K ≤ Ch|v|2,K + |rh|1,K ,

where we have denoted rh := Ih(v)− Ĩh(v). By a homogeneity argument and the equivalence of norms on
finite dimensional space, we see easily

|rh|1,K ≤ Chn/2−1‖rh‖L∞(K).

Recalling that rh is a polynomial of degree ≤ 1 vanishing at the vertices of K on ∂P̃i, the other vertices
belonging to ∂Pi, we conclude

‖rh‖L∞(K) ≤ ‖rh‖L∞(∂K∩∂Pi) ≤ ‖v − Ih(v)‖L∞(K) + ‖v − Ĩh(v)‖L∞(Pi) ≤ Ch
2−n/2(|v|2,K + |v|2,Pi

).

Putting the estimates above together yields

|v − Ĩh(v)|1,K ≤ Ch(|v|2,K + |v|2,Pi). (11)

Similarly,
‖v − Ĩh(v)‖0,K ≤ Ch2(|v|2,K + |v|2,Pi). (12)

Taking the square on both sides of (11) and (12), summing them over all the mesh cells K ⊂ P̃i \ Pi,
i = 1, . . . , I (recall that the number of such cells on each patch is bounded by a predefined constant M),
adding the estimates from lemma 1 on the patches Pi and those of Lemma 2 on the mesh cells outside the
patches P̃i gives the desired result.

2.2 Poor conditioning of the system matrix

In this section, we shall recall the well known fact that the presence of degenerated cells can induce an
arbitrary large conditioning number of the associated finite element matrix. In the following proposition, we
consider a particular example of a mesh satisfying Assumption 1 and give an estimator for the conditioning
number. This result should be contrasted with the “normal” conditioning number of order 1/h2 on a quasi-
uniform mesh.

Proposition 2. Suppose that the mesh Th satisfies Assumption 1 and contains a degenerate cell Kdeg

such that
ρKdeg = ε, hKdeg > C1h. (13)

Then the conditioning number κ(A) := ‖A‖2‖A−1‖2 of the matrix A associated to the bilinear form a in
Vh satisfies

κ(A) >
C

hε

for sufficiently small h, with C depending only on C1 and Ω. Here, ‖ · ‖2 stands for the matrix norm
associated to the vector 2-norm.

Proof. Denote by N the dimension of Vh. Consider φh the basis function of Vh equal to 1 at the node of
Kdeg opposite to the largest edge (face) of Kdeg, vanishing at all the other nodes, and φ ∈ RN the vector
representing φh in the basis of hat functions. Then, denoting by | · |2 the vector 2-norm on RN and by
(·, ·) the associated inner product,

‖A‖2 = sup
u∈RN

(Au,u)

|u|22
> (Aφ,φ) = a(φh, φh) = |φh|21,Ω > |φh|21,Kdeg .
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By (13), the gradient of φh is of order 1/ε on Kdeg, and the area of Kdeg is of order εhn−1. Thus,

‖A‖2 > |φh|21,Kdeg > C
hn−1

ε
.

Now take any ψ ∈ H2(Ω) ∩H1
0 (Ω), ψ 6= 0 and let ψ ∈ RN be the vector associated to Ĩhψ. Then

‖A−1‖2 = sup
u∈RN

|u|22
(Au,u)

>
|ψ|22

(Aψ,ψ)
=

|ψ|22
a(Ĩhψ, Ĩhψ)

>
C

hn
‖Ĩhψ‖20,Ω
|Ĩhψ|21,Ω

.

We have used here the bound
‖vh‖20,Ω 6 Chn|v|2

valid for any vh ∈ Vh and the corresponding vector v since all the mesh cells are of diameter ≤ h.
Proposition 1 implies {

‖Ĩhψ‖0,Ω > ‖ψ‖0,Ω − Ch2|ψ|2,Ω > C‖ψ‖0,Ω,
|Ĩhψ|1,Ω 6 |ψ|1,Ω + Ch|ψ|2,Ω 6 C|ψ|1,Ω.

So that

‖A−1‖2 >
C

hn
.

This gives the desired result.

3 A well conditionned alternative finite element scheme

In this section, we build an alternative finite element method for which the optimal convergence rates (7)
and (8) hold true and the conditioning number of the finite element matrix is of order C/h2 if all the mesh
cells are of diameter ∼ h. We start by the observation that such a method could be based on a subspace
Ṽh ⊂ Vh which is the image of interpolation operator Ĩh, i.e.

Ṽh := {vh ∈ Vh : [∇vh]|F = 0 for all F ∈ Fi, i ∈ {1, ..., I}},

where Fi is the set of interior edges (faces) of the patch Pi and [·]|F represents the jump on F . In view of

our interpolation estimates, the problem of finding ũh ∈ Ṽh such that

a(ũh, ṽh) = l(ṽh) for all ṽh ∈ Ṽh

would produce an approximate solution with optimal error. Moreover, it is easy to see that the matrix
would be well-conditioned since the space Ṽh ignores the degenerated cells. Such a method is only of
theoretical interest because one cannot easily construct a basis for Ṽh using available finite element libraries.
In what follows, we use this problem rather as an inspiration in constructing an implementable finite
element scheme.

In doing so, we shall impose further restrictions on the mesh:

Assumption 3. The mesh satisfies Assumption 1. Moreover,

• The number of patches I is bounded by some Imax.

• Each patch Pi contains a non-degenerated cell Knd
i , i.e. such that hPi/ρKnd

i
6 c0.

In what follows, the constants C will be allowed to depend on the additional parameter in Assumption
3, i.e. Imax.

We shall need the following modification of the previously defined interpolation operator Ĩh, which
makes sense under Assumption 3, cf. also Fig. 1, and will be incorporated explicitly into our modified
finite element scheme.

7



Definition 2. For all v ∈ H2(Ω) ∩ H1
0 (Ω), let Îh(v) be the function in Vh that coincides with with the

standard Lagrange interpolation Ihv on all the cells K ∈ Th out of the extended patches P̃i, and is given
on each patch Pi, not touching the boundary ∂Ω, by

Îh(v)|Pi
:= Ext

(
Ih(v)|Knd

i

)
, (14)

where Ih stands again for the standard Lagrange interpolation operator on Knd
i , and Ext stands for

the extension of a polynomial from Knd
i ⊂ Pi to the whole Pi without changing the coefficients of the

polynomial. If the patch Pi touches ∂Ω, then Îh(v) is also based there on formula (14), corrected as in
Lemma 1.

Remark 1. The new interpolation operator Îh(v) satisfies the same optimal estimates as that for the old

operator Ĩh(v) which are given in Proposition 1, the proof of which is based on Lemma 1. To prove that

Lemma 1 remains valid for Îh, i.e. redefining in (9) the original Qih bye Qih := Îh(v)|Pi
as in (14), we refer

to Theorem (4.4.4) and Corollary (4.4.7) from [7]. Following their proofs, one can see that the only thing
to check is the boundedness of operator Ext in (14) as a linear map on the space of polynomials of degree
≤ 1 equipped with the norm of L∞(Knd

i ) to L∞(Pi). This, in turn, follows easily from our geometrical
Assumptions 1, 3.

3.1 An alternative scheme

We denote by aω the restriction of a on a subset ω of Ω, and by (·, ·)ω the inner product in L2(ω). Consider
the bilinear form ah defined for all uh, vh ∈ Vh by

ah(uh, vh) := aΩnd
h

(uh, vh) +
∑
i

aPi
(Îhuh, Îhvh) +

∑
i

1

h2
Pi

((Id− Îh)uh, (Id− Îh)vh)Pi
, (15)

where Ωndh := Ω\(∪iPi) and the interpolation operator Îh is defined by (14), i.e. uh is not used directly
inside the patches in the second term of ah, but rather it is extended from a non-degenerate cell inside
each patch. The third term in ah will serve, loosely speaking, to penalize the eventual non-alignment of
the approximate solution uh with the optimal subspace Ṽh.

We now introduce the following method approximating System (5): find uh ∈ Vh such that

ah(uh, vh) = l(vh) for all vh ∈ Vh. (16)

The idea of using the polynomial extension from “good” to “bad” mesh cells in the scheme (16) is borrowed
from [13]. We shall also see that the scheme can be recast in a form using the interior penalization on the
mesh facets between “good” and “bad” cells, as in the ghost penalty method [9].

3.2 A priori estimate

The approximation of System (5) by (16) induces a quasi-optimal convergence rate:

Theorem 4 (A priori estimate). Let u ∈ V and uh ∈ Vh be the solutions to System (5) and System (16),
respectively. Then, under Assumption 3, we have for any ε > 0 if n = 2, and for ε = 0 if n = 3,

|u−Πhuh|1,Ω := |u− uh|1,Ωnd
h

+
∑
i

|u− Îhuh|1,Pi
≤ Ch1−ε|u|2,Ω, (17)

where Πhuh is equal to uh on Ωndh and Îhuh on Pi. Moreover, if Ω is convex,

‖u− uh‖0,Ω ≤ Ch2−ε|u|2,Ω.

In the case n = 2, C depends on ε (in addition to its dependence on the mesh regularity).

Before proving Theorem 4, we first give some auxiliary results.
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Lemma 3 (Galerkin orthogonality). Consider u and uh the solution to Systems (5) and (16). Then

aΩnd
h

(uh − u, vh)−
∑
i

aPi(u, vh) +
∑
i

aPi(Îhuh, Îhvh) +
∑
i

1

h2
Pi

((Id− Îh)uh, (Id− Îh)vh)0,Pi = 0,

for all vh ∈ Vh.

The proof of Lemma 3 is immediate.
We shall need the norm 9 · 9 defined for all vh ∈ Vh by

9vh9 := ah(vh, vh)1/2 =

(
|vh|21,Ωnd

h
+
∑
i

|Îhvh|21,Pi
+
∑
i

1

h2
Pi

‖vh − Îhvh‖20,Pi

) 1
2

.

Note for the future use that this norm is also well defined on V ∩H2(Ω).

Lemma 4. Under Assumption 3, for all vh ∈ Vh, it holds∑
i

|vh − Îhvh|21,P̃i\Pi
6 C 9 vh 92 .

Proof. It suffices to prove for each patch

|vh − Îhvh|21,P̃i\Pi
6 C

(
|vh|21,P̃i\Pi

+ |Îhvh|21,Pi
+

1

h2
Pi

‖(Id− Îh)vh‖20,Pi

)
. (18)

Using the fact that the number of cells in each P̃i is bounded by a constant M (see Assumption 1), the

functional space involved in (18) is of finite dimension and the geometry of the patch P̃i\Pi is governed by
a finite number of parameters, the existence of the constant C will follow from maximization of the ratio
of the left-hand side to the right-hand side over all polynomials and all the acceptable geometries and from
a homogeneity argument. We need only to verify that if the right-hand side vanishes, i.e.

|vh|21,P̃i\Pi
+ |Îhvh|21,Pi

+
1

h2
Pi

‖(Id− Îh)vh‖20,Pi
= 0

on a patch Pi and for some function vh ∈ Vh, then the left-hand side vanishes as well, i.e. vh − Îhvh is
constant on P̃i\Pi. Since |vh|1,P̃i\Pi

= 0 and |Îhvh|1,Pi
= 0

vh = Ci in P̃i\Pi, Îhvh = Di in Pi

with some constants Ci and Di. Since ‖(Id− Îh)vh‖0,Pi
= 0, we deduce that

vh = Îhvh = Ci = Di in Pi

so that (Id− Îh)vh = 0 on ∂Pi. This entails (Id− Îh)vh = 0 in P̃i\Pi by construction of Îh.

Lemma 5. Under Assumption 3, we have for any ε > 0 if n = 2, and for ε = 0 if n = 3,(∑
i

|u|2
1,P̃i\Pi

) 1
2

6 Cεh
1−ε‖u‖2,Ω

for all u ∈ H2(Ω).

Proof. Let ∇ui denote the average of ∇u on P̃i \ Pi, i.e.

∇ui :=
1

|P̃i \ Pi|

∫
P̃i\Pi

∇u.

9



Then, by Poincaré inequality, it holds

|u|1,P̃i\Pi
6 ‖∇u−∇ui‖0,P̃i\Pi

+ ‖∇ui‖0,P̃i\Pi
6 Ch|u|2,P̃i\Pi

+ ‖∇ui‖0,P̃i\Pi
.

We now consider separately the cases n = 2 and n = 3. If n = 2, using Hölder inequality with exponents
q > 2 and q

q−1 and the assumption that |P̃i \ Pi| is of order h2, we have

‖∇ui‖0,P̃i\Pi
=

1

|P̃i \ Pi|
1
2

∣∣∣∣∣
∫
P̃i\Pi

∇u

∣∣∣∣∣ 6 ‖∇u‖Lq(P̃i\Pi)
|P̃i \ Pi|

q−1
q −

1
2 6 Ch1−ε‖∇u‖Lq(P̃i\Pi)

with ε = 2
q . Summing over all the patches, we have by the discrete Hölder inequality with exponents q

2 and
q/2
q/2−1 (recall that the number of patches I is assumed uniformly bounded) and by the Sobolev embedding

H1(Ω)→ Lq(Ω)(∑
i

‖∇ui‖2
0,P̃i\Pi

) 1
2

6 Ch1−ε

(∑
i

‖∇u‖2
Lq(P̃i\Pi)

) 1
2

6 Ch1−ε‖∇u‖Lq(Ω)I
1
2−

1
q 6 Cεh

1−ε‖∇u‖1,Ω

with Cε depending both on q (thus on ε) and on Ω.

Similarly, if n = 3, using Hölder inequality with exponents 6 and 6
5 and the assumption that |P̃i \ Pi|

is of order h3, we have

‖∇ui‖0,P̃i\Pi
6 ‖∇u‖L6(P̃i\Pi)

|P̃i \ Pi|
5
6−

1
2 6 Ch‖∇u‖L6(P̃i\Pi)

.

Summing over all the patches, we have by the discrete Hölder inequality with exponents 3 and 3
2 and by

the Sobolev embedding H1(Ω)→ L6(Ω)(∑
i

‖∇ui‖2
0,P̃i\Pi

) 1
2

6 Ch‖∇u‖L6(Ω)I
1
3 6 Ch‖∇u‖1,Ω

with a constant depending on Ω and without introducing an additional parameter ε, i.e. setting ε = 0.
We conclude for both n = 2 and 3(∑

i

|u|2
1,P̃i\Pi

) 1
2

6 Ch

(∑
i

|u|2
2,P̃i\Pi

) 1
2

+ Cεh
1−ε

(∑
i

‖∇u‖2
1,P̃i\Pi

) 1
2

6 Cεh
1−ε‖u‖2,Ω.

Proof of Theorem 4. Let eh := Îhu− uh. We remark that

9eh92 = ah(eh, eh)

= aΩnd
h

(Îhu− uh, eh) +
∑
i

aPi
(Îhu− Îhuh, Îheh)

+
∑
i

1

h2
Pi

((Îh − Id)uh, (Id− Îh)eh)Pi .

Lemma 3 leads to

9eh92 = aΩnd
h

(Îhu− u, eh) +
∑
i

aPi(Îhu, Îheh)−
∑
i

aPi(u, eh)

= aΩnd
h

(Îhu− u, eh) +
∑
i

aPi
(Îhu− u, Îheh) +

∑
i

aPi
(u, Îheh − eh).

(19)
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We now estimate each term in the right-hand side. Using Proposition 1 for the interpolation operator Îh,
cf. Remark 1, it holds

aΩnd
h

(Îhu− u, eh) 6 |Îhu− u|1,Ω|eh|1,Ωnd
h

6 Ch|u|2,Ω 9 eh9
(20)

and ∑
i

aPi(Îhu− u, Îheh) 6
∑
i

|Îhu− u|1,Pi |Îheh|1,Pi

6 Ch|u|2,Ω 9 eh 9 .

(21)

Concerning the third term, it holds∑
i

aPi
(u, Îheh − eh) =

∑
i

(∂nu, Îheh − eh)0,∂Pi
−
∑
i

(∆u, Îheh − eh)0,Pi

=
∑
i

(∆u, Îheh − eh)0,P̃i\Pi
−
∑
i

(∆u, Îheh − eh)0,Pi +
∑
i

aP̃i\Pi
(u, Îheh − eh).

Since hP̃i
6 Ch, we obtain the Poincaré type inequality

‖Îheh − eh‖0,P̃i\Pi
6 Ch‖Îheh − eh‖1,P̃i\Pi

. (22)

By Cauchy-Schwarz inequality, inequality (22), Lemma 4 it holds

∑
i

(∆u, Îheh − eh)0,P̃i\Pi
6

(∑
i

|u|2
2,P̃i\Pi

)1/2(∑
i

‖Îheh − eh‖20,P̃i\Pi

)1/2

6 Ch|u|2,Ω 9 eh 9 . (23)

Again, using Cauchy-Schwarz inequality, we obtain

∑
i

(∆u, Îheh − eh)0,Pi
6

(∑
i

|u|22,Pi

)1/2(∑
i

‖Îheh − eh‖20,Pi

)1/2

6 Ch|u|2,Ω 9 eh 9 . (24)

By Lemmas 4 and 5

∑
i

aP̃i\Pi
(u, Îheh − eh) 6

(∑
i

|u|2
1,P̃i\Pi

) 1
2
(∑

i

|Îheh − eh|21,P̃i\Pi

) 1
2

6 Cεh
1−ε‖u‖2,Ω 9 eh 9 . (25)

Thus, Proposition 1 for the interpolation operator Îh and (19), (20), (21), (23), (24), (25) lead to

9u− uh9 6 9u− Îhu 9 + 9 Îhu− uh9 6 Cεh
1−ε|u|2,Ω.

Consider now the solution w ∈ V to

a(w, v) = (u− Îhuh, v), ∀v ∈ V.

Observe

a(Îhuh, Îhw) = ah(uh, Îhw)−
∑
i

aP̃i\Pi
(uh − Îhuh, Îhw) = (f, Îhw)−

∑
i

aP̃i\Pi
(uh − Îhuh, Îhw)

so that
a(u− Îhuh, Îhw) =

∑
i

aP̃i\Pi
(uh − Îhuh, Îhw) =

∑
i

aP̃i\Pi
(eh − Îheh, Îhw)

11



with eh=uh − Îhu. Thus,

‖u− Îhuh‖20,Ω = a(u− Îhuh, w − Îhw) +
∑
i

aP̃i\Pi
(eh − Îheh, Îhw)

6 Ch|u− Îhuh|1,Ω|w|2,Ω +

(∑
i

|eh − Îheh|21,P̃i\Pi

) 1
2
(∑

i

|Îhw|21,P̃i\Pi

) 1
2

,

(26)

where we have used the interpolation estimate. Using Lemma 3 and (above), we obtain(∑
i

|eh − Îheh|21,P̃i\Pi

) 1
2

6 C 9 eh9 6 Cεh
1−ε|u|2,Ω

and

|u− Îhuh|1,Ω 6 C

(
|u− uh|21,Ωnd + |uh − Îhuh|21,Ωnd +

∑
i

|u− Îhuh|21,Pi

) 1
2

6 Cεh
1−ε|u|2,Ω +

(∑
i

|eh − Îheh|21,P̃i\Pi

) 1
2

6 Cεh
1−ε|u|2,Ω.

We also have by regularity of elliptic problem in a convex polygon (polyhedron)

|w|2,Ω 6 C‖u− Îhuh‖0,Ω

and by Lemma 5(∑
i

|Îhw|21,P̃i\Pi

) 1
2

6 |w−Îhw|1,Ω+

(∑
i

|w|2
1,P̃i\Pi

) 1
2

6 Ch|w|2,Ω+Cεh
1−ε‖w‖2,Ω 6 Cεh

1−ε‖u−Îhuh‖0,Ω.

Substituting into (26) gives

‖u− Îhuh‖20,Ω 6 Cεh
2−2ε|u|2,Ω‖u− Îhuh‖0,Ω

which in combination with the triangle inequality and the estimate for ‖uh − Îhuh‖0,Pi
contained in the

estimate for 9u− uh9 gives the announced L2-error estimate.

3.3 Conditioning of the system matrix

We are now going to prove that the conditioning number of the finite element matrix associated to the
bilinear form ah of the alternative scheme does not deteriorate in the presence of degenerated cells: it is
of order 1/h2 if the mesh is quasi-uniform in a sense specified below.

Proposition 3 (Conditioning). Suppose that Assumption 3 holds and the union of mesh cells ωx attached
to each node x of Th satisfies

c1h
n ≤ |ωx| ≤ c2hn (27)

with some constants c1, c2. Then, the conditioning number κ(A) of the matrix A associated to the bilinear
form ah in Vh satisfies

κ(A) 6 Ch−2.

Remark 2. Condition (27) is satisfied for instance if the mesh is quasi-uniform in the sense hK ≥ c3h for
all K ∈ Th, and each patch is constituted of a degenerated cell and a non-degenerated cell. This is the
situation considered in our numerical simulations given in Section 4.
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Before proving Proposition 3, we first introduce some auxiliary results:

Lemma 6 (Coercivity of ah). Under the assumptions of Proposition 3, it holds for all vh ∈ Vh

ah(vh, vh) > C‖vh‖20,Ω.

Proof. Let vh ∈ Vh. Observe, using triangle and Poincaré inequalities,

‖vh‖0,Ω 6 ‖Îhvh‖0,Ω + ‖vh − Îhvh‖0,Ω
6 C|Îhvh|1,Ω + ‖vh − Îhvh‖0,Ω

6 C

(
|vh|21,Ωnd

h
+
∑
i

|Îhvh|21,Pi
+
∑
i

|vh − Îhvh|21,P̃i\Pi
+
∑
i

‖vh − Îhvh‖20,P̃i

) 1
2

.

Following the proof of Lemma 4, we see easily∑
i

|vh − Îhvh|21,P̃i\Pi
+
∑
i

‖vh − Îhvh‖20,P̃i\Pi
6 C 9 vh 92 .

This implies ‖vh‖0,Ω 6 C 9 vh9 which is equivalent to the desired result.

Lemma 7 (Continuity of ah). Under the assumptions of Proposition 3, it holds for all uh, vh ∈ Vh

ah(uh, vh) 6
C

h2
‖uh‖0,Ω‖vh‖0,Ω.

Proof. Let uh, vh ∈ Vh. Since the cells of Ωndh and the patches Pi are regular, we obtain using the inverse
inequality

aΩnd
h

(uh, vh) 6
C

h2
‖uh‖0,Ωnd

h
‖vh‖0,Ωnd

h

and

aPi
(Îhuh, Îhvh) 6

C

h2
‖Îhuh‖0,Pi

‖Îhvh‖0,Pi
.

Using the equivalence of the norm in finite dimensional spaces and the fact that Pi and Knd
i are regular,

for all wh ∈ Vh, it holds
‖Îhwh‖0,Pi

6 C‖wh‖0,Knd
i
.

We deduce that

‖(Id− Îh)wh‖0,Pi + ‖Îhwh‖0,Pi 6 C(‖wh‖0,Pi + ‖wh‖0,Knd
i

) 6 C‖wh‖0,Pi

which leads to the conclusion.

Proof of Proposition 3. We first remark using (27), that there exists C1, C2 > 0 such that for all wh ∈ Vh
and w its associated vector in RN

C1h
n/2|w|2 6 ‖wh‖0 6 C2h

n/2|w|2. (28)

Indeed, denoting by Nh the set of nodes of Th, by Nh(K) the set of nodes of a simplex K ∈ Th, and using
∼ to denote the equivalence with universal constant, as in (28), we can conclude

‖wh‖20 ∼
∑
K∈Th

|K|
∑

x∈Nh(K)

|wh(x)|2 =
∑
x∈Nh

|wh(x)|2|ωx| ∼ hn|w|22.

In what follows, v ∈ RN denotes the vector associated to vh ∈ Vh. Inequality (28) with Lemma 7 imply

‖A‖2 = sup
v∈RN

(Av,v)

|v|22
= sup

v∈RN

a(vh, vh)

|v|22
6 Chn sup

vh∈Vh

a(vh, vh)

‖vh‖20
6 Chn−2.
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Similarly, (28) with Lemma 6 imply

‖A−1‖2 = sup
v∈RN

|v|22
(Av,v)

= sup
v∈RN

|v|22
a(vh, vh)

6 Ch−n sup
vh∈Vh

‖vh‖20
a(vh, vh)

6 Ch−n.

These estimates lead to the desired result.

3.4 An equivalent, easily implementable variational formulation with interior
penalty

Since implementing the interpolation operator Îh is not necessary trivial, we rewrite in this section the
bilinear form ah given in (15) in an equivalent form, which introduces the jumps of the gradients over the
interior facets. The resulting method is similar to the ghost penalty from [9].

Lemma 8. Under Assumption 3, suppose moreover that each patch Pi is composed of a non-degenerated
cell Knd

i and a degenerated cell Kdeg
i . Denote by Fi the facet between Knd

i and Kdeg
i , as illustrated in Fig.

2.

Knd
i

Kdeg
i

Fi

Figure 2: Example of patch Pi = Knd
i ∪K

deg
i .

Then, for all uh, vh ∈ Vh, it holds

ah(uh, vh) = aΩnd
h

(uh, vh) +
∑
i

|Pi|
|Knd

i |
aKnd

i
(uh, vh) + κn

∑
i

|Kdeg
i |3

h2
Pi
|Fi|2

[∇uh]Fi
· [∇vh]Fi

(29)

with κn := 2n2

(n+1)(n+2) .

Proof. Let us assume, without loss of generality, that the coordinate axes are chosen so that the y axis is
orthogonal to Fi, as in Fig. 3. We also denote by hi the height of the simplex Kdeg

i drawn to the base Fi.

Kdeg
i

y

x
Fi

hi

Figure 3: Degenerated cell Kdeg
i .

We first remark that, for all uh ∈ Vh,

(Id− Îh)uh =

{
[∇uh]Fi

y on Kdeg
i ,

0 on Knd
i .

Hence, we deduce that

((Id− Îh)uh, (Id− Îh)vh)Pi
= [∇uh]Fi

· [∇vh]Fi

∫
Kdeg

i

y2.
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Moreover∫
Kdeg

i

y2 =

∫ hi

0

y2|Fi|
(

1− y

hi

)n−1

dy = |Fi|h3
i

2

n(n+ 1)(n+ 2)
=
|Kdeg

i |3

|Fi|2
2n2

(n+ 1)(n+ 2)
,

since |Kdeg
i | = 1

n |Fi|hi. This leads to the conclusion.

4 Numerical simulations

In this section, we will illustrate with some numerical examples the sharpness of the a priori estimates of
Theorem 2 and the efficiency of the method proposed in Section 3.4 to ensure the good conditioning of the
matrix. The simulations of this section have been implemented using the finite element library FEniCS
[1].

We consider problem (1) on the domain Ω := (0, 1) × (0, 1) with the right hand side f(x, y) =
2π2 sin(πx) sin(πy) so that the exact solution is given by u(x, y) = sin(πx) sin(πy) for (x, y) ∈ Ω. To
construct the meshes Th in all our numerical experiments presented below, we start from a uniform Carte-
sian mesh of step h and degenerate certain cells so that for each degenerated cell Kdeg, hKdeg = h,
ρKdeg ∼ h2 (more precisely, the distance between the longer side and the opposite node will be equal to
h2). In doing so, we take care that each degenerated cell be included in a patch of surrounding cells, and
the patches corresponding to distinct degenerated cells do not intersect each other, cf. Fig. 4. Assumptions
1 and 3 are thus satisfied.

We report in Fig. 5 the numerical results obtained on a series of meshes with decreasing h, taking 10
degenerated cells (as described above) for every h. We use here the standard scheme (6) to produce the
approximated solution uh. The L2 and H1 absolute errors between u and uh are given on the left in Fig. 5.
The optimal convergence rates are indeed observed, as predicted by Theorem 2. However, the conditioning
number of the associated finite element matrix is much bigger than 1/h2, which would be expected on a
quasi-uniform mesh with step h. This is illustrated by Fig. 5, right. The estimate on the conditioning
number from Proposition 2 is recovered, i.e. κ(A) ∼ 1/(hε) ∼ 1/h3, since ε = ρKdeg ∼ h2.

We now turn to the alternative scheme (16). We have implemented it using the reformulation (29).
The results are reported in Fig. 6 using the same meshes containing 10 degenerated cells as above. The
errors are reported on the left. We recall that Theorem 4 predicts the optimal convergence in the H1 norm
only if the approximate solution uh is post-processed on the degenerated cells, by replacing the actual
polynomial giving uh on such a cell by the extension Πhuh of uh from the attached regular cell, cf. the
definition of |u − Πhuh|1,Ω in (17). Numerical experiments confirm the optimal H1 convergence of the
post-processed solution and also the necessity of such a post-processing. Indeed, the error with respect to
the non-processed approximate solution |u− uh|1,Ω is not of optimal order h. It is also much bigger than
|u−Πhuh|1,Ω. We also note that the optimal L2 convergence is recovered without any post-processing, as
predicted by Theorem 4. We recall that the introduction of the alternative scheme (16) was motivated by
the desire to obtain less ill-conditioned matrices. The results in Fig. 6 (right) confirm that conditioning
number for this scheme is indeed no longer affected by the presence of degenerated cells, in accordance
with Proposition 3.

We recall that the theory of Section 3 concerning the alternative scheme (16) is developed under
Assumption 3 supposing, in particular, that the number of degenerate cells is uniformly bounded. In
the numerical experiments reported in Figs. 7 and 8, we wish to check if such an assumption is indeed
necessary. We consider to this end a sequence of meshes constructed as above, but containing an increasing
number of degenerate cells, cf. Fig. 7. We consider namely the densest packing of the degenerated cells
allowed by Assumption 1 (the non-intersection of the surrounding patches), which gives approximately
5.5% of degenerated cells. Otherwise, the procedure for degenerating the cells is as above, in particular,
ρKdeg

i
≈ h2. The results are presented in Fig. 8 both for the standard scheme on the left, and the alternative

scheme (16) on the right. We first remark that the standard scheme remains optimally convergence in L2

and H1, in accordance with Theorem 2. On the contrary, the alternative scheme (16) does not converge.
This observation highlights the sharpness of the results given in Theorem 4.
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Figure 4: Example of a uniform mesh with 2 arbitrarily chosen degenerated cells Kdeg
i , ρKdeg

i
∼ h2 (left).

On the right, the degenerated cells are painted in red, the adjacent regular cells in light green, and the
surrounding patches in dark green.

10−3 10−2 10−1

10−5

10−4

10−3

10−2

10−1

1

1

1

2

h

‖u− uh‖0,Ω

|u− uh|1,Ω
10−2 10−1

10−1

100

101

1

1

h

Conditioning × 1
h2

Figure 5: Errors (left) and conditioning (right) for the standard finite element scheme (6) on a sequence
of meshes containing 10 degenerated cells with ρKdeg

i
∼ h2.
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10−3 10−2 10−1

10−5

10−4

10−3

10−2

10−1

100

1
1

1

2

h

‖u− uh‖0,Ω

|u− uh|1,Ω
|u− Πhuh|1,Ω

10−2 10−1
10−1

100

101

h

Conditioning × 1
h2

Figure 6: Errors (left) and conditioning (right) for the alternative finite element scheme (16) on a sequence
of meshes containing 10 degenerated cells with ρKdeg

i
∼ h2. The H1 norm is calculated both using the

approximate solution uh directly and extending it to the degenerated cells from the adjacent regular cells,
as in (17).

Figure 7: Example of a mesh with densely packed degenerated cells (≈ 5.5% of degenerated cells). Left:
the mesh. Right: the disjoint patches surrounding the degenerated cells.
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10−3 10−2 10−1
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10−4

10−3
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100
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1

1
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‖u− uh‖0,Ω

|u− uh|1,Ω
10−3 10−2 10−1

10−4

10−3

10−2

10−1

100

h

‖u− uh‖0,Ω

|u− uh|1,Ω
|u− Πhuh|1,Ω

Figure 8: Errors on the meshes containing ≈ 5.5% of degenerated cells. Left: the standard scheme (6).
Right: alternative scheme (16).

Acknowledgements

The authors are thankful to Marek Bucki (TexiSense) and Franz Chouly (Université de Bourgogne Franche-
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