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THREE-DIMENSIONAL MAPS AND SUBGROUP GROWTH

LAURA CIOBANU & ALEXANDER KOLPAKOV

Abstract. In this paper we derive a generating series for the number of cellular complexes known
as pavings or three-dimensional maps, on n darts, thus solving an analogue of Tutte’s problem in
dimension three. The generating series we derive also counts free subgroups of index n in ∆+ =
Z2 ∗Z2 ∗Z2 via a simple bijection between pavings and finite index subgroups which can be deduced
from the action of ∆+ on the cosets of a given subgroup. We then show that this generating series
is non-holonomic.

Furthermore, we provide and study the generating series for isomorphism classes of pavings, which
correspond to conjugacy classes of free subgroups of finite index in ∆+. Asymptotic formulas are
provided for the numbers of pavings and their isomorphism classes or, equivalently, for the number
of free subgroups of given finite index in ∆+, and conjugacy classes of such subgroups.

2010 Mathematics Subject Classification: 14N10, 20E07, 20H10, 05E45, 33C20.
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1. Introduction

In this note we explore the correspondence between the number of rooted three-dimensional maps,
or pavings, on n darts, as introduced in [2, 17, 34], and free subgroups of given index n in the free
product ∆+ = Z2 ∗ Z2 ∗ Z2, in order to obtain generating series, new formulas and asymptotics
for these objects. For any surface or higher-dimensional manifold that has been triangulated or
otherwise subdivided into cells (not necessarily simplices), combinatorial maps are a way of recording
the neighbouring relations between cells (vertices, edges, faces, etc), such as incidence or adjacency.
The number of darts (defined in Sections 2.1 and 2.2), which are essentially edges or half-edges, is
for us the key parameter in quantifying the number of maps, and can be seen as an “elementary
particle” from which the combinatorial objects in this paper are assembled.

There is a natural way to associate with every free subgroup of index n in ∆+ a paving on n darts,
and we give new quantitative information, as well as examples with concrete computations, for both
kinds of objects, the geometric ones and the algebraic ones. We also count the conjugacy classes of
free subgroups of index n in ∆+, and investigate the link between these and isomorphism classes of
pavings.

While similar connections between free subgroups (and their conjugacy classes) of finite index
in certain Fuchsian triangle groups and two-dimensional maps have been previously exploited by a
number of authors ([6, 14, 20, 22, 23, 30, 35, 36, 38]), relatively little has been done for maps in 3
dimensions; this paper is a step towards developing the theory and computation in higher dimensions.
In particular, this paper provides a solution to the analogue of Tutte’s problem (enumeration of
isomorphisms classes of maps and hypermaps) in dimension 3.

Date: April 26, 2019.
1



2 LAURA CIOBANU & ALEXANDER KOLPAKOV

Also, three-dimensional maps, or pavings, closely resemble the “edge coloured graphs” (as descri-
bed by Gurau in [13]) used in order to study random tensors and associated tensor integrals, which
can be viewed as a generalisation of matrix integrals related to counting maps and hypermaps in
dimension 2. Therefore, pavings can be viewed as a first step in quantifying Gurau’s approach.

General subgroup growth is the subject of the book [18], and further information on subgroups
growth in free products of cyclic groups can be found in [3, 24, 25, 26, 27, 28, 36]. There, the general
theory of subgroup structure in free products of (finite and infinite) cyclic groups is enhanced by
using the methods of representation theory, analytic number theory and probability theory, among
other tools.

The novelty of our contribution is in the methods we use, which have not been employed for
counting pavings before and which are particularly suitable for practical computations, as well as
in the qualitative information about the generating series we obtain, such as the fact that they are
non-holonomic. We use the species theory initiated by Joyal [15] (c.f. the monographs [5, 10]) as
our main computational tool, which allows us to derive the exponential generating series for the
number of rooted pavings in Theorem 4.1 (or free subgroups of finite index in Theorem 4.3) and the
number of isomorphism classes of connected pavings in Theorem 5.1 (or conjugacy classes of said
subgroups in Theorem 5.3) in a relatively simple form suitable for routine calculation and computer
experiments. We are able to associate the generating series for the number of rooted pavings with
solutions of the classical Riccati equations, which shows they are non-holonomic by a result of [16].
Further connections between map enumeration and the Riccati equation were established in [1].

Throughout the paper we give several concrete and illustrative examples, as well as a sample of
our SAGE code Monty (see Appendix) which supports our computations.
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2. Preliminaries

2.1. Two-dimensional maps. A two-dimensional oriented combinatorial map or, simply, a com-
binatorial map, is a triple H = 〈D;α, σ〉, where D = {1, 2, . . . , n} is a finite set of n ≥ 0 darts (to
be defined below), α, σ ∈ Sn are permutations of D, and α is an involution. A map H is connected
if the group GH = 〈α, σ〉 acts transitively on D.

Any combinatorial map has a topological realisation ΓH as a disjoint union of connected graphs,
each embedded into a connected orientable surface. In order to construct ΓH , one may proceed
as follows. Let φ = σ−1α, and for each cycle of φ consider a polygon, called a face of ΓH , whose
edges are oriented anticlockwise. Two edges i and j of the newly produced faces are identified in
accordance with the transpositions of α, that is, if α(i) = j then i is identified with j, and each new
edge becomes the union of the now two half-edges or darts i and j, pointing in opposite directions



THREE-DIMENSIONAL MAPS AND SUBGROUP GROWTH 3

(and each towards a vertex). This ensures that the resulting topological space ΓH is orientable. The
ordered sequence of darts pointing towards a vertex of ΓH is now described by a suitable cycle of σ.
Thus the vertices of ΓH correspond to the disjoint cycles of σ.

By construction, the topological space that we obtain after performing the procedure above is an
oriented surface without boundary, which is connected if GH acts transitively on D. However, we
do not always assume connectivity/transitivity.

The above argument establishes a bijection between combinatorial maps and topological maps,
i.e. graphs embedded into orientable (possible disconnected) surfaces, where for each connected
component 〈Σg; Γ, ι〉 with Σg a genus g surface, and Γ embedded in Σg via the map ι, the complement
Σg\ι(Γ) is a union of topological discs. Each edge of such a Γ is split into a pair of labelled half-edges
pointing in opposite directions. The darts D are exactly those oriented half-edges.

The permutations α, σ and φ = σ−1α defining H can be read off the labelled topological map ΓH
as follows:

1) the cycles of α correspond to the darts forming entire edges of ΓH ,
2) the cycles of σ correspond to the sequences of darts around vertices read in an anticlockwise

direction,
3) the cycles of φ correspond to the sequences of darts obtained by moving around faces in an

anticlockwise direction.

Two combinatorial maps H1 = 〈D;α1, σ1〉 and H2 = 〈D;α2, σ2〉 are isomorphic if there exists
π ∈ Sn such that α1 = π−1 α2 π and σ1 = π−1 σ2 π, which for the associated topological maps
translates into the existence of an orientation-preserving homeomorphism between ΓH1 and ΓH2

that respects dart adjacencies.
For any permutations πi ∈ Sn, i = 1, . . . , l, let ζ(π1, . . . , πl) be the number of orbits of the group

〈π1, . . . , πl〉 acting on D = {1, 2, . . . , n}. Then the connected components of H = 〈D;α, σ〉 are
represented by the orbits of 〈α, σ〉, the faces of H are the orbits of 〈σ−1α〉, and its edges and vertices
are the orbits of 〈α〉 and 〈σ〉, respectively. Thus the Euler characteristic of H can be defined as
χ(H) = ζ(σ−1α)− ζ(α) + ζ(σ).

2.2. Three-dimensional maps. A three-dimensional oriented combinatorial map or, simply, a
(combinatorial) paving, is a quadruple P = 〈D;α, σ, ϕ〉, where D is an n-element set (n ≥ 0) and
α, σ, ϕ ∈ Sn are permutations of D such that H = 〈D;α, σ〉 is a map (not necessarily connected),
and:

(I-1) the product αϕ is an involution,
(I-2) the product ϕσ−1 is an involution,
(FP) neither of the above involutions has fixed points.

A paving P is connected if GP = 〈α, σ, ϕ〉 acts transitively on D. Given a paving P = 〈D;α, σ, ϕ〉,
the map H = 〈D;α, σ〉 is called the underlying map of P .

We may also think of P as a quadruple P = 〈D;α, β, γ〉 where D is an n-element set (n ≥ 0) of
darts and α, β, γ ∈ Sn are involutions without fixed points. In this case it is easy to see that letting
ϕ = αβ and σ = γαβ produces the initial definition.

As in the case of two-dimensional maps, a combinatorial paving P has a topological realisation MP

obtained as follows. Let HP = 〈D;α, σ〉 be the underlying map for a paving P = 〈D;α, σ, ϕ〉, and let
us realise each connected component of H as a topological map, i.e. as a surface Σi with an embedded
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graph Γi, i = 1, 2, . . . ,m, having labelled half-edges as described in Section 2.1. Each surface Σi

represents the boundary of a handle-body Bi, and then the handle-bodies Bi become identified along
their boundaries in order to produce a labelled oriented cellular complex representing P topologically.
Indeed, the faces of Σi’s defined by the permutation σ−1α are identified in accordance with the
permutation ϕ, and the conditions I-1, I-2, FP ensure that one face cannot be identified to multiple
disjoint counterparts (implied by conditions I-1 and I-2), and edges or faces cannot bend onto
themselves (implied by condition FP). Also, conditions I-1 and I-2 ensure that the faces of two disjoint
handle-bodies come together with coherent orientations, thus resulting in an orientable topological
space MP . However, we’d like to note that MP is not always a three-dimensional manifold. Such
an example can be delivered by Thurston’s figure-eight glueing from [37, Ch. 1, p. 4], described in
Example 2.1.

A paving P is rooted if one of its darts is singled out as a root dart. In the sequel, we shall always
assume that the root dart has label 1.

The definitions of isomorphism for combinatorial and topological pavings are absolutely analogous
to those for combinatorial and topological maps.

Example 2.1. Let D = {1, 2, . . . , 12} be a set. Let α and σ be permutations of D such that
α = (1, 2)(3, 4)(5, 6) . . . (9, 10)(11, 12) and σ = (1, 5, 3)(2, 9, 8)(4, 11, 10)(6, 7, 12). We define D′ =
{−1,−2, . . . ,−12}, and α′(i) = −α(−i), σ′(i) = −σ(−i) for all i ∈ D′. Also, let ϕ = (1,−3, 12,−1, 3,
−12)(2,−4, 11,−2, 4,−11)(5,−7, 9,−10, 8,−6)(6,−8, 10,−9, 7,−5).

Figure 1. Two tetrahedra used in Thurston’s figure-eight glueing. Here, they do not
need to be geometrically realisable.

For any two permutations π of D and π′ of D′, let πtπ′ be the union of disjoint cycles in π and π′.
Consider a paving P = 〈D ∪D′;α t α′, σ t σ′, ϕ〉, whose underlying map consists of two tetrahedra
depicted in Figure 2.1. After glueing their faces with respect to ϕ we obtain a cellular space with
Euler characteristic +1, which has two 3-cells, four 2-cells, two 1-cells, and a single 0-cell. The link
of the 0-cell is a torus and not a sphere; therefore one does not obtain a manifold.
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The approach to pavings described above is largely due to Spehner, c.f. [34]. Another, dual,
approach is due to Arquès and Koch [2], and these two approaches to pavings are shown to be
equivalent in [17].

Arquès and Koch’s approach is as follows. Let P = 〈D;α, σ, ϕ〉 be a combinatorial paving. Then
we assemble an oriented cellular complex MP in such a way that the underlying map HP = 〈D;α, σ〉
produces (possibly disjoint) links of vertices in MP . Each link is a map whose edges are intersections
of the two-dimensional angular segments (or, simply, labelled corners of its two-faces [2, Définition
2.2, 1) & 2)], c.f. discussion in [17, p. 71]) representing the darts D and emanating from each vertex,
with the respective link surface. In this case, the latter should be thought of as the boundary of
a sufficiently small neighbourhood of said vertex. Then ϕ brings angular segments belonging to
the same two-cell of MP together, which finalises the construction. We may also think of taking
H∗P = 〈D;ϕ, σ〉 as the underlying map and performing Spehner’s construction as previously described
(with the only difference that the rôles of α and ϕ are interchanged). Finally, MP is a topological
presentation for P .

Thus, in Arquès and Koch’s approach, if each component of HP is planar, that is, a connected
map on the two-sphere S2, then all the vertex links in MP are homeomorphic to S2, and MP is a
three-dimensional manifold. Given a paving MP with labelled angular segments, we can easily read
off the corresponding combinatorial data; that is, we can identify the permutations α, σ and ϕ that
constitute its combinatorial presentation P .

In the rest of the paper we follow Spehner’s approach only, since we shall not distinguish those
pavings which are manifolds from those which are not, and thus we do not need to include any
specific information about their vertex links in the definition.

For a paving P = 〈D;α, σ, ϕ〉, the number of connected components of its underlying map HP =
〈D;α, σ〉 is f3 := ζ(α, σ), which is also the number of connected three-dimensional handlebodies
constituting MP , or the number of “pieces” as described in [34, Definition 1.5]. The number of
two-dimensional faces of P equals f2 := ζ(σ−1α, ϕ−1σ), the number of edges is f1 := ζ(α, ϕ) and of
vertices is f0 := ζ(σ, ϕ).

The f-vector of P is f(P ) := (f0, f1, f2, f3). The complexity of P equals c(P ) = f3 − f2 + f1 − f0.
In general, this quantity does not coincide with the Euler characteristic of P , unless the underlying
map H is planar (i.e. all the connected components of H are spheres).

2.3. Formal power series. Here we follow [7]. A hypergeometric sequence (ck)k≥0 has c0 = 1 and
enjoys the property that the ratio of its any two consecutive terms is a rational function in k, i.e.
there exist monic polynomials P (k) and Q(k) such that

ck+1

ck
=
P (k)

Q(k)
.

Moreover, if P and Q are factored as

P (k)

Q(k)
=

(k + a1)(k + a2) . . . (k + ap)

(k + b1)(k + b2) . . . (k + bq)(k + 1)
,

then we use the notation

pFq

[
a1 . . . ap
b1 . . . bq

; z

]
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for the formal series F (z) =
∑

k≥0 ckz
k, c.f. [31, §3.2]. Here, the factor (k + 1) belongs to the

denominator for historical reasons. Such a hypergeometric series satisfies the differential equation

(1)
(
ϑ(ϑ+ b1 − 1) · · · (ϑ+ bq − 1)− z(ϑ+ a1) · · · (ϑ+ ap)

)
pFq(z) = 0,

where ϑ = z d
dz

, c.f. [8, §16.8(ii)]. Among numerous differential equations related to (1) is the classical
Riccati equation, which plays an important rôle later on. It is a first order non-linear equation with
variable coefficients fi(x), of the form

(2)
dy

dx
= f1(x) + f2(x)y + f3(x)y2.

The Pocchammer symbol is connected to hypergeometric series and defined as

(a)n = a(a+ 1) . . . (a+ n− 1).

As n→∞, it has the following asymptotic expansion

(3) (a)n ∝
√

2π

Γ(a)
e−n na+n−

1
2 ,

where Γ(a) is the Gamma function of a, defined as Γ(a) = (a − 1)! for a a positive integer, and
Γ(a) =

∫∞
0
xa−1e−xdx for all the non-integer real positive numbers.

A formal power series y = f(x) is called D-finite, or differentiably finite, or holonomic, if there
exist polynomials p0, . . . , pm (not all zero) such that pm(x)y(m)+ · · ·+p0(x)y = 0, where y(m) denotes
the m-th derivative of y with respect to x. All algebraic power series are holonomic, but not vice
versa, c.f. [10, Appendix B.4].

Finally, we recall that the Hadamard product of two formal single-variable series A(z) =
∑

n≥0 an
zn

n!

and B(z) =
∑

n≥0 bn
zn

n!
is denoted (A�B)(z) and given by (A�B)(z) :=

∑
n≥0 anbn

zn

n!
.

Let λ = (n1, . . . , nm) be a partition of a natural number n ≥ 0, i.e. n =
∑

i≥1 ini. We write λ ` n
and define λ! := 1n1n1!2

n2n2! . . .m
nmnm!. Let zλ := zn1

1 z
n2
2 . . . znmm for some collection of variables z1,

z2, . . . . Then for two multi-variable series A(z) =
∑

n≥0
∑

λ`n aλ
zλ

λ!
and B(z) =

∑
n≥0
∑

λ`n bλ
zλ

λ!
we

have (A�B)(z) :=
∑

n≥0
∑

λ`n aλbλ
zλ

λ!
.

Also, for a multiple Hadamard product of a series A(z) with itself, i.e. B(z) = (A� · · · � A)(z),
we shall write B(z) = A�n(z), with a suitable n ≥ 0.

2.4. Species theory. Species theory (théorie des espèces), initially due to A. Joyal [15], is a powerful
way to describe and count labelled discrete structures. Since it requires a lengthy and formal setup,
we give here only the basic ideas and refer the reader to [5, 10] for further details.

A species of structures is a rule (or functor) F which produces

i) for each finite set U (of labels), a finite set F [U ] of structures on U ,
ii) for each bijection σ : U → V , a function F [σ] : F [U ]→ F [V ].

The functions F [σ] should further satisfy the following functorial properties:

i) for all bijections σ : U → V and τ : V → W , F [τ ◦ σ] = F [τ ] ◦ F [σ],
ii) for the identity map IdU : U → U , F [IdU ] = IdF [U ].
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Let [n] = {1, 2, . . . , n} be an n-element set, and assume that [0] = ∅. A species F of labelled
structures has exponential generating function F (z) =

∑
n≥0 cardF [n] z

n

n!
.

For a species of unlabelled structures (i.e. structures up to isomorphism) we write F̃ , and its gener-

ating function is a specialisation of the cycle index series, in the sense that F̃ (z) = ZF (z, z2, z3 . . . ),
where the cycle index series (see [5, §1.2.3]) is defined as:

ZF (z1, z2, . . . ) =
∑
n≥0

1

n!

∑
σ∈Sn

cardFix(F [σ]) zσ.

Here Fix(F [σ]) is the set of elements of F [n] having F [σ] as automorphism, and zσ = zc11 z
c2
2 . . . zcmm

if the cycle type of σ is c(σ) = (c1, c2, . . . , cm) (i.e. ck is the number of cycles of length k in the
decomposition of σ into disjoint cycles).

Example 2.2. This example illustrates the difference between the exponential generating function

S(z) for a species of labelled structures and the generating function S̃(z) for the corresponding
species of unlabelled structures in the setting of permutations. Let [n] = {1, 2, . . . , n} be a finite set,
S[n] the species of all permutations Sym(n) of n distinct numbers (which are considered labelled

structures), and S̃[n] the species of unlabelled structures. Then S̃[n] consists of all conjugacy classes
of permutations in Sym(n), and classical counting arguments give:

S(z) =
∑
n≥0

cardS[n] · z
n

n!
=
∑
n≥0

n! · z
n

n!
=

1

1− z
,

while

S̃(z) =
∑
n≥0

p(n) zn =
∏
n≥1

1

1− zn
,

where p(n) is the number of unordered partitions of n ≥ 01, with p(0) = 1, c.f. [5, Exemple 9].

3. Maps and subgroups

Let P(n) be the set of connected pavings on n darts, and let Pr(n) be the set of connected rooted
pavings on n darts. We will assume that if pavings are rooted they have root 1. Let P = 〈D;α, β, γ〉
be a rooted paving from Pr(n). Then there is an epimorphism ψ from ∆+ = Z2 ∗ Z2 ∗ Z2

∼= 〈a|a2 =
ε〉 ∗ 〈b|b2 = ε〉 ∗ 〈c|c2 = ε〉 onto the group GP = 〈α, β, γ〉 ⊂ Sn given by ψ : a 7→ α, b 7→ β, c 7→ γ.
Moreover, ∆+ acts transitively on D via this epimorphism, since the action of GP is transitive. By
taking Γ := Stab(1) with respect to this action, we observe that the action of ∆+ on D is isomorphic
to the action of ∆+ on the set of cosets ∆+�Γ.

If we consider the isomorphism class of P or, equivalently, consider P ∈ Pr(n) as a representative
from P(n), a change of root in P from 1 to i corresponds to conjugation of Γ by an element w ∈ ∆+

such that ω = ψ(w) has the property ω(1) = i.
By an argument analogous to that of [7, Lemmas 3.1-3.2], we can prove the following.

Lemma 3.1. There exists a bijection between the set Pr(n) of rooted connected pavings with n darts
and the set of free subgroups of index n in ∆+ = Z2 ∗ Z2 ∗ Z2.

1C.f. sequence A000041 in the OEIS [33].
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Lemma 3.2. There exists a bijection between the set P(n) of isomorphisms classes of connected
pavings with n darts and the set of conjugacy classes of free subgroups of index n in ∆+ = Z2∗Z2∗Z2.

4. Counting rooted pavings

In this section we shall count the number of transitive triples 〈α, β, γ〉 ⊂ Sn such that α, β and γ
are involutions without fixed points. Let S2 be the species of such fixed-point-free involutions in Sn.
Then since pavings correspond to triples of such involutions, for the species P ∗ of labelled pavings
(not necessarily connected) on n darts we have

(4) P ∗ = S2 × S2 × S2,

while the species P of labelled connected pavings on n darts is related to P ∗ by the Hurwitz equation

(5) P ∗ = E(P ),

where E represents the species of sets. The species P ◦ of rooted connected pavings on n darts can
be expressed in terms of the derivative of P as

(6) P ◦ = Z · P ′,
where Z is the singleton species with exponential generating function Z(z) = z.

The above relations between species can be translated into relations between the corresponding
exponential and ordinary generating functions.

Since the generating function for E is exp(z) and the direct product of species translates into the
Hadamard product of series, the exponential generating functions for S2, P

∗ and P are given by

(7) S2(z) =
∞∑
k=0

z2k

2kk!
,

(8) P ∗(z) = S2(z)� S2(z)� S2(z) =
∞∑
k=0

((2k)!)2

23k(k!)3
z2k,

(9) P (z) = logP ∗(z) = log

(
∞∑
k=0

((2k)!)2

23k(k!)3
z2k

)
.

The ordinary generating function for the number of rooted connected pavings with n darts co-
incides with P ◦(z) since the species P ◦ is rigid and every root assignment corresponds to (n − 1)!
non-isomorphic labellings of the remaining darts:

(10) P ◦(z) = z
d

dz
logP ∗(z) = z

d

dz
log

(
∞∑
k=0

((2k)!)2

23k(k!)3
z2k

)
.

Now let us write P ∗(z) = f(2z2), where f(x) =
∑∞

k=0
fk
k!
xk and fk = 1

24k

(
(2k)!
k!

)2
. Then

(11)
fk+1

fk
=

(
k +

1

2

)2

.
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Combining equality (11) with the fact that f(0) = P ∗(0) = 1, we obtain that the function f(x) is
hypergeometric, can be written as

(12) f(x) = 2F0

(
1
2
, 1

2
· · · ;x

)
,

and is represented by an everywhere divergent (i.e. convergent only at z = 0) series. As a formal
series, f(x) satisfies

(13) ϑf(x) = x

(
ϑ+

1

2

)2

f(x),

where ϑ = x d
dx

. c.f. [8, Section 16.8(ii)]. From equality (10) we get that

(14) P ◦(z) = 2x
f ′(x)

f(x)
= 2w(x),

and by combining (13) and (14) we see that w(x) satisfies a Riccati type equation:

(15) w′(x) =
(1− x)w(x)− xw2(x)− 1

4
x

x2
.

By [16, Theorem 5.2] the function w(x) is not holonomic, and therefore neither is P ◦(z).

Theorem 4.1. The generating series P ◦(z) =
∑∞

n=0 pavr(n) zn for the number pavr(n) of connected
oriented rooted pavings with n darts is non-holonomic. Its general term pavr(n) vanishes for odd
values of n and its asymptotic behaviour for even values of n is:

pavr(2k) ∼ 2

√
2

π

(
2

e

)k
kk+1/2.

Proof. The above discussion contains the proof of non-holonomy. It remains to deduce the asymptotic
value of pavr(2k) as k →∞. We recall that

(16) pavr(2k) = [z2k]P ◦(z) = [z2k]

(
z
d

dz
logP ∗(z)

)
=

(17) = [z2k]

(
z
d

dz
log f(2z2)

)
,

where

(18) f(x) =
∞∑
k=0

1

k!

(
1

2

)2

k

,

according to equality (12).
Let f(x) =

∑∞
k=0

fk
k!
xk (necessarily with f0 = 1) and let log f(x) =

∑∞
k=1 gkx

k. Then by [9,

Theorem 4.1] (also c.f. [4] and [29, Theorem 7.2]), we get that gk ∼ fk
k!

, as k →∞.
Thus, according to the above computation

(19) pavr(2k) = 2k · 2k · gk ∼
2k+1

(k − 1)!

(
1

2

)2

k

.
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Recalling the asymptotic behaviour of the Pocchammer symbol (a)k from (3) and Stirling’s as-

ymptotic formula k! ∼
√

2πk e−k kk we obtain the desired asymptotic expression for pavr(2k) as
k →∞. �

More general asymptotic formulas for subgroup growth in free products of finite groups are given
in [24, 25], which imply the asymptotic formula in our case.

Example 4.2. Since the generating series P ◦(z) (up to a multiple of 2) satisfies the Riccati equation
(15), we obtain a recurrence relation by substituting P ◦(z) =

∑∞
n=0 pavr(n) zn in it and equating

the general term to zero:

(20) pav2n+2 = 2(n+ 1) pavn +
n∑
i=0

pav2i pav2n−2i, for n ≥ 2,

with initial conditions pav0 = 0, pav2 = 1 and pavd = 0 for all odd numbers d ≥ 1. A similar relation
is obtained in [36, Formula 9].

By using Monty, we compute P ◦(z) = z2 + 4z4 + 25z6 + 208z8 + 2146z10 + 26368z12 + 375733z14 +
6092032z16 + 110769550z18 + 2232792064z20 + 49426061818z22 + 1192151302144z24 + . . . . The coeffi-
cient sequence of P ◦(z) has index A005411 in the OEIS [33]. Also (20) identifies it as the S(2,−4, 1)
self-convolutive sequence from [19].

By Lemma 3.1, the above theorem can be reformulated in group-theoretic language:

Theorem 4.3. The growth series Sf (z) =
∑∞

n=0 sf (n) zn for the number sf (n) of free subgroups of
index n in ∆+ = Z2 ∗ Z2 ∗ Z2 coincides with the series P ◦(z) from Theorem 4.1.

5. Counting pavings up to isomorphism

In order to compute the generating series P̃ (z) =
∑∞

n=0 pav(n) zn for the number pav(n) of non-
isomorphic connected pavings with n darts, we shall employ again the species equations (4)–(6),
while replacing generating functions for the respective species with their cycle index series.

Let C2 be the species of transpositions from Sn, n ≥ 1. Its cycle index series can be easily
expressed as ZC2(z1, z2, . . . ) = 1

2
z21 + 1

2
z2. The species S2 of fixed-point-free involutions in Sn can be

expressed as S2 = E(C2), since every involution is formed by a set of transpositions. It’s also known
that ZE(z1, z2, . . . ) = exp

(∑∞
n=1

zn
n

)
.

Therefore, by using [5, §1.4, Théorème 2 (c)], the cycle index series for S2 is

(21) ZS2(z1, z2, z3, . . . ) = ZE(ZC2(z1, z2, . . . ),ZC2(z2, z4, . . . ),ZC2(z3, z6, . . . ), . . . ) =

(22) = exp

(
z21
2

)
· exp

(
z22
4

+
z2
2

)
· exp

(
z23
6

)
· · · · =

∞∏
n=1

Tn(zn),

where

(23) Tn(zn) = exp

(
z2n
2n

+
zn
n

)
for even n, and Tn(zn) = exp

(
z2n
2n

)
for odd n.

Thus the cycle index ZS2 is separable, and the cycle index ZP ∗ can be expressed as

(24) ZP ∗(z1, z2, . . . ) =
∞∏
n=1

(Tn � Tn � Tn)(zn),
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given that P ∗ = S2 × S2 × S2 by equation (4).
By employing [5, §1.4, Exercice 9 (c)] together with equation (5), we obtain the cycle index for

the species of pavings:

(25) ZP (z1, z2, . . . ) =
∞∑
n=1

µ(n)

n
logZP ∗(z1, z2, . . . ).

It follows from [5, §1.2, Théorème 8 (b)] and equations (24)–(25) that the generating series P̃ (z)
is

(26) P̃ (z) = ZP (z, z2, z3, . . . ) =
∞∑
n=1

µ(n)

n
logZP ∗(z, z2, z3, . . . ) =

(27) =
∞∑
n=1

µ(n)

n

∞∑
k=1

log(Tn � Tn � Tn)(zn)|zn=znk .

Theorem 5.1. The generating series P̃ (z) =
∑∞

n=0 pav(n) zn for the number pav(n) of connected
oriented pavings with n darts is given by formulas (26) - (27). Its general term pav(n) vanishes for
odd values of n and has the following asymptotic behaviour for even values of n:

pav(2k) ∼
√

2

π

(
2

e

)k
kk−1/2.

Proof. By an argument analogous to that of [9, Section 7.1], we obtain pav(2k) ∼ pavr(2k)
2k

as k →∞.
Now the claim follows from Theorem 4.1. �

Example 5.2. By using Monty, we compute the initial sequence of coefficients for P̃ (z) and obtain

that P̃ (z) = z2 + 4z4 + 11z6 + 60z8 + 318z10 + 2806z12 + 29359z14 + 396196z16 + 6231794z18 +

112137138z20 + . . . . The coefficient sequence of P̃ (z) has index A002831 in the OEIS [33], which
represents the number of edge-3-coloured trivalent multi-graphs2 on 2n vertices, n ≥ 0, without

loops. Let this number be tri(n) and let G̃(z) =
∑

n≥0 tri(n)z2n. Thus the number of isomorphism
classes of transitive triples of fixed-point-free involutions from S2n equals both pav(n) (as shown
above) and tri(n).

Indeed, in order to create a labelled (not necessarily connected) edge-3-coloured trivalent multi-
graph without loops, we need to choose three matchings in the set of 2n vertices, which we may
think of as a set V = [2n]. Each matching will consist of edges of same colour, say red (R), green (G)
or blue (B). A matching of some colour c ∈ {R,G,B} is then described as a product σ of disjoint
transpositions (i, j) corresponding to the two vertices i and j from V joined by an edge. Since there
are no loops, each matching has exactly n edges, and σc has no fixed points. See [32] for a general
approach to enumeration of graphs with “local restrictions”.

Let G∗ be the species of vertex-labelled edge-3-coloured trivalent multigraph without loops, and
let G be its connected counterpart. Then G∗ can be described as a species of triples of fixed-point-
free involutions 〈σR, σG, σB〉, and thus G∗ ∼= P ∗ and, subsequently, G ∼= P , as species. From this

isomorphism, we get that, in particular, G̃(z) = P̃ (z) and the coefficient sequence of P̃ (z) coincides
with A002831.

2i.e. with multiple edges
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Theorem 5.3. The growth series Cf (z) =
∑∞

n=0 cf (n) zn for the number cf (n) of conjugacy classes

of free subgroups of index n in ∆+ = Z2 ∗ Z2 ∗ Z2 coincides with the series P̃ (z) from Theorem 5.1.

Example 5.4. Below we present the non-isomorphic pavings with n ≤ 4 darts, which also provide
a classification for all conjugacy classes of free subgroups of index ≤ 4 in ∆+ in view of Lemma 3.2
and the preceding discussion. The corresponding pavings can easily be classified by hand.

The conjugacy growth series for ∆+ is given in Example 5.2. An independent computation with
GAP [12] by issuing LowIndexSubgroupsFPGroup command gives matching results. We may also
use FactorCosetAction command to observe the action of a conjugacy class representative on its
cosets.

Figure 2. Paving P1 with 2 darts produced by face-glueing. The face identification
(x, y, z) 7→ (x, y,−z) is depicted by arrows.

Let P = 〈D;α, β, γ〉 be a paving. For the case of two darts D = {1, 2} we obtain only one paving
P1 with

(28) (α, β, γ) 7−→ ((1, 2), (1, 2), (1, 2)).

Figure 3. Paving P2 with 4 darts produced by face-glueing. The face identification
(x, y, z) 7→ (x, y,−z) is depicted by arrows.

This paving is glued from a single 3-ball B1 with a map H1 on it, as shown in Figure 2. If we
suppose that B1 is a unit ball centred at the origin of R3, then the identification of the faces of H1

can be described by the transformation (x, y, z) 7→ (x, y,−z). This paving has f-vector (1, 1, 1, 1).
For the case of four darts, that is, D = {1, 2, 3, 4}, we get four more pavings.
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The first one is P2 with

(29) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 2)(3, 4), (1, 3)(2, 4)).

Here, P2 is topologically represented by glueing the boundary of a 3-ball B2 with a map H2

on it, as depicted in Figure 3. Again, such a glueing can be described by the transformation
(x, y, z) 7→ (x, y,−z). This paving has f-vector (2, 2, 1, 1)

The next paving P3 has

(30) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 2)(3, 4)).

Figure 4. Paving P3 with 4 darts produced by face-glueing. The face identification
(x, y, z) 7→ (−x,−y,−z) is depicted by arrows.

It is depicted in Figure 4, and topologically is a single 3-ball B3 with a map H3 on it, whose faces
are identified accordingly. The glueing transformation in this case can be described as (x, y, z) 7→
(−x,−y,−z). This paving has f-vector (1, 1, 1, 1).

An easy computation yields that each of Pi, i = 1, 2, 3, has Euler characteristic χ(Pi) = 0, as
any three-dimensional manifold [11, Theorem 4.3], and it can be readily seen that P1 and P2 are
homeomorphic to the three-sphere S3, while P3 is homeomorphic to the real projective space RP 3.

As for the remaining two pavings P4 and P5, both of them correspond topologically to glueing
two disjoint balls along their boundaries, and the Euler characteristic for both is 0; thus each is a
manifold by [11, Theorem 4.3]. Moreover, each is an orientable manifold of Heegaard genus zero,
and thus again homeomorphic to S3 [11, Ch. 5, §1].

For P4 we have

(31) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 3)(2, 4)),

which is a combinatorial description for the two 3-balls B4,1 and B4,2 shown in Figure 5, each
with a connected map H4,1, respectively H4,2, on it. The faces of those maps are identified by an
orientation-reversing transformation on ∂B4,1

∼= S2 ∼= ∂B4,2. This paving has f-vector (1, 1, 2, 2).
Finally, for P5 we obtain

(32) (α, β, γ) 7−→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)).

In this case two 3-balls B5,1 and B5,2 shown in Figure 6 are identified along their boundaries. The
identification is described by the glueing of the faces of the corresponding maps H5,1 and H5,2 on
their boundaries. The f-vector of this paving is (2, 1, 1, 2).
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Figure 5. Paving P4 with 4 darts produced by face-glueing. The face identification
is depicted by arrows.

Figure 6. Paving P5 with 4 darts produced by face-glueing. The face identification
is depicted by arrows.

6. Counting pavings of the three-sphere

Let us consider a Heegaard splitting H ∪H ′ = S3 of the three-sphere S3, where the handlebodies
H and H ′ are glued along their common boundary Σ = H ∩ H ′. If we suppose that Σ has a map
on it, then such a splitting H ∪ H ′ turns into a paving. Indeed, we can split each edge on Σ into
two darts, and then double each dart, such that we have two maps Σ and Σ′ corresponding to the
boundaries of H and H ′; then we can write down the permutation representation for each of them.
Finally we write down a permutation that pairs the darts of Σ with the darts of Σ′: whichever map
we choose for Σ will determine the map on Σ′.

We can also think of S3 as E3 ∪∞ and then delete from E3 a genus g handlebody H. Then the
closure H ′ of the complement S3 \H will be a genus g handlebody H ′, and the surfaces of H and H ′

will have opposite orientations. Thus, if we choose a map Σ on a genus g surface of a handlebody
H, we automatically imprint its chiral (i.e. having inverse orientation) counterpart Σ′ on the surface
of H ′.

More precisely, let us choose a map C on Σ = ∂H with a set of darts D = {1, 2, . . . , n}, and let its
chiral map on Σ′ = ∂H ′ be C ′, with set of darts D′ = {−1,−2, . . . ,−n}, such that D ∩D′ = ∅. We
assume that C = 〈D;α, σ〉 and C ′ = 〈D′;α′, σ′〉. Thus, α′(i) = −α(−i), and σ′(i) = −σ−1(−i) for all
i ∈ D′. The glueing of H and H ′ along their respective boundaries Σ and Σ′ provides an involution
ϕ identifying the darts from D to those in D′ in pairs. Namely ϕ(i) = −i for all i ∈ D ∪D′. Thus,
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we have created a paving P = 〈D∪D′;αtα′, σtσ′, ϕ〉 that topologically represents the three-sphere
S3.

If two pavings are isomorphic, then their underlying maps are necessarily isomorphic. By the above
construction, we have at least as many non-isomorphic oriented pavings P on 2n darts representing
S3 as the total number of non-isomorphic oriented maps H on n darts. Thus, the number of pavings
representing S3 grows super-exponentially with respect to n.

We remark that the complexity of our paving P can be easily computed. If f(P ) = (f0, f1, f2, f3)
then χ(H) = f2 − f1 + f0 = 2 − 2g, where g is the genus of the surface carrying the map H, and
f3 = 2. Thus c(P ) = f3 − f2 + f1 − f0 = 2 − (2 − 2g) = 2g, and its value will vary over the set of
maps on n darts. This fact motivates the following questions.

Question 6.1. Let Pc(n) be the set of pavings with n darts, all of fixed complexity c (although not
necessarily of a fixed homeomorphism type). Is it true that cardPc(n) ∼ C1 exp(C2n) for some C1,
C2 > 0, if n is great enough?

Question 6.2. Let PM(n) be the set of pavings with n darts, all homeomorphic to a given manifold
(or a cell complex) M . Is it true that cardPM(n) ∼ C1 exp(C2n) for some C1, C2 > 0, if n is great
enough?

Monty (a sample SAGE session)

Here we work out Example 4.2. We begin by defining the recurrence relation from (20) in order
to produce a list of values pavr(2n), for n = 0, . . . , 20.

from sympy.core.cache import cacheit

#define pav_r(n) which computes

#the number of rooted pavings on 2*n darts

@cacheit

def pav_r(n):

return n if n<2 \

else \

2*n*pav_r(n - 1) + sum([pav_r(k)*pav_r(n - k - 1) for k in xrange(1, n-1)]);

print map(pav_r, xrange(20))

Thus we obtain the coefficients sequence of P ◦(z).

[0, 1, 4, 25, 208, 2146, 26368, 375733, 6092032, 110769550, 2232792064,

49426061818, 1192151302144, 31123028996164, 874428204384256,

26308967412122125, 843984969276915712, 28757604639850111894,

1037239628039528906752, 39481325230750749160462],

which has index A005411 in the OEIS [33]. Then we define the auxiliary function Tn(zn), and its

triple Hadamard product with itself.
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#defining n, which has to be an even natural number

n = 22;

#defining power series ring over \mathbb{Q}

R.<z> = PowerSeriesRing(QQ, default_prec=2*n);

#defining T_m(z_m)

def T(m):

sum = 0;

if (m%2 == 0):

sum = z^2/(2*m) + z/m;

else:

sum = z^2/(2*m);

return sum.exp(2*n);

#defining the triple Hadamard product of T_m(z_m) with itself

def h_prod_T(m):

prod = 0;

T_coeff = T(m).dict();

for k in T_coeff.keys():

prod = prod + \

power(z,k)*power(T_coeff[k], 3)*power(factorial(k), 2)*power(m,2*k);

return prod;

Next, we define the logarithmic term in the expression for P̃ (z) given by (26) - (27).

def log_h_prod_T(m,k):

return log(h_prod_T(m)).substitute(z=power(z,m*k));

@parallel

def term(m,k):

return moebius(k)/k*log_h_prod_T(m,k);

Finally, we define the series P̃ (z).

def P_tilde(n):

return sum([t[1] for t in list(term([(m,k) for m in range(1,n) \

for k in range(1,n)]))]).truncate(n);

The computation produces the following output (for n = 22).

P_tilde(n);

> 112137138*z^20 + 6231794*z^18 + 396196*z^16 + 29359*z^14 + 2806*z^12 +

318*z^10 + 60*z^8 + 11*z^6 + 4*z^4 + z^2

The coefficient sequence of the series above has index A002831 in the OEIS [33].
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