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Introduction

In this note we explore the correspondence between the number of rooted three-dimensional maps, or pavings, on n darts, as introduced in [START_REF] Arquès | Pavages tridimensionels[END_REF][START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF][START_REF] Spehner | Merging in maps and in pavings[END_REF], and free subgroups of given index n in the free product ∆ + = Z 2 * Z 2 * Z 2 , in order to obtain generating series, new formulas and asymptotics for these objects. For any surface or higher-dimensional manifold that has been triangulated or otherwise subdivided into cells (not necessarily simplices), combinatorial maps are a way of recording the neighbouring relations between cells (vertices, edges, faces, etc), such as incidence or adjacency. The number of darts (defined in Sections 2.1 and 2.2), which are essentially edges or half-edges, is for us the key parameter in quantifying the number of maps, and can be seen as an "elementary particle" from which the combinatorial objects in this paper are assembled.

There is a natural way to associate with every free subgroup of index n in ∆ + a paving on n darts, and we give new quantitative information, as well as examples with concrete computations, for both kinds of objects, the geometric ones and the algebraic ones. We also count the conjugacy classes of free subgroups of index n in ∆ + , and investigate the link between these and isomorphism classes of pavings.

While similar connections between free subgroups (and their conjugacy classes) of finite index in certain Fuchsian triangle groups and two-dimensional maps have been previously exploited by a number of authors ([6, 14, 20, 22, 23, 30, 35, 36, 38]), relatively little has been done for maps in 3 dimensions; this paper is a step towards developing the theory and computation in higher dimensions. In particular, this paper provides a solution to the analogue of Tutte's problem (enumeration of isomorphisms classes of maps and hypermaps) in dimension 3. Also, three-dimensional maps, or pavings, closely resemble the "edge coloured graphs" (as described by Gurau in [START_REF] Gurau | Random tensors[END_REF]) used in order to study random tensors and associated tensor integrals, which can be viewed as a generalisation of matrix integrals related to counting maps and hypermaps in dimension 2. Therefore, pavings can be viewed as a first step in quantifying Gurau's approach.

General subgroup growth is the subject of the book [START_REF] Lubotzky | Subgroup Growth[END_REF], and further information on subgroups growth in free products of cyclic groups can be found in [START_REF] Baik | Subgroup growth of virtually cyclic right-angled Coxeter groups and their free products[END_REF][START_REF] Müller | Combinatorial aspects of finitely generated virtually free groups[END_REF][START_REF] Müller | Subgroup growth of free products[END_REF][START_REF] Müller | Classification and statistics of finite index subgroups in free products[END_REF][START_REF] Müller | Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks[END_REF][START_REF] Müller | Statistics of isomorphism types in free products[END_REF][START_REF] Stothers | Free Subgroups of Free Products of Cyclic Groups[END_REF]. There, the general theory of subgroup structure in free products of (finite and infinite) cyclic groups is enhanced by using the methods of representation theory, analytic number theory and probability theory, among other tools.

The novelty of our contribution is in the methods we use, which have not been employed for counting pavings before and which are particularly suitable for practical computations, as well as in the qualitative information about the generating series we obtain, such as the fact that they are non-holonomic. We use the species theory initiated by Joyal [START_REF]Une théorie combinatoire des séries formelles[END_REF] (c.f. the monographs [START_REF] Bergeron | Théorie des espèces et combinatoire des structures arborescentes[END_REF][START_REF] Flajolet | Analytic combinatorics[END_REF]) as our main computational tool, which allows us to derive the exponential generating series for the number of rooted pavings in Theorem 4.1 (or free subgroups of finite index in Theorem 4.3) and the number of isomorphism classes of connected pavings in Theorem 5.1 (or conjugacy classes of said subgroups in Theorem 5.3) in a relatively simple form suitable for routine calculation and computer experiments. We are able to associate the generating series for the number of rooted pavings with solutions of the classical Riccati equations, which shows they are non-holonomic by a result of [START_REF] Klazar | Irreducible and connected permutations[END_REF]. Further connections between map enumeration and the Riccati equation were established in [START_REF] Arquès | Rooted maps on orientable surfaces, Riccati's equation and continued fractions[END_REF].

Throughout the paper we give several concrete and illustrative examples, as well as a sample of our SAGE code Monty (see Appendix) which supports our computations.

Preliminaries

2.1. Two-dimensional maps. A two-dimensional oriented combinatorial map or, simply, a combinatorial map, is a triple H = D; α, σ , where D = {1, 2, . . . , n} is a finite set of n ≥ 0 darts (to be defined below), α, σ ∈ S n are permutations of D, and α is an involution. A map H is connected if the group G H = α, σ acts transitively on D.

Any combinatorial map has a topological realisation Γ H as a disjoint union of connected graphs, each embedded into a connected orientable surface. In order to construct Γ H , one may proceed as follows. Let φ = σ -1 α, and for each cycle of φ consider a polygon, called a face of Γ H , whose edges are oriented anticlockwise. Two edges i and j of the newly produced faces are identified in accordance with the transpositions of α, that is, if α(i) = j then i is identified with j, and each new edge becomes the union of the now two half-edges or darts i and j, pointing in opposite directions (and each towards a vertex). This ensures that the resulting topological space Γ H is orientable. The ordered sequence of darts pointing towards a vertex of Γ H is now described by a suitable cycle of σ. Thus the vertices of Γ H correspond to the disjoint cycles of σ.

By construction, the topological space that we obtain after performing the procedure above is an oriented surface without boundary, which is connected if G H acts transitively on D. However, we do not always assume connectivity/transitivity.

The above argument establishes a bijection between combinatorial maps and topological maps, i.e. graphs embedded into orientable (possible disconnected) surfaces, where for each connected component Σ g ; Γ, ι with Σ g a genus g surface, and Γ embedded in Σ g via the map ι, the complement Σ g \ι(Γ) is a union of topological discs. Each edge of such a Γ is split into a pair of labelled half-edges pointing in opposite directions. The darts D are exactly those oriented half-edges.

The permutations α, σ and φ = σ -1 α defining H can be read off the labelled topological map Γ H as follows:

1) the cycles of α correspond to the darts forming entire edges of Γ H , 2) the cycles of σ correspond to the sequences of darts around vertices read in an anticlockwise direction, 3) the cycles of φ correspond to the sequences of darts obtained by moving around faces in an anticlockwise direction.

Two combinatorial maps H 1 = D; α 1 , σ 1 and H 2 = D; α 2 , σ 2 are isomorphic if there exists π ∈ S n such that α 1 = π -1 α 2 π and σ 1 = π -1 σ 2 π, which for the associated topological maps translates into the existence of an orientation-preserving homeomorphism between Γ H 1 and Γ H 2 that respects dart adjacencies.

For any permutations π i ∈ S n , i = 1, . . . , l, let ζ(π 1 , . . . , π l ) be the number of orbits of the group π 1 , . . . , π l acting on D = {1, 2, . . . , n}. Then the connected components of H = D; α, σ are represented by the orbits of α, σ , the faces of H are the orbits of σ -1 α , and its edges and vertices are the orbits of α and σ , respectively. Thus the Euler characteristic of H can be defined as

χ(H) = ζ(σ -1 α) -ζ(α) + ζ(σ).
2.2. Three-dimensional maps. A three-dimensional oriented combinatorial map or, simply, a (combinatorial) paving, is a quadruple P = D; α, σ, ϕ , where D is an n-element set (n ≥ 0) and α, σ, ϕ ∈ S n are permutations of D such that H = D; α, σ is a map (not necessarily connected), and:

(I-1) the product αϕ is an involution, (I-2) the product ϕσ -1 is an involution, (FP) neither of the above involutions has fixed points.

A paving P is connected if G P = α, σ, ϕ acts transitively on D. Given a paving P = D; α, σ, ϕ , the map H = D; α, σ is called the underlying map of P .

We may also think of P as a quadruple P = D; α, β, γ where D is an n-element set (n ≥ 0) of darts and α, β, γ ∈ S n are involutions without fixed points. In this case it is easy to see that letting ϕ = αβ and σ = γαβ produces the initial definition.

As in the case of two-dimensional maps, a combinatorial paving P has a topological realisation M P obtained as follows. Let H P = D; α, σ be the underlying map for a paving P = D; α, σ, ϕ , and let us realise each connected component of H as a topological map, i.e. as a surface Σ i with an embedded graph Γ i , i = 1, 2, . . . , m, having labelled half-edges as described in Section 2.1. Each surface Σ i represents the boundary of a handle-body B i , and then the handle-bodies B i become identified along their boundaries in order to produce a labelled oriented cellular complex representing P topologically. Indeed, the faces of Σ i 's defined by the permutation σ -1 α are identified in accordance with the permutation ϕ, and the conditions I-1, I-2, FP ensure that one face cannot be identified to multiple disjoint counterparts (implied by conditions I-1 and I-2), and edges or faces cannot bend onto themselves (implied by condition FP). Also, conditions I-1 and I-2 ensure that the faces of two disjoint handle-bodies come together with coherent orientations, thus resulting in an orientable topological space M P . However, we'd like to note that M P is not always a three-dimensional manifold. Such an example can be delivered by Thurston's figure-eight glueing from [37, Ch. 1, p. 4], described in Example 2.1.

A paving P is rooted if one of its darts is singled out as a root dart. In the sequel, we shall always assume that the root dart has label 1.

The definitions of isomorphism for combinatorial and topological pavings are absolutely analogous to those for combinatorial and topological maps. For any two permutations π of D and π of D , let π π be the union of disjoint cycles in π and π . Consider a paving P = D ∪ D ; α α , σ σ , ϕ , whose underlying map consists of two tetrahedra depicted in Figure 2.1. After glueing their faces with respect to ϕ we obtain a cellular space with Euler characteristic +1, which has two 3-cells, four 2-cells, two 1-cells, and a single 0-cell. The link of the 0-cell is a torus and not a sphere; therefore one does not obtain a manifold. The approach to pavings described above is largely due to Spehner, c.f. [START_REF] Spehner | Merging in maps and in pavings[END_REF]. Another, dual, approach is due to Arquès and Koch [START_REF] Arquès | Pavages tridimensionels[END_REF], and these two approaches to pavings are shown to be equivalent in [START_REF] Lienhardt | Topological models for boundary representation: a comparison with n-dimensional generalized maps[END_REF].

(i) = -α(-i), σ (i) = -σ(-i) for all i ∈ D . Also, let ϕ = (1, -3, 12, -1, 3, -12)(2, -4, 11, -2, 4, -11)(5, -7, 9, -10, 8, -6)(6, -8, 10, -9, 7, -5).
Arquès and Koch's approach is as follows. Let P = D; α, σ, ϕ be a combinatorial paving. Then we assemble an oriented cellular complex M P in such a way that the underlying map H P = D; α, σ produces (possibly disjoint) links of vertices in M P . Each link is a map whose edges are intersections of the two-dimensional angular segments (or, simply, labelled corners of its two-faces [2, Définition 2.2, 1) & 2)], c.f. discussion in [17, p. 71]) representing the darts D and emanating from each vertex, with the respective link surface. In this case, the latter should be thought of as the boundary of a sufficiently small neighbourhood of said vertex. Then ϕ brings angular segments belonging to the same two-cell of M P together, which finalises the construction. We may also think of taking H * P = D; ϕ, σ as the underlying map and performing Spehner's construction as previously described (with the only difference that the rôles of α and ϕ are interchanged). Finally, M P is a topological presentation for P .

Thus, in Arquès and Koch's approach, if each component of H P is planar, that is, a connected map on the two-sphere S 2 , then all the vertex links in M P are homeomorphic to S 2 , and M P is a three-dimensional manifold. Given a paving M P with labelled angular segments, we can easily read off the corresponding combinatorial data; that is, we can identify the permutations α, σ and ϕ that constitute its combinatorial presentation P .

In the rest of the paper we follow Spehner's approach only, since we shall not distinguish those pavings which are manifolds from those which are not, and thus we do not need to include any specific information about their vertex links in the definition.

For a paving P = D; α, σ, ϕ , the number of connected components of its underlying map H P = D; α, σ is f 3 := ζ(α, σ), which is also the number of connected three-dimensional handlebodies constituting M P , or the number of "pieces" as described in [START_REF] Spehner | Merging in maps and in pavings[END_REF]Definition 1.5]. The number of two-dimensional faces of P equals f 2 := ζ(σ -1 α, ϕ -1 σ), the number of edges is f 1 := ζ(α, ϕ) and of vertices is

f 0 := ζ(σ, ϕ).
The f-vector of P is f(P ) := (f 0 , f 1 , f 2 , f 3 ). The complexity of P equals c(P ) = f 3 -f 2 + f 1 -f 0 . In general, this quantity does not coincide with the Euler characteristic of P , unless the underlying map H is planar (i.e. all the connected components of H are spheres).

2.3. Formal power series. Here we follow [START_REF] Ciobanu | Free subgroups of free products and combinatorial hypermaps[END_REF]. A hypergeometric sequence (c k ) k≥0 has c 0 = 1 and enjoys the property that the ratio of its any two consecutive terms is a rational function in k, i.e. there exist monic polynomials P (k) and Q(k) such that

c k+1 c k = P (k) Q(k) .
Moreover, if P and Q are factored as

P (k) Q(k) = (k + a 1 )(k + a 2 ) . . . (k + a p ) (k + b 1 )(k + b 2 ) . . . (k + b q )(k + 1)
, then we use the notation

p F q a 1 . . . a p b 1 . . . b q ; z for the formal series F (z) = k≥0 c k z k , c.f. [31, §3.2].
Here, the factor (k + 1) belongs to the denominator for historical reasons. Such a hypergeometric series satisfies the differential equation ( 1)

ϑ(ϑ + b 1 -1) • • • (ϑ + b q -1) -z(ϑ + a 1 ) • • • (ϑ + a p ) p F q (z) = 0,
where ϑ = z d dz , c.f. [8, §16.8(ii)]. Among numerous differential equations related to (1) is the classical Riccati equation, which plays an important rôle later on. It is a first order non-linear equation with variable coefficients f i (x), of the form

(2) dy dx = f 1 (x) + f 2 (x)y + f 3 (x)y 2 .
The Pocchammer symbol is connected to hypergeometric series and defined as (a) n = a(a + 1) . . . (a + n -1).

As n → ∞, it has the following asymptotic expansion

(3) (a) n ∝ √ 2π Γ(a) e -n n a+n-1 2 ,
where Γ(a) is the Gamma function of a, defined as Γ(a) = (a -1)! for a a positive integer, and Γ(a) = ∞ 0 x a-1 e -x dx for all the non-integer real positive numbers. A formal power series y = f (x) is called D-finite, or differentiably finite, or holonomic, if there exist polynomials p 0 , . . . , p m (not all zero) such that p m (x)y (m) +• • •+p 0 (x)y = 0, where y (m) denotes the m-th derivative of y with respect to x. All algebraic power series are holonomic, but not vice versa, c.f. [START_REF] Flajolet | Analytic combinatorics[END_REF]Appendix B.4].

Finally, we recall that the Hadamard product of two formal single-variable series A(z) = n≥0 a n n! . Let λ = (n 1 , . . . , n m ) be a partition of a natural number n ≥ 0, i.e. n = i≥1 in i . We write λ n and define λ! :

= 1 n 1 n 1 !2 n 2 n 2 ! . . . m nm n m !. Let z λ := z n 1 1 z n 2 2 .
. . z nm m for some collection of variables z 1 , z 2 , . . . . Then for two multi-variable series

A(z) = n≥0 λ n a λ z λ λ! and B(z) = n≥0 λ n b λ z λ λ! we have (A B)(z) := n≥0 λ n a λ b λ z λ λ! .
Also, for a multiple Hadamard product of a series A(z) with itself, i.e. B(z) = (A • • • A)(z), we shall write B(z) = A n (z), with a suitable n ≥ 0.

2.4. Species theory. Species theory (théorie des espèces), initially due to A. Joyal [START_REF]Une théorie combinatoire des séries formelles[END_REF], is a powerful way to describe and count labelled discrete structures. Since it requires a lengthy and formal setup, we give here only the basic ideas and refer the reader to [START_REF] Bergeron | Théorie des espèces et combinatoire des structures arborescentes[END_REF][START_REF] Flajolet | Analytic combinatorics[END_REF] for further details.

A species of structures is a rule (or functor) F which produces i) for each finite set U (of labels), a finite set F [U ] of structures on U , ii) for each bijection σ :

U → V , a function F [σ] : F [U ] → F [V ].
The functions F [σ] should further satisfy the following functorial properties:

i) for all bijections σ : U → V and τ :

V → W , F [τ • σ] = F [τ ] • F [σ],
ii) for the identity map

Id U : U → U , F [Id U ] = Id F [U ] .
Let [n] = {1, 2, . . . , n} be an n-element set, and assume that [0] = ∅. A species F of labelled structures has exponential generating function F (z) = n≥0 card F [n] z n n! . For a species of unlabelled structures (i.e. structures up to isomorphism) we write F , and its generating function is a specialisation of the cycle index series, in the sense that F (z) = Z F (z, z 2 , z 3 . . . ), where the cycle index series (see [5, §1.2.3]) is defined as:

Z F (z 1 , z 2 , . . . ) = n≥0 1 n! σ∈Sn card F ix(F [σ]) z σ .
Here F ix(F [σ]) is the set of elements of F [n] having F [σ] as automorphism, and 

z σ = z c 1 1 z c 2 2 . . . z cm m if the cycle type of σ is c(σ) = (c 1 , c 2 , . . . , c m ) (i.e. c
S(z) = n≥0 card S[n] • z n n! = n≥0 n! • z n n! = 1 1 -z , while S(z) = n≥0 p(n) z n = n≥1 1 1 -z n ,
where p(n) is the number of unordered partitions of n ≥ 01 , with p(0) = 1, c.f. [5, Exemple 9].

Maps and subgroups

Let P(n) be the set of connected pavings on n darts, and let P r (n) be the set of connected rooted pavings on n darts. We will assume that if pavings are rooted they have root 1. Let P = D; α, β, γ be a rooted paving from P r (n). Then there is an epimorphism

ψ from ∆ + = Z 2 * Z 2 * Z 2 ∼ = a|a 2 = ε * b|b 2 = ε * c|c 2 = ε onto the group G P = α, β, γ ⊂ S n given by ψ : a → α, b → β, c → γ.
Moreover, ∆ + acts transitively on D via this epimorphism, since the action of G P is transitive. By taking Γ := Stab(1) with respect to this action, we observe that the action of ∆ + on D is isomorphic to the action of ∆ + on the set of cosets ∆ + Γ.

If we consider the isomorphism class of P or, equivalently, consider P ∈ P r (n) as a representative from P(n), a change of root in P from 1 to i corresponds to conjugation of Γ by an element w ∈ ∆ + such that ω = ψ(w) has the property ω(1) = i.

By an argument analogous to that of [7, Lemmas 3.1-3.2], we can prove the following.

Lemma 3.1. There exists a bijection between the set P r (n) of rooted connected pavings with n darts and the set of free subgroups of index n in

∆ + = Z 2 * Z 2 * Z 2 .
Lemma 3.2. There exists a bijection between the set P(n) of isomorphisms classes of connected pavings with n darts and the set of conjugacy classes of free subgroups of index n in ∆ + = Z 2 * Z 2 * Z 2 .

Counting rooted pavings

In this section we shall count the number of transitive triples α, β, γ ⊂ S n such that α, β and γ are involutions without fixed points. Let S 2 be the species of such fixed-point-free involutions in S n . Then since pavings correspond to triples of such involutions, for the species P * of labelled pavings (not necessarily connected) on n darts we have ( 4)

P * = S 2 × S 2 × S 2 ,
while the species P of labelled connected pavings on n darts is related to P * by the Hurwitz equation ( 5)

P * = E(P ),
where E represents the species of sets. The species P • of rooted connected pavings on n darts can be expressed in terms of the derivative of P as ( 6)

P • = Z • P ,
where Z is the singleton species with exponential generating function Z(z) = z.

The above relations between species can be translated into relations between the corresponding exponential and ordinary generating functions.

Since the generating function for E is exp(z) and the direct product of species translates into the Hadamard product of series, the exponential generating functions for S 2 , P * and P are given by ( 7)

S 2 (z) = ∞ k=0 z 2k 2 k k! , (8) 
P * (z) = S 2 (z) S 2 (z) S 2 (z) = ∞ k=0 ((2k)!) 2 2 3k (k!) 3 z 2k , (9) 
P (z) = log P * (z) = log ∞ k=0 ((2k)!) 2 2 3k (k!) 3 z 2k .
The ordinary generating function for the number of rooted connected pavings with n darts coincides with P • (z) since the species P • is rigid and every root assignment corresponds to (n -1)! non-isomorphic labellings of the remaining darts:

(10) P • (z) = z d dz log P * (z) = z d dz log ∞ k=0 ((2k)!) 2 2 3k (k!) 3 z 2k . Now let us write P * (z) = f (2z 2 ), where f (x) = ∞ k=0 f k k! x k and f k = 1 2 4k (2k)! k! 2 . Then (11) f k+1 f k = k + 1 2 2 .
Combining equality [START_REF] Fomenko | Algorithmic and Computer Methods for Three-Manifolds[END_REF] with the fact that f (0) = P * (0) = 1, we obtain that the function f (x) is hypergeometric, can be written as ( 12)

f (x) = 2 F 0 1 2 , 1 2 • • • ; x ,
and is represented by an everywhere divergent (i.e. convergent only at z = 0) series. As a formal series, f (x) satisfies ( 13)

ϑf (x) = x ϑ + 1 2 2 f (x),
where ϑ = x d dx . c.f. [START_REF]Digital Library of Mathematical Functions[END_REF]Section 16.8(ii)]. From equality [START_REF] Flajolet | Analytic combinatorics[END_REF] we get that ( 14)

P • (z) = 2x f (x) f (x) = 2w(x),
and by combining ( 13) and ( 14) we see that w(x) satisfies a Riccati type equation:

(15) w (x) = (1 -x)w(x) -xw 2 (x) -1 4 x x 2
.

By [16, Theorem 5.2] the function w(x) is not holonomic, and therefore neither is P • (z).

Theorem 4.1. The generating series P • (z) = ∞ n=0 pav r (n) z n for the number pav r (n) of connected oriented rooted pavings with n darts is non-holonomic. Its general term pav r (n) vanishes for odd values of n and its asymptotic behaviour for even values of n is:

pav r (2k) ∼ 2 2 π 2 e k k k+1/2 .
Proof. The above discussion contains the proof of non-holonomy. It remains to deduce the asymptotic value of pav r (2k) as k → ∞. We recall that

(16) pav r (2k) = [z 2k ] P • (z) = [z 2k ] z d dz log P * (z) = (17) = [z 2k ] z d dz log f (2z 2 ) , where (18) f (x) = ∞ k=0 1 k! 1 2 2 k , according to equality (12). Let f (x) = ∞ k=0 f k k! x k (necessarily with f 0 = 1) and let log f (x) = ∞ k=1 g k x k .
Then by [9, Theorem 4.1] (also c.f. [START_REF] Bender | An asymptotic expansion for the coefficients of some formal power series[END_REF] and [START_REF] Odlyzko | Asymptotic enumeration methods[END_REF]Theorem 7.2]), we get that g k ∼ f k k! , as k → ∞. Thus, according to the above computation [START_REF] Martin | An exactly solvable self-convolutive recurrence[END_REF] pav r (2k

) = 2 k • 2k • g k ∼ 2 k+1 (k -1)! 1 2 2 k .
Recalling the asymptotic behaviour of the Pocchammer symbol (a) k from (3) and Stirling's asymptotic formula k! ∼ √ 2πk e -k k k we obtain the desired asymptotic expression for pav r (2k) as k → ∞.

More general asymptotic formulas for subgroup growth in free products of finite groups are given in [START_REF] Müller | Combinatorial aspects of finitely generated virtually free groups[END_REF][START_REF] Müller | Subgroup growth of free products[END_REF], which imply the asymptotic formula in our case.

Example 4.2. Since the generating series P • (z) (up to a multiple of 2) satisfies the Riccati equation [START_REF]Une théorie combinatoire des séries formelles[END_REF], we obtain a recurrence relation by substituting P • (z) = ∞ n=0 pav r (n) z n in it and equating the general term to zero: [START_REF] Mednykh | Enumeration of unrooted hypermaps[END_REF] pav 2n+2 = 2(n + 1)

pav n + n i=0 pav 2i pav 2n-2i , for n ≥ 2,
with initial conditions pav 0 = 0, pav 2 = 1 and pav d = 0 for all odd numbers d ≥ 1. A similar relation is obtained in [START_REF] Stothers | Free Subgroups of Free Products of Cyclic Groups[END_REF]Formula 9]. By using Monty, we compute P • (z) = z 2 + 4z 4 + 25z 6 + 208z 8 + 2146z 10 + 26368z 12 + 375733z 14 + 6092032z 16 + 110769550z 18 + 2232792064z 20 + 49426061818z 22 + 1192151302144z 24 + . . . . The coefficient sequence of P • (z) has index A005411 in the OEIS [START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF]. Also [START_REF] Mednykh | Enumeration of unrooted hypermaps[END_REF] identifies it as the S(2, -4, 1) self-convolutive sequence from [START_REF] Martin | An exactly solvable self-convolutive recurrence[END_REF]. By Lemma 3.1, the above theorem can be reformulated in group-theoretic language:

Theorem 4.3. The growth series S f (z) = ∞ n=0 s f (n) z n for the number s f (n) of free subgroups of index n in ∆ + = Z 2 * Z 2 * Z 2 coincides
with the series P • (z) from Theorem 4.1.

Counting pavings up to isomorphism

In order to compute the generating series P (z) = ∞ n=0 pav(n) z n for the number pav(n) of nonisomorphic connected pavings with n darts, we shall employ again the species equations ( 4)-( 6), while replacing generating functions for the respective species with their cycle index series.

Let C 2 be the species of transpositions from S n , n ≥ 1. Its cycle index series can be easily expressed as

Z C 2 (z 1 , z 2 , . . . ) = 1 2 z 2 1 + 1 2 z 2 .
The species S 2 of fixed-point-free involutions in S n can be expressed as S 2 = E(C 2 ), since every involution is formed by a set of transpositions. It's also known that Z E (z 1 , z 2 , . . . ) = exp ∞ n=1 zn n . Therefore, by using [5, §1.4, Théorème 2 (c)], the cycle index series for S 2 is

(21) Z S 2 (z 1 , z 2 , z 3 , . . . ) = Z E (Z C 2 (z 1 , z 2 , . . . ), Z C 2 (z 2 , z 4 , . . . ), Z C 2 (z 3 , z 6 , . . . ), . . . ) = (22) = exp z 2 1 2 • exp z 2 2 4 + z 2 2 • exp z 2 3 6 • • • • = ∞ n=1 T n (z n ), where (23) 
T n (z n ) = exp z 2 n 2n + z n n for even n, and T n (z n ) = exp z 2 n 2n for odd n.
Thus the cycle index Z S 2 is separable, and the cycle index Z P * can be expressed as ( 24)

Z P * (z 1 , z 2 , . . . ) = ∞ n=1 (T n T n T n )(z n ),
given that P * = S 2 × S 2 × S 2 by equation ( 4). By employing [5, §1.4, Exercice 9 (c)] together with equation ( 5), we obtain the cycle index for the species of pavings:

(25) Z P (z 1 , z 2 , . . . ) = ∞ n=1 µ(n) n log Z P * (z 1 , z 2 , . . . ).
It follows from [5, §1.2, Théorème 8 (b)] and equations ( 24)-( 25) that the generating series P (z) is ( 26)

P (z) = Z P (z, z 2 , z 3 , . . . ) = ∞ n=1 µ(n) n log Z P * (z, z 2 , z 3 , . . . ) = (27) = ∞ n=1 µ(n) n ∞ k=1 log(T n T n T n )(z n )| zn=z nk .
Theorem 5.1. The generating series P (z) = ∞ n=0 pav(n) z n for the number pav(n) of connected oriented pavings with n darts is given by formulas (26) - [START_REF] Müller | Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks[END_REF]. Its general term pav(n) vanishes for odd values of n and has the following asymptotic behaviour for even values of n:

pav(2k) ∼ 2 π 2 e k k k-1/2 .
Proof. By an argument analogous to that of [9, Section 7.1], we obtain pav(2k) ∼ pavr(2k) 2k as k → ∞. Now the claim follows from Theorem 4.1.

Example 5.2. By using Monty, we compute the initial sequence of coefficients for P (z) and obtain that P (z) = z2 + 4z 4 + 11z 6 + 60z 8 + 318z 10 + 2806z 12 + 29359z 14 + 396196z 16 + 6231794z 18 + 112137138z 20 + . . . . The coefficient sequence of P (z) has index A002831 in the OEIS [START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF], which represents the number of edge-3-coloured trivalent multi-graphs 2 on 2n vertices, n ≥ 0, without loops. Let this number be tri(n) and let G(z) = n≥0 tri(n)z 2n . Thus the number of isomorphism classes of transitive triples of fixed-point-free involutions from S 2n equals both pav(n) (as shown above) and tri(n).

Indeed, in order to create a labelled (not necessarily connected) edge-3-coloured trivalent multigraph without loops, we need to choose three matchings in the set of 2n vertices, which we may think of as a set V = [2n]. Each matching will consist of edges of same colour, say red (R), green (G) or blue (B). A matching of some colour c ∈ {R, G, B} is then described as a product σ of disjoint transpositions (i, j) corresponding to the two vertices i and j from V joined by an edge. Since there are no loops, each matching has exactly n edges, and σ c has no fixed points. See [START_REF] Read | The Enumeration of Locally Restricted Graphs (I)[END_REF] for a general approach to enumeration of graphs with "local restrictions".

Let G * be the species of vertex-labelled edge-3-coloured trivalent multigraph without loops, and let G be its connected counterpart. Then G * can be described as a species of triples of fixed-pointfree involutions σ R , σ G , σ B , and thus G * ∼ = P * and, subsequently, G ∼ = P , as species. From this isomorphism, we get that, in particular, G(z) = P (z) and the coefficient sequence of P (z) coincides with A002831. The conjugacy growth series for ∆ + is given in Example 5.2. An independent computation with GAP [START_REF]GAP -Groups, Algorithms, Programming -a System for Computational Discrete Algebra[END_REF] by issuing LowIndexSubgroupsFPGroup command gives matching results. We may also use FactorCosetAction command to observe the action of a conjugacy class representative on its cosets. This paving is glued from a single 3-ball B 1 with a map H 1 on it, as shown in Figure 2. If we suppose that B 1 is a unit ball centred at the origin of R 3 , then the identification of the faces of H 1 can be described by the transformation (x, y, z) → (x, y, -z). This paving has f-vector (1, 1, 1, 1).

For the case of four darts, that is, D = {1, 2, 3, 4}, we get four more pavings.

The first one is P 2 with (29) (α, β, γ) -→ ((1, 2)(3, 4), (1, 2) [START_REF] Baik | Subgroup growth of virtually cyclic right-angled Coxeter groups and their free products[END_REF][START_REF] Bender | An asymptotic expansion for the coefficients of some formal power series[END_REF], [START_REF] Arquès | Rooted maps on orientable surfaces, Riccati's equation and continued fractions[END_REF][START_REF] Baik | Subgroup growth of virtually cyclic right-angled Coxeter groups and their free products[END_REF](2, 4)).

Here, P 2 is topologically represented by glueing the boundary of a 3-ball B 2 with a map H 2 on it, as depicted in Figure 3. Again, such a glueing can be described by the transformation (x, y, z) → (x, y, -z). This paving has f-vector (2, 2, 1, 1)

The next paving P 3 has It is depicted in Figure 4, and topologically is a single 3-ball B 3 with a map H 3 on it, whose faces are identified accordingly. The glueing transformation in this case can be described as (x, y, z) → (-x, -y, -z). This paving has f-vector (1, 1, 1, 1).

An easy computation yields that each of P i , i = 1, 2, 3, has Euler characteristic χ(P i ) = 0, as any three-dimensional manifold [START_REF] Fomenko | Algorithmic and Computer Methods for Three-Manifolds[END_REF]Theorem 4.3], and it can be readily seen that P 1 and P 2 are homeomorphic to the three-sphere S 3 , while P 3 is homeomorphic to the real projective space RP 3 .

As for the remaining two pavings P 4 and P 5 , both of them correspond topologically to glueing two disjoint balls along their boundaries, and the Euler characteristic for both is 0; thus each is a manifold by [START_REF] Fomenko | Algorithmic and Computer Methods for Three-Manifolds[END_REF]Theorem 4.3]. Moreover, each is an orientable manifold of Heegaard genus zero, and thus again homeomorphic to S 3 [11, Ch. 5, §1].

For P 4 we have

(31) (α, β, γ) -→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 3)(2, 4)),
which is a combinatorial description for the two 3-balls B 4,1 and B 4,2 shown in Figure 5, each with a connected map H 4,1 , respectively H 4,2 , on it. The faces of those maps are identified by an orientation-reversing transformation on ∂B 4,1 ∼ = S 2 ∼ = ∂B 4,2 . This paving has f-vector (1, 1, 2, 2). Finally, for P 5 we obtain (32) (α, β, γ) -→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)).

In this case two 3-balls B 5,1 and B 5,2 shown in Figure 6 are identified along their boundaries. The identification is described by the glueing of the faces of the corresponding maps H 5,1 and H 5,2 on their boundaries. The f-vector of this paving is (2, 1, 1, 2). , where the handlebodies H and H are glued along their common boundary Σ = H ∩ H . If we suppose that Σ has a map on it, then such a splitting H ∪ H turns into a paving. Indeed, we can split each edge on Σ into two darts, and then double each dart, such that we have two maps Σ and Σ corresponding to the boundaries of H and H ; then we can write down the permutation representation for each of them. Finally we write down a permutation that pairs the darts of Σ with the darts of Σ : whichever map we choose for Σ will determine the map on Σ .

We can also think of S 3 as E 3 ∪ ∞ and then delete from E 3 a genus g handlebody H. Then the closure H of the complement S 3 \ H will be a genus g handlebody H , and the surfaces of H and H will have opposite orientations. Thus, if we choose a map Σ on a genus g surface of a handlebody H, we automatically imprint its chiral (i.e. having inverse orientation) counterpart Σ on the surface of H .

More precisely, let us choose a map C on Σ = ∂H with a set of darts D = {1, 2, . . . , n}, and let its chiral map on Σ = ∂H be C , with set of darts D = {-1, -2, . . . , -n}, such that D ∩ D = ∅. We assume that C = D; α, σ and C = D ; α , σ . Thus, α (i) = -α(-i), and σ (i) = -σ -1 (-i) for all i ∈ D . The glueing of H and H along their respective boundaries Σ and Σ provides an involution ϕ identifying the darts from D to those in D in pairs. Namely ϕ(i) = -i for all i ∈ D ∪ D . Thus, we have created a paving P = D ∪D ; α α , σ σ , ϕ that topologically represents the three-sphere S 3 .

If two pavings are isomorphic, then their underlying maps are necessarily isomorphic. By the above construction, we have at least as many non-isomorphic oriented pavings P on 2n darts representing S 3 as the total number of non-isomorphic oriented maps H on n darts. Thus, the number of pavings representing S 3 grows super-exponentially with respect to n.

We remark that the complexity of our paving P can be easily computed. If f(P ) = (f 0 , f 1 , f 2 , f 3 ) then χ(H) = f 2 -f 1 + f 0 = 2 -2g, where g is the genus of the surface carrying the map H, and f 3 = 2. Thus c(P ) = f 3 -f 2 + f 1 -f 0 = 2 -(2 -2g) = 2g, and its value will vary over the set of maps on n darts. This fact motivates the following questions. Question 6.1. Let P c (n) be the set of pavings with n darts, all of fixed complexity c (although not necessarily of a fixed homeomorphism type). Is it true that card P c (n) ∼ C 1 exp(C 2 n) for some C 1 , C 2 > 0, if n is great enough? Question 6.2. Let P M (n) be the set of pavings with n darts, all homeomorphic to a given manifold (or a cell complex) M . Is it true that card P M (n) ∼ C 1 exp(C 2 n) for some C 1 , C 2 > 0, if n is great enough?

Monty (a sample SAGE session)

Here we work out Example 4.2. We begin by defining the recurrence relation from [START_REF] Mednykh | Enumeration of unrooted hypermaps[END_REF] in order to produce a list of values pav r (2n), for n = 0, . . . , 20. Thus we obtain the coefficients sequence of P • (z).

[0, [START_REF] Arquès | Rooted maps on orientable surfaces, Riccati's equation and continued fractions[END_REF][START_REF] Bender | An asymptotic expansion for the coefficients of some formal power series[END_REF][START_REF] Müller | Subgroup growth of free products[END_REF]208,2146,26368,375733,6092032,110769550,2232792064,49426061818,1192151302144,31123028996164,874428204384256,26308967412122125,843984969276915712,28757604639850111894,1037239628039528906752,39481325230750749160462], which has index A005411 in the OEIS [START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF]. Then we define the auxiliary function T n (z n ), and its triple Hadamard product with itself.

Example 2 . 1 .

 21 Let D = {1, 2, . . . , 12} be a set. Let α and σ be permutations of D such that α = (1, 2)(3, 4)[START_REF] Bergeron | Théorie des espèces et combinatoire des structures arborescentes[END_REF][START_REF] Breda | Enumeration of maps regardless of genus. Geometric approach[END_REF] . . . (9, 10)[START_REF] Fomenko | Algorithmic and Computer Methods for Three-Manifolds[END_REF][START_REF]GAP -Groups, Algorithms, Programming -a System for Computational Discrete Algebra[END_REF] and σ = (1, 5, 3)(2, 9, 8)(4, 11, 10)[START_REF] Breda | Enumeration of maps regardless of genus. Geometric approach[END_REF][START_REF] Ciobanu | Free subgroups of free products and combinatorial hypermaps[END_REF][START_REF]GAP -Groups, Algorithms, Programming -a System for Computational Discrete Algebra[END_REF]. We define D = {-1, -2, . . . , -12}, and α

Figure 1 .

 1 Figure 1. Two tetrahedra used in Thurston's figure-eight glueing. Here, they do not need to be geometrically realisable.

  z n n! and B(z) = n≥0 b n z n n! is denoted (A B)(z) and given by (A B)(z) := n≥0 a n b n z n

Theorem 5 . 3 .

 53 The growth series C f (z) = ∞ n=0 c f (n) z n for the number c f (n) of conjugacy classes of free subgroups of index n in ∆ + = Z 2 * Z 2 * Z 2 coincides with the series P (z) from Theorem 5.1.Example 5.4. Below we present the non-isomorphic pavings with n ≤ 4 darts, which also provide a classification for all conjugacy classes of free subgroups of index ≤ 4 in ∆ + in view of Lemma 3.2 and the preceding discussion. The corresponding pavings can easily be classified by hand.

Figure 2 .

 2 Figure 2. Paving P 1 with 2 darts produced by face-glueing. The face identification (x, y, z) → (x, y, -z) is depicted by arrows.

Figure 3 .

 3 Figure 3. Paving P 2 with 4 darts produced by face-glueing. The face identification (x, y, z) → (x, y, -z) is depicted by arrows.

  β, γ) -→ ((1, 2)(3, 4), (1, 3)(2, 4), (1, 2)(3, 4)).

Figure 4 .

 4 Figure 4. Paving P 3 with 4 darts produced by face-glueing. The face identification (x, y, z) → (-x, -y, -z) is depicted by arrows.

Figure 5 .

 5 Figure 5. Paving P 4 with 4 darts produced by face-glueing. The face identification is depicted by arrows.

Figure 6 . 6 .

 66 Figure 6. Paving P 5 with 4 darts produced by face-glueing. The face identification is depicted by arrows.

  from sympy.core.cache import cacheit #define pav_r(n) which computes #the number of rooted pavings on 2*n darts @cacheit def pav_r(n): return n if n<2 \ else \ 2*n*pav_r(n -1) + sum([pav_r(k)*pav_r(n -k -1) for k in xrange(1, n-1)]); print map(pav_r, xrange(20))

  k is the number of cycles of length k in the decomposition of σ into disjoint cycles).Example 2.2. This example illustrates the difference between the exponential generating function S(z) for a species of labelled structures and the generating function S(z) for the corresponding species of unlabelled structures in the setting of permutations. Let [n] = {1, 2, . . . , n} be a finite set,

S[n] the species of all permutations Sym(n) of n distinct numbers (which are considered labelled structures), and S[n] the species of unlabelled structures. Then S[n] consists of all conjugacy classes of permutations in Sym(n), and classical counting arguments give:

C.f. sequence A000041 in the OEIS[START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF].

i.e. with multiple edges
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Next, we define the logarithmic term in the expression for P (z) given by ( 26) - [START_REF] Müller | Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks[END_REF]. Finally, we define the series P (z).

def P_tilde(n): return sum([t [START_REF] Arquès | Rooted maps on orientable surfaces, Riccati's equation and continued fractions[END_REF] for t in list(term([(m,k) for m in range(1,n) \ for k in range(1,n)]))]).truncate(n);

The computation produces the following output (for n = 22 The coefficient sequence of the series above has index A002831 in the OEIS [START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF].