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ABSTRACT

This paper presents a robust and efficient method for tracking topo-
logical features in time-varying scalar data. Structures are tracked
based on the optimal matching between persistence diagrams with
respect to the Wasserstein metric. This fundamentally relies on solv-
ing the assignment problem, a special case of optimal transport, for
all consecutive timesteps. Our approach relies on two main contri-
butions. First, we revisit the seminal assignment algorithm by Kuhn
and Munkres which we specifically adapt to the problem of matching
persistence diagrams in an efficient way. Second, we propose an
extension of the Wasserstein metric that significantly improves the
geometrical stability of the matching of domain-embedded persis-
tence pairs. We show that this geometrical lifting has the additional
positive side-effect of improving the assignment matrix sparsity and
therefore computing time. The global framework implements a
coarse-grained parallelism by computing persistence diagrams and
finding optimal matchings in parallel for every couple of consecutive
timesteps. Critical trajectories are constructed by associating succes-
sively matched persistence pairs over time. Merging and splitting
events are detected with a geometrical threshold in a post-processing
stage. Extensive experiments on real-life datasets show that our
matching approach is up to two orders of magnitude faster than
the seminal Munkres algorithm. Moreover, compared to a modern
approximation method, our approach provides competitive runtimes
while guaranteeing exact results. We demonstrate the utility of our
global framework by extracting critical point trajectories from var-
ious time-varying datasets and compare it to the existing methods
based on associated overlaps of volumes. Robustness to noise and
temporal resolution downsampling is empirically demonstrated.

1 INTRODUCTION

Performing feature extraction and object tracking is an important
topic in scientific visualization, for it is key to understanding time-
varying data. Specifically, it allows to detect and track the evolution
of regions of interest over time, which is central to many scientific
domains, such as combustion [8], aerodynamics [35], oceanogra-
phy [62] or meteorology [94]. With the increasing power of com-
putational resources and resolution of acquiring devices, efficient
methods are needed to enable the analysis of large datasets.

The emergence of new paradigms for scientific simulation, such
as in-situ and in-transit [2,49,57,63,93], clearly exhibits the ambition
to reach toward exascale computing [17] in the forthcoming years. In
this context, as both spatial and temporal resolutions of acquired or
simulated datasets keep on increasing, understanding the evolution
of features of interest throughout time proves challenging.

Topological data analysis has been used in the last decades as a ro-
bust and reliable setting for hierarchically defining features in scalar
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data [22]. In particular, its successful application to time-varying
data [9, 75] makes it a prime candidate for tracking. Both topologi-
cal analysis and feature tracking have been applied in-situ [44, 95],
which demonstrates their interest in the context of large-scale data.
Nonetheless, major bottlenecks of state-of-the art topology tracking
methods are still the high required computation cost to correlate
features across timesteps, as well as the need for high temporal
resolution for an accurate tracking.

In this paper, we propose a novel feature-tracking framework,
which correlates topological features in time-varying data in an ef-
ficient and meaningful way. It is the first approach, to the best of
our knowledge, combining the setting of topological data analysis
with optimal transport for the problem of feature tracking. More pre-
cisely, the key idea is to use combinatorial optimization for matching
topological structures (namely, persistence diagrams) according to
a fine-tuned metric. After exposing our formal setting (Sec. 2), we
introduce an extension of the exact assignment algorithm by Kuhn
and Munkres [43, 51] that we adapt in an efficient way to the case
of persistence diagrams (Sec. 3). We highlight the issues raised by
the classical Wasserstein metric between diagrams, and propose a
robust lifted metric that overcomes these limitations (Sec. 4). We
then present the detailed tracking framework (Sec. 5). Extensive
experiments on acquired and simulated datasets demonstrate the
utility of our approach (Sec. 6).

1.1 Related work

Our framework encompasses the definition, correlation and tracking
of topological features in scalar fields. As such, it is related to
topological data analysis of scalar fields, tracking techniques, the
definition of metrics and combinatorial optimization.
Topological analysis techniques [20,22,36,54] have demonstrated
their ability over recent years to capture features of interest in scalar
data in a generic, robust [15, 24] and efficient manner, for many
applications as turbulent combustion [8], computational fluid dynam-
ics [25], material sciences [34], chemistry [29], astrophysics [78],
medical imaging [6, 12]. One reason for their success in applica-
tions is the possibility for domain experts to easily translate high
level structural notions into topological abstractions, such as contour
trees [11], Reeb Graphs [5, 53], Morse-Smale complexes [32]. For
instance, in astrophysics the cosmic web can be extracted by query-
ing the most persistent 1-separatrices of the Morse-Smale complex
connected to maxima of matter density [78]. Similar domain-specific
notions are translated into topological terms in the above examples.
Feature tracking: Topology has been used for feature extraction
and tracking in the context of vector fields [56,61,87], mostly relying
on stream lines, path lines [68, 69, 79–81], or tracking punctual
singularities [42]. For the latter, a forward streamline integration of
critical points is performed in a specific scale space, which adapted
for time-varying data would require knowledge about the evolution
of the field, and for instance to compute time-derivatives.

For scalar data, features are defined based on attributes that are
either geometric (isosurfaces, thresholded regions), or topological
(contour trees, Reeb graphs). Similarly, tracking approaches either
rely on geometrical (volume overlaps, distance between centers of
gravity) or topological extracts (Jacobi set, segment overlap).



Geometrical approaches are based on thresholded connected com-
ponents [74], glyphs [59], cluster tracking [27], petri nets [52],
or propose a hierarchical representation [28]. Similarly, the core
methodology for associating topological features for tracking is
often based on overlaps of geometrical domains along with other
attributes [8, 9, 66, 70–73, 75], on tracking Jacobi sets [21, 23], or
matching isosurfaces in higher-dimensional spaces [37, 39].

Such approaches usually test features in two consecutive
timesteps against one another for potential overlaps, then draw the
best correspondence between features according to some criterion.
Typical criteria include optimizing the overlapping volume, mass,
distance between centroids, or a combination of these [59, 67]. For
this to work, the temporal sampling rate of the underlying data must
be such that features in two consecutive timesteps effectively overlap.
This first criterion is thus not very robust to temporal downsampling.

Other approaches rely on global optimization [38], using the Earth
Mover’s distance [46] between geometrical features with various
attributes such as centroid position, volume and mass. This does
not, however, benefit from the natural definition of features offered
by topological data analysis, nor from the possibility to simplify
features in a hierarchical way. This is a real drawback in the context
of noisy data as it implies dealing with large, computation-intensive
optimization problems between every pair of timesteps.

Once features have been defined, and a methodology established
to associate them in consecutive timesteps, the tracking represen-
tation is quite independent of whether geometrical or topological
arguments have been used. Most often, graphs are used [45, 64, 92],
such as Reeb graphs [23, 91] and nested tracking graphs [47]. Many
popular graph structures are accounted for in [89]. An inconvenience
of extracting rich tracking structures such as these without taking
careful attention to potential noise is that it makes the interpretation
quite difficult. In [8], the tracking graph is dense and intricate, mak-
ing exploration impractical. It is therefore mandatory to do filtering
and simplification in a post-processing stage, or to cleverly discard
noisy events beforehand.
Assignment problems: Since we revisit the original algorithm by
Kuhn and Munkres, we discuss here some related work in com-
binatorial optimization. The assignment problem is the discrete
optimization problem consisting of finding a perfect matching of op-
timal cost in a weighted bipartite graph [3,10,51]. In other terms, the
problem is to find an optimal one-to-one correspondence between
discrete entities (such as singularities in a scalar field at two different
timesteps), with a cost associated to each possible correspondence.
It can be solved with the seminal Kuhn-Munkres algorithm [51]. The
auction algorithm [3, 4, 41] is another popular approach for solving
the assignment problem with a user-defined error threshold on the re-
sulting assignment cost. In practice, this threshold is often set to 1%
of the scalar range. A more general, continuous formulation of this
problem is at the heart of Transportation theory [40,48,88]. Modern
techniques [19] have attracted acute interest for making this theo-
retical setup central to shape correlation [77] and interpolation [76],
which do bear resemblance to feature tracking.
Metrics: Since we introduce a new metric for the matching of
persistence diagrams, we discuss in the following existing metrics
traditionally used in topological data analysis. The Bottleneck and
the interleaving distances [14, 15] have been widely investigated
to study the stability of persistence diagrams. These metrics have
been notably adapted in the context of kernel methods [13, 60] in
machine learning. In particular, the Bottleneck distance is a special
case of the more general Wasserstein metric [40, 48] applied to
diagram points, also known as the Earth Mover’s Distance [46]. The
standard approach for computing the discrete Wasserstein metric
relies on solving the associated assignment problem, either with an
exact Kuhn-Munkres approach [50, 90] or with an auction-based
approximation [41]. However, as discussed in Sec. 4, when these
methods (metric-based [14, 15] or kernel-based [13, 60]) are applied

as-is for tracking purposes, a high geometrical instability occurs
which impairs the tracking robustness, as already observed in the
case of vineyards [16]. Our work (see Sec. 4) addresses this issue.

1.2 Contributions
This paper makes the following new contributions:

1. Approach: We present a sound and original framework, which
is the first combining topology and transportation for fea-
ture tracking, comparing favorably to other state-of-the-art
approaches, both in terms of speed and robustness.

2. Metric: We extend traditional topological metrics, for the
needs of time-varying feature tracking, notably enhancing geo-
metrical stability and computing time.

3. Algorithm: We extend the assignment method by Kuhn and
Munkres to solve the problem of persistence matchings in a
fast and exact way, taking advantage of our metric.

2 PRELIMINARIES

This section describes our formal setting and presents an overview
of our approach. It contains definitions that we adapted from Tierny
et al. [84]. An introduction to topology can be found in [22].

2.1 Background
Input data: Without loss of generality, we assume that the input
data is a piecewise linear (PL) scalar field f : M → R defined on a
PL d-manifold M with d ≤ 3. Values are given at the vertices of
M and linearly interpolated on higher dimension simplices.
Critical points: Given an isovalue i ∈ R, the sub-level set of i,
noted f−1

−∞(i), is the pre-image of the open interval (−∞, i) onto
M through f : f−1

−∞(i) = {p ∈M | f (p) < i}. The sur-level set is
symmetrically given by f−1

+∞(i) = {p ∈M | f (p)> i}. These two
objects serve as segmentation tools in many analysis tasks [8].

The points p ∈M where the topology of f−1
−∞( f (p)− ε) differs

from that of f−1
−∞( f (p)+ ε) are the critical points of f and their

values are called critical values. Critical points can be classified
with their index I , which is 0 for minima, 1 for 1-saddles, d−1 for
(d−1)-saddles and d for maxima, with d the dimension of M .
Persistence diagrams: The distribution of critical points of f can
visually be represented by a topological abstraction called the per-
sistence diagram [15, 24] (Fig. 1). By applying the Elder Rule [22],
critical points can be arranged in a set of pairs, such that each crit-
ical point appears in only one pair (ci,c j) with f (ci) < f (c j) and
I (ci) = I (c j)− 1. More precisely, the Elder Rule states that as
the value i increases, if two topological features of f−1

−∞(i), for in-
stance two connected components, meet at a given saddle c j of f ,
the youngest of the two (the one with the highest minimal value, ci)
dies at the advantage of the oldest (the one with the lowest minimal
value). Critical points ci and c j then form a persistence pair.

The persistence diagram D( f ) embeds each pair (ci,c j) in the
plane such that its horizontal coordinate equals f (ci), and the ver-
tical coordinate of both ci and c j is f (ci) and f (c j), corresponding
respectively to the birth and death of the pair. The height of the
pair P(ci,c j) = | f (c j)− f (ci)| is called the persistence and denotes
the life-span of the topological feature created at ci and destroyed
at c j. In three dimensions, the persistence of the pairs linking criti-
cal points of index (0,1), (2,3) and (1,2) denotes the life-span of
connected components, voids and non-collapsible cycles of f−1

−∞(i).
In practice, persistence diagrams serve as an important visual rep-

resentation of the distribution of critical points in a scalar data-set.
Small oscillations in the data due to noise are typically represented
by critical point pairs with low persistence, in the vicinity of the
diagonal. In contrast, topological features that are the most promi-
nent in the data are associated with large vertical bars (Fig. 1). In
many applications, persistence diagrams help users as a visual guide



Figure 1: Four gaussians defined on a 2D plane (top left) and the as-
sociated persistence diagram (right); three gaussians defined on a 3D
volume (bottom left) with persistence diagram (right). The most promi-
nent topological features are those which have the longest lifespan,
and correspond to the longest vertical bars in persistence diagrams.

to interactively tune simplification thresholds in multi-scale data
segmentation tasks based on the Reeb graph [12, 30, 53, 58, 83, 85]
or the Morse-Smale complex [32, 33, 65].
Wasserstein distance: Metrics have been defined to evaluate the
distance between two scalar fields f ,g : M → R. The L-norm
|| f − g||ν , is a classical example. In the context of topological
data analysis, multiple metrics [14, 15] have been introduced in
order to compare persistence diagrams. In our context, such metrics
are key to identifying zones in the data which are similar to one
another. Persistence diagrams can be associated with a pointwise
distance, noted dν inspired by the L-norm. Given persistence pairs
a = (ax,ay) ∈D( f ) and b = (bx,by) ∈D(g), dν is given by Eq. 1:

dν (a,b) = (|ax−bx|ν + |ay−by|ν )1/ν (1)

The Wasserstein distance [40, 48], sometimes called the Earth
Mover’s Distance [46], noted dW

ν , between the persistence diagrams
D( f ) and D(g) is defined in Eq. 2:

dW
ν

(
D( f ),D(g)

)
= min

φ∈Φ

(
∑

a∈D( f )
dν

(
a,φ(a)

)ν

)1/ν

(2)

where Φ is the set of all possible bijections φ mapping each crit-
ical point a of D( f ) to a critical point b of the same index I in
D(g) or to the diagonal, noted diag(a) – which corresponds to the
removal of the corresponding feature from the assignment, with a
cost d(a,diag(a)).

2.2 Assignment problem
The assignment problem is the problem of choosing an optimal
assignment of n workers w ∈W to n jobs j ∈ J, assuming numerical
ratings are given for each worker’s performance on each job.

Given ratings r(wx, jy) are summed up in a cost matrix (rxy),
finding an optimal assignment means choosing a set of n independent
entries of the matrix so that the sum of these elements is optimal.
Independent means than no two such elements should belong to the
same row or column (i.e. no two workers should be assigned to the
same job and no worker should be given more than one job). In
other words, one must find a map σ : W → J of workers and jobs for
which the sum ∑x(r(wx,σ(wx))) is optimal. There are n! possible
assignments, of which several may be optimal, so that an exhaustive
search is impractical as n gets large.

Similarly, the unbalanced assignment problem is the problem
of finding an optimal assignment of n workers to m jobs, where
some jobs or workers might be left unassigned. This is the case
of assignments between sets of persistence pairs; where costs are
defined for leaving specific pairs unassigned.

The Hungarian algorithm [43,51] is the first polynomial algorithm
proposed by Kuhn to solve the assignment problem. It is an iterative
algorithm based on the following two properties:
Theorem 1 If a number is added or subtracted from all the entries
of any one row or column of a cost matrix, then an optimal assign-
ment for the resulting cost matrix is also an optimal assignment for
the original cost matrix.

Figure 2: Matrix reduction phase. Subtracting the minimum element
from each of the n rows and columns might not be sufficient to make
a set of n independent zeros appear. In the above example, initially
detected independent zeros are first starred. All columns containing a
0* are then covered (left). An uncovered zero which has a 0* in its row
is found and primed; its row is covered and the column of the 0* is
uncovered (center). At this point, all zeros are covered by construction.
Let ε be the smallest uncovered value. Add ε to every covered row;
subtract ε from every uncovered column. This amounts to decreasing
uncovered elements by ε and increasing twice-covered elements by
ε. The sum of the elements of the matrix has been decreased and a
new zero has appeared in an uncovered zone.

Figure 3: Augmenting path phase. After the first non-covered zero
(left) is primed and covers updated, there is one non-covered zero Z1
in the matrix (center), which is then primed. Let Z2 be the 0* in the
column of Z1 (if any), let Z3 be the 0’ in the row of Z2 (there is one).
Consider the series consisting of 0* (Z2i) and 0’ (Z2i+1) until it ends at
a 0’ that has no 0* in its column. Unstar each 0*, star each 0’ of the
series. The number of starred zeros has increased by one.

This means that the cost matrix (ri j) can be replaced with (ri j)−
ui− v j where ui (resp. v j) is an arbitrary number which is fixed for
the ith row (resp. the jth column).

Theorem 2 If R is a matrix and m is the maximum number of inde-
pendent zeros of R (i.e. number of entries valued at 0), then there
are m lines (row or columns) which contain all the zeros of R.

This allows to determine whether an optimal assignment has been
found and thus constitutes the stop criterion.

The algorithm iteratively performs additions and subtractions on
lines and columns of the cost matrix, in a way that globally decreases
the matrix cost, until the optimal assignment has been found, that is,
until the matrix contains a set of min(m,n) independent zeros.

In the remainder we consider the O(min(m,n)2max(m,n)) un-
balanced Kuhn-Munkres algorithm [7, 51], an improvement over
Kuhn’s original version which follows the same principles, with
an enhanced strategy for finding independent elements. The goal
is always to reduce the cost matrix and find a maximal set of in-
dependent zeros. These independent zeros are marked with a star:
they are candidates for the optimal assignment. Zeros which are
candidates for being swapped with a starred zero are marked with a
prime. Throughout the algorithm, rows and columns of the matrix
are marked as covered to restrict the search for candidate zeros.

The algorithm can be seen as two alternating phases: a matrix
reduction phase (Fig. 2) which makes new zeros appear, and an
augmenting path phase (Fig. 3) which augments the number of
marked (starred) independent zeros.

2.3 Persistence assignment problem
The assignment problem for persistence pairs is very similar to the
standard unbalanced assignment problem, except additional costs
are defined for not assigning elements (i.e. matching persistence



pairs with the diagonal). The assignment between diagrams P and
Q then involves ri j the numerical rating associated with assigning
pi ∈ P with q j ∈ Q, along with ri,−1 (resp. r−1, j) the numerical
rating associated with matching pi (resp. q j) with the diagonal.

If P and Q are sets of persistence pairs such that card(P) = n and
card(Q) = m, then it is possible to solve the persistence assignment
problem using the standard Kuhn-Munkres algorithm with the (n+
m)× (n+m) cost matrix described by Eq. 3, as proposed in [50]:

ri j =


dν (pi,q j) if 0 < i≤ n,0 < j ≤ m
dν (pi,diag(pi)) if n < i≤ m+n,0 < j ≤ m
dν (q j,diag(q j)) if 0 < i≤ n,m < j ≤ m+n
0 if n < i≤ m+n,m < j ≤ n+m

(3)

The first line corresponds to matching pairs from P to pairs from
Q; the second one corresponds to the possibility of matching pairs
from P to the diagonal; the third one is for matching pairs of Q to the
diagonal and the last one completes the cost matrix. The drawback
of this approach is that it requires to solve the assignment problem
on a (n+m)2 cost matrix (that potentially contains two non-sparse
blocks where persistence elements are located, see Fig. 4), though
the number of distinct elements is at most (n+ 1)× (m+ 1). As
seen in Sec. 3, our algorithm addresses this issue.

2.4 Overview
This section presents a quick overview of our tracking method, which
is illustrated in Fig. 9. The input data is a time-varying PL scalar
field f defined on a PL d-manifold M with d ≤ 3.

1. First, we compute the persistence diagram of the scalar field
for every available timestep.

2. Next, for each pair of two consecutive timesteps t and t + 1,
we consider the two corresponding persistence diagrams D( ft)
and D( ft+1). For each couple of persistence pairs (pi,q j) ∈
D( ft)×D( ft+1), we define a distance metric corresponding
to the similarity of these pairs: dν (pi,q j) (see Sec. 4).

3. For each pair of consecutive timesteps, we compute a matching
function M. Every persistence pair pi of D( ft) is associated to
to M(pi), which is either a persistence pair q j in D( ft+1) or
diag(pi) so as to minimize the total distance ∑i d(pi,M(pi)).
Finding the optimal M involves solving a variant of the clas-
sical Assignment Problem, as presented in Sec. 2.3. Only
persistence pairs involving critical points of the same index are
taken into account.

4. We compute tracking trajectories starting from the first
timestep. If at timestep t the matching associates pi with
Mt(pi) = q j, then a segment is traced between pi and q j. If
Mt(pi) = diag(pi), the current trajectory ends. Trajectories are
grown following this principle throughout all timesteps. Prop-
erties are associated to trajectories (time span, critical index),
and to trajectory segments (matching cost, scalar value).

5. Finally, trajectories are post-processed to detect feature merg-
ing or splitting events with a user-defined geometric threshold.

3 OPTIMIZED PERSISTENCE MATCHING

This section presents our novel extension of the Kuhn-Munkres
algorithm, which has been specifically designed to address the com-
putation time bottleneck described in Sec. 2.2.

3.1 Reduced cost matrix
The classical persistence assignment algorithm based on Kuhn-
Munkres considers R, a (n+m)2 cost matrix. We propose to work
instead with R′, a reduced (n+1)×m matrix defined in Eq. 4, where
every zero appearing in the last row is considered independent. This
amounts to considering that persistence pairs corresponding to rows
are not assigned by default. Fig. 4 summarizes the matrices consid-
ered by each assignment method.

r′i j =

{
dν (pi,q j)−diag(q j) if 0 < i≤ n,0 < j ≤ m
diag(pi) if i = n+1,0 < j ≤ m

(4)

This last row, emulating the diagonal blocks of Fig. 4-b requires
a specific handling in the optimization procedure. In particular, it
requires the first step of the algorithm to subtract minimum elements
from columns (and not rows) so as not to have negative elements in
the matrix.

Figure 4: Cost matrices for a balanced assignment problem (left, n×n
elements); for a persistence assignment problem with [50] (center, R
with 2n×2n elements – Eq. 3); and for the same persistence assign-
ment problem with our proposed approach (right, R′ with (n+1)×n
elements – Eq. 4). Persistence elements in R induce two redundant
non-sparse blocks (top-right and bottom-left).

As a reminder, the original algorithm proceeds iteratively in two
alternating phases: matrix reduction that makes new zeros appear,
and augmenting path that finds a maximal set of independent zeros.
At the ith iteration, the current maximal set of independent zeros is
made of starred zeros. After a matrix reduction, new zeros appeared
that can potentially belong to the new maximal set of independent
zeros. Such candidates are primed. A single augmenting path (as
in Fig. 3) replaces a set of n starred zeros with n+1 primed zeros,
forming a new set of independent zeros with one more element.
Rows and columns of the matrix are marked as covered to restrict the
search for candidates in the augmenting path phase. Blue blocks of
Algorithm 1 indicate our extension of the Kuhn-Munkres algorithm.

In this novel extension, an augmenting path constructed in the
corresponding phase can start from a starred zero in the last row
(and then potentially find a primed zero in its column), but such a
path can never access a starred zero in the last row at another step,
for the corresponding column would have been covered prior to this
(and thus cannot contain a primed zero, see Algorithm 1). A starred
zero in the last row can then never be unstarred.

The Kuhn-Munkres approach has the property to only increase
row values (and only decrease column values). When our algorithm
working on the reduced matrix R′ ends, it is therefore not possible
that the elements on the top-right corner of the corresponding full
matrix R be negative. Furthermore, given Theorem 1, the resulting
matrix corresponds to the same assignment problem.

3.2 Optimality
Working with the reduced matrix R′, however, does not necessarily
yield an optimal assignment. When assignments are found in the
bottom row, if there has been additions to the matrix rows, then
the corresponding R matrix would contain a top-right block that
is not zero, and a top-left block that is not zero either. Thus, the
stop criterion stated by Theorem 2 may not be respected when
k = min(m,n) lines are covered (as the real number of independent
zeros in R is m+ n). Moreover, in our setup, a starred zero in the
last column can never be unstarred; this is allowed in the approach
on R, owing to the bottom-right block, initially filled with zeros.

We therefore use the criterion stated in Eq. 5 to ensure that if, at
any given iteration of the algorithm, a zero is starred in the last row
of column j, the cost of assigning the corresponding persistence pair
to any other pair is higher than the cost of leaving both unassigned



Figure 5: In our setup, every element in the last row is considered
independent, so that it can contain multiple starred zeros (left). This
emulates the behavior of the bottom-left matrix block in the classical
approach. During an ε-reduction phase (center), we keep track of the
(always positive) quantities that were added to matrix rows, hence
increasing the top-right block in the classical approach, initially filled
with only zeros. If a zero is starred in the last row and jth column, let
ρi be the sum of quantities added to row i throughout the algorithm
(right). If for all i, ri j > ρi, then the persistence pair associated with
column i is assigned to the diagonal. If not (which never happened
in our experiments), row residuals ρi and the equivalent residuals for
columns ρ j are used to report the partial optimization onto the matrix
of the exact classical approach.

(0 for the jth-column pair and the residual value ρi for ith-row pairs
– see Algorithm 1). This specificity is illustrated in Fig. 5.

∀i ∈ J0,nK,ri, j > ρi⇒ rn+1, j = 0∗ (5)

The Eq. 5 criterion is checked whenever a zero appears on the last
row after a subtraction is performed on a column by the algorithm.
If it is observed, the corresponding column is removed from the
problem and the persistence pair is set unassigned.

If the criterion is not respected, we have to report back the reduced
problem onto the full matrix (missing banned columns and with
reported found residuals ρ). For this, we need to keep track of
residuals, that is, values that have been added or subtracted from
each row and column throughout the course of the algorithm. Once
these residuals have been reported onto the full matrix, there can
be no negative element, and all of the optimization work has been
reported (so that we do not start all over again from the beginning,
but we start from the optimized output of the first phase).

In practice for persistence diagrams, we always observed that the
first phase is sufficient to find an optimal assignment. Using this
approach prevents from working with two potentially large blocks of
persistence elements, typically occurring with the complete matrix
for i∈ Jn+1,m+nK and j ∈ Jm+1,m+nK. This property is further
motivated by the use of geometrical lifting (Sec. 4). The approach is
detailed in Algorithm 1.

3.3 Sparse assignment
In practice, it is often observed that some assignments are not possi-
ble, and that reordering columns in the associated cost matrix would
enable faster lookups and modifications [18], using sparse matrices.
With persistence diagrams, the following simple criterion (Eq. 6)
can be used to discard lookups for potential matchings.

dli f t(p,q)> dli f t(p,diag(p))+dli f t(q,diag(q)) (6)

Working with our version of the Kuhn-Munkres algorithm then
becomes interesting for many assignments verify Eq. 6 (Fig. 6),
hence greatly reducing the lookup time for zeros, minimal elements,
and the access time for operations performed on rows or columns.

On the contrary, the original full-matrix version of Kuhn-Munkres
deals with non-sparse blocks which have to be accessed and modified
constantly throughout the course of the algorithm.

4 LIFTED PERSISTENCE WASSERSTEIN METRIC

This section highlights the limitations of the natural Wasserstein
metric applied to time-varying persistence diagrams and presents

Data: R′ = (ri j), an (n+1)×m persistence cost matrix,
R the full (n+m)2 matrix with non-sparse blocks.
Result: S a set of starred independent zeros
∀i,ρi← 0 // row residuals
∀ j,ρ j← 0 // column residuals
B← /0 // banned columns
Subtract the persistence element from every row and ρi
Transpose R′ if n > m and let k = min(m,n)
Subtract the min element from every column of R′ and ρ j
Star independent zeros and cover their columns
while number of covered columns < k do

Find a non-covered zero Z1 and prime it
if Z1 is in the last row or there is no 0* in its row then

Augmenting path phase (Fig. 3)
Erase all primes, reset all covers
Cover each column of containing a starred zero

else
Let Z′1 be the 0* in the row of Z1
Cover this row and uncover the column of Z′1

end
if there is no uncovered zero left then

Matrix ε-reduction phase (Fig. 2)
ρi← ρi + ε for modified rows i
ρ j← ρ j− ε for modified columns j
if ∃ j|rn+1, j = 0 and ∀i ∈ J1,nK,ri, j > ρi then

rn+1, j is starred
B← B∪ j

end
end

end
if ∃ j /∈ B|rn+1, j = 0∗ and ∃i|ri, j < ρi then

Kuhn-Munkres(R′′i j = Ri j +ρi +ρ j) with j /∈ B.
end

Algorithm 1: Our algorithm for sparse persistence matching.
Blue sections allow to emulate the behavior of the three original
non-sparse blocks on one single row, while ensuring optimality
thanks to the residuals column. Black sections are common with
the unbalanced Kunk-Munkres algorithm.

an extension that enhances its geometrical stability. Geometrical
considerations are motivated, in terms of accuracy and performance.

4.1 Geometric criterion
Persistence diagrams can be embedded into the geometrical domain
(Fig. 1). Doing so, one easily sees how different embeddings can
correspond to similar persistence diagrams in the birth-death space.
Working in this 2D space does yield irrelevant matchings: as can
be seen in Fig. 7, when only the birth-death coordinates of persis-
tence pairs are considered, a matching can be optimal even if it
happens between geometrically distant zones. As a consequence,
the distance metric between persistence pairs must be augmented
with geometrical considerations.

To address this, we propose instead of dν (Eq. 1) to use the
distance defined in Eq. 7:

dli f t,ν (p,q) = (αδ
ν
birth +βδ

ν
death + γ1δ

ν
x + γ2δ

ν
y + γ3δ

ν
z )

1/ν (7)

where δx, δy and δz correspond to geometric distances between the
extrema involved in the persistence pairs on a given axis. We process
diagonal projections as follows (Eq. 8):

dli f t,ν (p,diag(p)) =(α |px|ν +β
∣∣py
∣∣ν +

γ1(δ
p
x )

ν + γ2(δ
p
y )

ν + γ3(δ
p
z )

ν )1/ν
(8)

where the terms δ
p
x , δ

p
y and δ

p
z correspond to the geometric distance

between the critical points of a given pair p. Intuitively, it accounts
for the distance between the critical points to cancel.



Figure 6: Persistence diagrams D1 and D2 showing in color small
persistence pairs that will never be assigned in an optimal matching.
The light blue pair p ∈ D2 is such that d(p,diag(p))+d(q,diag(q)) <
d(p,q) for any q ∈ D1 which is neither light blue nor the first large
persistence pair. This results in the cost matrix (right, D1 pairs are
rows and D2 pairs are columns), where gray elements correspond to
pairs (p,q) s.t. d(p,q)> d(p,diag(p))+d(q,diag(q)).

Figure 7: Scalar field f with persistence diagram D( f ) (left), matched
with a scalar field g with a similar persistence diagram D(g), but an
embedding that swaps the position of the light blue pair with that of
the dark blue pair. Matched pairs are displayed with the same color
using the non-geometric (center) and geometric Wasserstein metric
(right). The latter takes the geometrical embedding into account,
preventing similar pairs (regarding persistence) to be assigned if they
are geometrically distant.

A lifted distance is considered by augmenting the geometric
distance with coefficients α,β ,γi. This aims at giving more or less
importance to the birth, death or some of the x,y,z coordinates during
the matching, depending on applicative contexts. For instance, in
practice it is desirable to give less importance to the birth coordinate
when dealing with d-(d−1) persistence pairs (in other words, for
tracking local maxima, see Fig. 8). For the remainder of the paper
and the experiments, we used (α,β ,γi) = (0.1,1,1) for maxima and
(α,β ,γi) = (1,0.1,1) for minima, for normalized geometrical extent
and scalar values. We observed that using a lifted metric further
increases the cost matrix sparsity, resulting in extra speedups.

5 FEATURE TRACKING

This section describes the four main stages of our tracking frame-
work, relying on the discussed theoretical setup. Without loss of
generality, we assume that the input data is a time-varying 2D or
3D scalar field defined on a PL-manifold. Topological features are
extracted for all timesteps (Fig. 9, a-b), then matched (Fig. 9, c);
trajectories are built from the successive matchings (Fig. 9, d) and
post-processed to detect merging and splitting events.

5.1 Feature detection
First, we compute persistence diagrams for each timestep. We
propose using the algorithm by Gueunet et al. [31], in which only
0-1 and d-(d−1) persistence pairs are considered.

When the data is noisy, it is possible to discard pairs of low per-
sistence (typically induced by noise) by applying a simple threshold.
In practice, this amounts to only considering the most prominent
features. Using such a threshold accelerates the matching process,
where for approaches based on overlaps, removing topological noise

Figure 8: Lifting the birth coordinate. 2D scalar fields with two gaus-
sians (a, b), where the bottom (resp. top) gaussian has the maximum
value (a) (resp. b). Using the geometrical metric alone (c) is not
sufficient, as the birth coordinate px misleadingly equalizes the per-
sistence term of pairs of the same color in (a, b): δ a

p,yellow = δ b
p,yellow,

δ a
p,blue = δ b

p,blue, potentially overcoming the geometrical factor. Lifting
the birth coordinate with a small coefficient for associating maxima
yields the correct matching (d).

would require a topological simplification of the domain (for exam-
ple using the approach in [86]), which is computationally expensive.

5.2 Feature matching
If P1,P2 are two sets of persistence pairs taken at timesteps t and t+1,
then we use the algorithm described in Sec. 3, with the appropriate
distance metric, as discussed in Sec. 4, to associate pairs in P1 and
P2. A given pair p1 ∈ P1 might be associated to one pair p2 ∈ P2 at
most, or not associated, and symmetrically.

5.3 Trajectory extraction
Trajectories are constructed by simply attaching successively
matched segments. For all timesteps t, if the feature matching
associates pi with Mt(pi) = q j, then a segment is traced between
q j and pi, and is potentially connected back to the previous seg-
ment of pi’s trajectory. If Mt(pi) = diag(pi), the current trajectory
ends. Properties are associated to trajectories (time span, critical
point index) and to trajectory segments (matching cost, scalar value,
persistence value, embedded volume).

5.4 Handling merging and splitting events
Given a user-defined geometrical threshold ε , we propose to de-
tect events of merging or splitting along trajectories in the fol-
lowing manner. If T1,T2 : I ⊂ N→ R3 are two trajectories span-
ning throughout [ti, ti+n] and [t j, t j+m] respectively, and if for some
k ∈ [i, i+n]∩ [ j, j+m], dli f t,ν (T1(tk),T2(tk))< ε , where dli f t,ν is a
lifted distance, then an event of merging (or splitting) is detected.
We consider that a merging event occurs between T1 and T2 at time
k, when neither T1 nor T2 start at tk. We then consider that the oldest
trajectory takes over the youngest. For example, T1 and T2 meet
(according to the ε criterion) at tk the last timestep of T2, and T2
started before T1, then we disconnect the remainder of T1 from the
trajectory before tk and we connect it so as to continue T2 until T1’s
original end. Similarly, a splitting event occurs between T1 and T2 at
time k, when neither T1 nor T2 end at tk. The process is illustrated in
Fig. 10. It is done separately for distinct critical point types: minima,
maxima and saddles are not mixed.

6 RESULTS

This section presents experimental results obtained on a desktop
computer with two Xeon CPUs (3.0 GHz, 4 cores each), with 64 GB
of RAM. We report experiments on 2D and 3D time-varying datasets,
that were either simulated with Gerris [55] (von Kármán Vortex
street, Boussinesq flow, starting vortex), or acquired (Sea surface
height, Isabel hurricane). Persistence diagrams are computed with
the implementation of [31] available in the Topology ToolKit [84];
the tracking is restricted to 0-1 and (d−1)-d pairs. We implemented
our matching (Sec. 3) and tracking approaches (Sec. 5) in C++ as a
Topology ToolKit module.



Figure 9: Overview of our tracking approach on a dataset consisting of eight whirling gaussians: persistence diagram computations for two
consecutive timesteps (a) and (b); matching of persistence pairs of two timesteps (c), propagation of matchings and construction of a trajectory (d).

Figure 10: Merging process. Tracking is performed on two gaussians
moving from left to right (a). The post-process detects a merging
event with a geometrical threshold, then propagates the component
identifier of the oldest component (b) and properly reconnects the
matching segment. If the oldest component has already the right
identifier (c) nothing is done. This process is proposed by analogy
with building persistence diagrams.

6.1 Application to simulated and acquired datasets

We applied our tracking framework to both simulated and acquired
time-varying datasets to outline specific phenomena.

In Fig. 11, we present the results of the tracking framework ap-
plied to an oceanographic dataset. The scalar field (sea surface
height) is defined on 365 timesteps on a triangular mesh. We can
see interesting trajectories corresponding to well-known oceanic
currents. Drifting (a, b) and turbulent behaviors (c) of local extrema
are highlighted. In Fig. 12, tracking is performed on the vorticity of
highly unstable Boussinesq flow. Thanks to our analysis, trajectories
can be filtered according to their temporal lifespan, revealing clearly
different trajectory patterns among the turbulent features. This kind
of analysis may be easily performed based on other trajectory at-
tributes, depending on applicative contexts. In Fig. 13, we show
our approach on a 3D hurricane dataset whose temporal resolution
is such that a method based on overlaps of split-tree leaves (see
Sec. 6.3) could not extract trajectories. In Fig. 14, our tracking
framework correctly follows local extrema of the vorticity field in a
simulated vortex street.

6.2 Tracking robustness

In the following two sections, we demonstrate the robustness and
performance of our tracking framework.

We compare to the greedy approach based on the overlap of
volumes [8, 9, 66, 75] of split-tree leaves, which amounts to track-
ing local maxima. In this approach, for every pair of consecutive
timesteps (t, t + 1), split-tree segmentations St and St+1 are com-
puted (these are a set of connected regions). Overlap scores are
then computed for every pair of regions (si,s j) ∈ St ×St+1, as the
number of common vertices between si and s j. Scores are sorted
and si is considered matched to the highest positive scoring s j such
that s j has not been matched before. Trajectories are extracted by
repeating the process for all timesteps.

The robustness of our tracking framework is first assessed on

Figure 11: Sea surface height (SSH) captured over 365 days, 1
timestep every day. Local maxima are tracked in the region corre-
sponding to the Agulhas Current, near South Africa (a); it is observed
they are slowly drifting towards the west. SSH maxima are also drift-
ing west in the less contrasted zone of the West Australian Current
(b). Tracking in the region of the Kuroshio Current, near Japan (c),
demonstrates a whirling behavior of local maxima.

a synthetic dataset consisting of whirling gaussians, on which we
applied noise (Fig. 15). Identified trajectories are sensibly the same
with a perturbation of 10% of the scalar range. The 75% most
important features are still correctly tracked after a 25% random
perturbation has been applied to the data.

In Fig. 14, our method is compared to the greedy approach, based
on overlaps, while decreasing the temporal resolution. The over-
lap approach yields trajectories corresponding to noise (Fig. 14-e),
which can be filtered by applying topological simplification before-
hand (this would have a significant computational cost as it requires
to modify the original function), or by associating the scalar value
of the function to every point in the trajectory and then filtering
the trajectory in a post-process step. In our setup, is is much sim-
pler to discard this noise, by using a threshold for discarding small
persistence pairs before the matching (implying a faster matching
computation). When downsampling the temporal resolution to only
20% of the timesteps, our approach still gives the correct results
(Fig. 14, d vs. e). With 15% of the timesteps, our approach (Fig. 14-
f) still agrees with the tracking on the full-resolution data (Fig. 14-b),
until preceding features begin to catch up, resulting in a zig-zag
pattern. By comparison, the overlap method fails to correctly track
meaningful regions from the beginning of the simulation to its end; it
is indeed dependent on the geometry of overlaps, which is unstable.
It can be argued that the locality captured by overlaps is emulated
in our framework by embedding and lifting the Wasserstein metric,



Figure 12: Boussinesq flow generated by a heated cylinder (a). Fea-
ture tracking is performed (b) on the fluid vorticity. Some vortices
exist over a long period of time (c), as others vanish more rapidly (d),
sometimes akin to noise (e). Feature trajectories can easily be filtered
from their lifespan.

Figure 13: Tracking performed on the wind velocity on a 3D Isabel
hurricane dataset before (left), and after (right) temporal downsam-
pling (1 frame every 5 timesteps). The global maximum is tracked
successfully despite the high instability displayed by the scalar field.

when the overlap method does not take persistence into account
when matching regions. Also note that if the saddle component of
persistence pairs associated to maxima is ignored (i.e. if α = 0 in
Eq. 7 and Eq. 8) during the matching, then the geometrical distance
can be insufficient for correctly tracking these persistence pairs (c).
Therefore, the problem of matching persistence pairs for tracking
topological features cannot be reduced to the (unbalanced) problem
of assigning critical points in 4 dimensions (3 for the geometrical
extent, one for the scalar value).

Fig. 13 further illustrates the robustness of our approach when
downsampling the data temporal resolution. In hurricane datasets, lo-
cal maxima can be displaced to geometrically distant zones between
timesteps if those are taken at multiple-day intervals. This unstable
behavior and the absence of obvious overlaps makes it particularly
difficult to track extrema; nevertheless, our framework managed to
track them at a very low time-resolution.

6.3 Tracking performance

We then compare our framework with our implementation of the ap-
proach based on overlaps [8] on the ground of performance. Figures
are given in Table 1. Note that our approach has the advantage of
taking persistence diagrams as inputs, so it can be applied to unstruc-
tured or time-varying meshes, for which overlap computations are
not trivial. Our approach is also relatively dimension-independent:
though in 3D, computing overlaps is very time-consuming (Fig. 1-
Isabel), the complexity of the Wasserstein matcher, which only takes

Figure 14: Simulated von Kármán vortex street (a), on which minima
and maxima of the vorticity are tracked with our approach and 1%
persistence filtering (b). Only taking the geometry and scalar value
into account while doing the matchings (i.e. completely ignoring the
birth in the lifted metric), is not sufficient to correctly track features (c).
Maxima only are tracked considering 1 frame every 5 timesteps (d).
With the same temporal resolution, the overlap-based approach (e)
does capture small trajectories corresponding to noise, displayed with
thinner lines, that have to be filtered for instance using topological
simplification [86]. Considering 1 frame every 7 timesteps (f) still yields
correct trajectories up to the point where, every other frame, optimal
matchings for the metric are between a feature and the preceding
one, due to features traveling fast. The overlap approach (g) is less
stable in this case as it extracts erroneous trajectories from the very
first stages of the simulation to the end.

embedded persistence diagrams as inputs, for a given number of
persistence pairs is sensibly equivalent. For both Isabel and Sea
surface height datasets, we applied a 4% persistence filtering on
input persistence diagrams. As the experiments show, our approach
is faster in practice than the overlap method with best-match search.

6.4 Matching performance

Next, we compare the performance of the matching method we
introduced in Sec. 3 to two other state-of-the art algorithms.

We compare it to the reference approach for the exact assignment
problem [90] based on the Kuhn-Munkres algorithm, and to our
implementation of the approximate approach based on the auction
algorithm [4, 41], on the ground of performance.

Table 2 shows that our new assignment algorithm is up to two
orders of magnitude faster than the classical exact approach [90].

Figure 15: Lifted Wasserstein tracking performed on a set of whirling
2D gaussians (a). With noise accounting for 10% of the scalar range
(b), feature trajectories are still correctly detected. For 25% noise (c),
75% of the features (namely, the 6 most prominent out of the initial 8)
are still correctly tracked despite heavy perturbations.



Figure 16: Running times in seconds of different matching approaches,
for decreasing persistence thresholds expressed in percentage of the
scalar range. The initial two diagrams containing 14,082 and 14,029
pairs are filtered to remove pairs whose persistence is less than the
defined threshold, then a matching is computed with our new method,
the reference exact method [90], the approximate method [4], first with
1% accuracy, then with an accuracy of 10−4% of the scalar range.

In particular, the best speedups occur for the larger datasets which
indicates that our approach also benefits from an improved scaling.

It is often useful in practice to discard low-persistence pairs prior
to any topological data analysis as these correspond to noise. Fig. 16
compares the running times of our approach, [90] and [4] as more
and more low-persistence pairs are taken into account. When remov-
ing pairs whose persistence is below 5% of the scalar range, which
is commonly accepted as a conservative threshold, our approach
is faster than all competing alternatives. When considering more
low-persistence features, below 4%, our approach is competitive
with the approximated auction approach with 1% error. Below 2%,
only noise is typically added in the process. The performance of our
algorithm becomes comparable to that of the high-precision auction
approximation although our approach guarantees exact results.

6.5 Limitations

As we described, our framework enables the tracking of 0-1 and
d-(d − 1) persistence pairs. It would be interesting to extend it
to support the tracking of saddle-saddle pairs (in 3D) and see its
application to meaningful use cases.

Besides, the lifting coefficients proposed in our metric (Eq. 7)
might be seen as supplementary parameters that have to be tuned
according to the dataset and applicative domain. Nonetheless, we
observed in our experiments that these parameters do not require
fine-tuning to produce meaningful tracking trajectories. The extent
to which these can be enhanced by fine-tuning is left to future work.

The lifted distance can be generalized to take other parameters,
such as the geometrical volume, mass, feature speed, into account,
and be fine-tuned to answer the specificity of various scientific
domains. Merging and splitting might also be enhanced, or given

Table 1: Time performance comparison (CPU time in seconds) be-
tween the approach based on overlaps of volumes [8] and our lifted
Wasserstein approach. Tracking is performed over 50 timesteps,
on structured 2D (Boussinesq, Vortex street), structured 3D (Is-
abel), and unstructured 2D (Sea surface height) meshes. The pre-
processing step (FTM) computes the topology of the dataset. The
post-processing step extracts the tracking mesh, computes its at-
tributes, and handles splitting and merging events. We observe a
parallel speedup ranging from 4 to 6 for our approach on 8 threads
(FTM and matching phases).

Data-set Pre-proc (s) Matching (s) Post-proc
FTM [8] ours (s)

Boussinesq 116 75 18 4.7
Vortex street 45 23 18 2.8
Isabel (3D) 863 >3k 17 162
Sea height 568 N.A. 277 113

Table 2: Time performance comparison between the state-of-the-art
Munkres-based approach [90], and our modified sparse approach.

Data-set Sizes of diagrams Time (s)
[90] ours

Starting vortex 473−489 68.6 1.26
Isabel 465−413 72.2 3.58
Boussinesq 1808−1812 11.1k 102
Sea height 1950−5884 26.5k 155

more flexibility, for instance with additional criteria. We also believe
that the performance of the post-processing phase can be improved.

Additionally, we believe that the approximate auction algorithm
can also take the lifted persistence metric into account by performing
Wasserstein matchings between persistence pairs in 5 dimensions,
and possibly benefit from geometry-based lookup accelerations, as
suggested in lower dimension in [41]. It remains to be clarified
how the quality of the matchings is affected in practice by using an
approximate matching method, and how sparsity can enhance the
research phase for the auction algorithm.

We note that the theoretical complexity of our matching method
is, as the Munkres method, cubic; however, the two orders of mag-
nitude speedups demonstrated in our experiments allow to study
more challenging datasets. For very large case studies, the use of
persistence thresholds could prove quite helpful for controlling the
computing time of matchings. Among other non-trivial tracking
methods, some graph matching methods are based on graph-edit dis-
tances [1,26]. Their adaptation to the case of persistence diagrams or
other topological structures (such as contour trees and Reeb graphs)
may enable an additional structural regularization, this ought to be
investigated in future work.

7 CONCLUSION

In this paper, we presented an original framework for tracking topo-
logical features in a robust and efficient way. It is the first ap-
proach combining topological data analysis and transport for feature
tracking. As the kernel of our approach, we proposed a sparse-
compliant extension of the seminal assignment algorithm for the
exact matching of persistence diagrams, leveraging in practice impor-
tant speedups. We introduced a new metric for persistence diagrams
that enhances geometrical stability and further improves computa-
tion time. Overall, in comparison with overlap-based techniques, our
approach displays improved performance and robustness to temporal
downsampling, as experiments have shown.

We plan to release the implementation of our tracking framework
open-source as a part of TTK [84] in the near future; we hope that it
will be useful to the community with an interest for efficient tracking
methods. We look forward to adapting it to tracking phenomena in
in-situ contexts, where the large-scale time-varying data is accessed
in a streaming fashion. As we are also interested in larger datasets,
we are currently carrying out scaling tests on complex physical
case studies available at Total S.A., for which one needs specifi-
cally adapted rendering techniques [47] to apprehend the resulting
graphical complexity of the topology evolution.

We also believe that the application potential of our matching
framework can be studied for tasks other than time-tracking, for
instance, self-pattern matching and symmetry detection [82], or
feature comparisons in ensemble data.
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