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Abstract Continuous monitoring of network resources enables to make more-informed resource al-
location decisions but incurs overheads. We investigate the trade-off between monitoring costs and
benefits of accurate state information for a routing problem. In our approach link delays are modeled
by Markov chains or hidden Markov models. The current delay information on a link can be obtained
by actively monitoring this link at a fixed cost. At each time slot, the decision maker chooses to mon-
itor a subset of links with the objective of minimizing a linear combination of long-run average delay
and monitoring costs. This decision problem is modeled as a Markov Decision Process whose solution
is computed numerically. In addition, in simple setttings we prove that immediate monitoring cost
and delay minimization leads to a threshold policy on a filter which sums up information from past
measurements. The lightweight method as well as the optimal policy are tested on several use-cases.
We demonstrate on an overlay of 30 nodes of RIPE Atlas that we obtain delay values close to the
performance of the always best path with an extremely low monitoring effort when delays between
nodes are modeled with hierarchical Dirichlet process hidden Markov models.
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1 Introduction

1.1 Context

Accurate and fine-grained network monitoring is essential to the overall operation of networks. Mon-
itoring data is required to provide an accurate representation of the network state. It needs to be
delivered in a timely manner in order to enable optimal resource allocation and quick decision-making
in the face of adverse events. At the same time, the monitoring solution has to be able to handle
a large number of resources and metrics without causing a significant impact on network resources.
The increasing scale and complexity of communication networks therefore mandate autonomous and
scalable monitoring schemes trading off the cost of monitoring against the potential benefits it brings
for making more-informed management decisions.

This need for parsimonious yet accurate monitoring schemes is particularly true when it comes
to routing overlays [1–4]. A routing overlay is formed by end-hosts, which are deployed in different
spots over the Internet. The overlay nodes monitor the quality of the Internet routes between them
and cooperate with each other to forward data on behalf of any pair of communicating nodes. By
adding intermediate routing hops into the path taken by streams of packets, they influence the overall
path, without modifying the underlying IP mechanism for computing routes. This approach has been
used to create self-healing and self-optimizing routing overlays. These overlays are able to monitor
the quality of Internet paths between their nodes and to adapt their routing schemes according to
application-specific metrics and what is observed from the underlying network. However, most existing
overlay technologies use all-pairs probing: they regularly monitor the quality of all overlay links in
order to update their routing strategy. The advantage of this approach is that it guarantees optimal
performance, but its main downside is that it results in a costly O(n2) probing overhead as the number
of participating nodes n increases, since the topology of a routing overlay is that of a complete graph.
Moreover, considering that measuring accurately the delay suffered by an application requires to inject
a train of probe packets with a rate similar to that of the application [5] the cost will depend on the
application and could be high at the overlay scale. Even more so, if other performance metrics were
to be considered, such as bandwidth, the cost can rapidly become prohibitive.

The goal of our study is to design efficient monitoring and routing strategies to discover optimal
routes with a scalable probing effort, in order to build a routing overlay that can be widely deployed
over a sizable population of routers. More precisely, we seek for a method with a small monitoring
effort but sufficiently accurate to enable near-optimal routing decisions. We want to demonstrate that
it is enough to probe only from time to time a small number of alternate paths and thus obtain
a considerable reduction in complexity of data processing and decision making. So, we look for a
monitoring method that is sparse, both in time and in space. This method decides at each measurement
epoch which of the paths should be monitored, if any, instead of systematically probing all paths. To
start with, and because large scale measurement campaigns are publicly available for validations, we
consider as path QoS metrics the round trip time (RTT) delay.

1.2 Contributions and structure of the article

As explained previously, there is a trade-off between the accuracy of delay estimates and the op-
timality of routing decisions. The accuracy can be improved by monitoring paths more often, but
at an increased cost of monitoring. The main contribution of this article is to propose a theoretical
framework for taking monitoring and routing decisions that offer a good trade-off between monitoring
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costs and the gain in delay from appropriate routing decisions. This framework is based on Markov
Decision Processes (MDPs) and some markovian model of paths delays.

The practical question answered in this paper is the following one. Consider a routing overlay: at

each time slot, which paths should one monitor and which path should be chosen for routing traffic, so as

to minimize the delay and the monitoring effort? As the paths performance is in practice stable over
quite long periods of time it is possible to limit considerably the monitoring effort and still maintain
a sufficiently accurate view of the network state to take close to optimal routing decisions (i.e. select
the best path most of the time). A key element is to capture the stability of the path performance in
an accurate markovian model of successive delay values on that path.

In more details here are the main contributions of the article:

– HDP-HMM-based characterization of network delays: Using RTT measurements from RIPE
Atlas [6], we propose to model RTTs with Hidden Markov Models (HMM). More precisely we
introduce the application of Hierachical Dirichlet Process HMM (HDP-HMM) as statistical models
for RTT series. This model permits an accurate characterization of RTT. The number of states of
the HMM is unknown a priori but calibrated from the measurement series.

– Formulation as an MDP: We define the cost as a linear combination of the monitoring cost and of
the delay of the chosen path. We show that the problem of minimizing the discounted cumulative
cost over an infinite horizon can be formulated as an MDP (Markov Decision Process). The optimal
policy can be obtained by solving this MDP problem with a Value Iteration algorithm.

– Optimal myopic policy: We also prove a closed form solution in some simple settings when the
one-step cost is minimized. We call this policy the ”myopic” policy since future costs are not taken
into account. Different scenarios are considered: first, a deterministic path and a stochastic path
whose delay evolves randomly according to a MC or a HMM with two states, and second, two
stochastic paths.

– Monitoring cost vs. delay trade-off: We provide extensive numerical results, including those
obtained for an overlay of 30 RIPE Atlas anchors. For the latter example, we show that the MDP
policy enables to reduce the monitoring load by 91% (on average) at the expense of an increase of
network delay of only 0.07% (on average) with respect to an all-pair probing strategy.

The paper is organized as follows. Section 2 introduces Markov chains (MC), hidden Markov models
(HMM) and HDP-HMM for statistical characterization of RTTs. We show that HDP-HMM is an
accurate model of delays from the analysis of RIPE Atlas measurements. We also briefly explain how
the parameters of the models can be trained from real datasets. Sections 3, 4 and 5 are devoted to the
explicit characterization of the optimal myopic policy in some simple settings. We first consider the
case of two different paths between a source and a destination. the myopic objective is to maximize
the one-step reward (negative of the path delay and monitoring costs). In Section 4 where one of the
paths is deterministic and the second one is a MC of a HMM with two states, we obtain a closed-form
solution of threshold type for the optimal policy. In Section 5 we derive the myopic policy in the
case of two stochastic paths in which each path can be modeled as either a MC or a HMM with any
number of states. Then in Section 6, we generalize our problem to the case of several paths, each with
a delay that is modeled as Markov Chain. The objective is to maximize the discounted cumulative
reward, so that the benefits of monitoring now on future routing decisions is taken into account. We
formulate this problem as a Markov Decision Process (MDP) whose solution is computed numerically
with the value iteration algorithm. Section 7 discusses issues related to practical implementation of
our approach using the Software Defined Network (SDN) paradigm. It also discusses computational
complexity and scalability of the MDP approach. Some validation results are presented in Section 8
in different scenarios. We first consider some simple scenarios with two paths between one source and
one destinations (and deterministic delays or two-states Markov or hidden Markov delays on each of
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the paths). The next scenarios are more complex and based on delay data collected on RIPE Atlas.
In the last scenario we consider an overlay of 30 RIPE Atlas anchors. The MDP approach is used and
the benefits of our method in that case are highlighted. The article ends with a discussion on related
works in Section 9, and a conclusion and presentation of future works in Section 10.

2 Markov modeling of delays

2.1 Analysis of RIPE Atlas measurements

In this section we analyze delay measurements from the RIPE Atlas infrastructure, and explain how
RTT time series can be modeled as Hidden Markov Models.

RIPE Atlas is a global network of probes for the measurement of Internet connectivity, managed
by the RIPE NCC [6, 7]. Probes are small devices deployed on various locations of the Internet,
from broadband accesses in individual homes, to Internet Exchange Points. In high-availability en-
vironments, enhanced probes, called anchors, are deployed. Anchors can perform more simultaneous
measurement than traditional probes, and are part of the anchoring mesh measurements system.
That is, every anchor performs measurements with every other anchor, most notably pings every four
minutes and traceroutes every fifteen minutes. A ping measurement consists of three ICMPv4 and
ICMPv6 echo packets. As of 2017, there are 320 anchors, which means that more than 100,000 ping
measurements are performed every four minutes. Combined with the global distribution of the anchors
(Figure 1), this forms a comprehensive dataset of Internet delay measurements.

Because of their high-availability, and of full-mesh measurements, anchors are appropriate to study
delay-based routing in global-scale overlays. In this section we’ll consider every IPv6 anchoring mea-
surements between the 6th and the 13th of November 2017, resulting in a dataset of 39903 RTT
series of 2520 time slots each. In Section 8 we will consider a subset of 30 anchors for validating our
approach. In that section, we shall also consider RTT measurements from a RIPE Atlas customized
measurement campaign carried out on August 2016. RTT has been monitored for each pair of nodes,
in this case during 7 days. The average RTT has been obtained for each time period of two minutes
and for each origin-destination pair on the basis of five ICMP echo ”ping” packets, resulting in 5036
values for each pair of nodes. Nodes (probes or anchors) have randomly been selected, taking into
account their geographic distribution and reliability. In particular, we have chosen probes and an-
chors belonging to different countries and autonomous systems, and corresponding to the most recent
software and hardware versions available in the measurement platform.

From the analysis of these datasets we affirm that RTT time series have a typical behavior that
can be captured by a Markov chain (MC) or a Hidden Markov Model (HMM). The observed behavior
is that RTT values switch among several probability distributions. Transitions from one distribution
to another occur at random times, as it can be seen in Figure 2. We have noticed that, for a given
Origin Destination pair, there exist few probabilistic laws according to which RTT take their values,
and that the law of the RTT remains stable for some time. This behavior is in part explained by load-
balancing and routing configuration changes in operator networks [8–10]. HMMs are generalization of
mixture models that are used by several authors [11, 12] to characterize delays. But HMMs take into
account time dependence between successive values of delays, a key property to enable sparse-in-time
monitoring.

2.2 Model learning

Markov chains (MC) and Hidden Markov Models (HMM) are characterized by a set of parameters.
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Let us first consider the case of a MC model. Let L(t) denote the delay of a path (RTT) at
time t. If we assume K possible values for L(t), denoted by l1, l2, . . . , lK , the state space is (li)i=1,K

and K is the order of the model. The model is parameterized by the transition probabilities Pij =
P(L(t+1) = lj | L(t) = li). These parameters can be tuned from the analysis of a measurement dataset
L(t), t = 1, . . . , T . It turns out that the parameter values for which the likelihood of the dataset is

maximum (Maximum Likelihood Estimators, MLE) are P̂ij =
∑T−1

t=1 1IL(t)=li,L(t+1)=lj∑T−1
t=1 1IL(t)=li

where 1I denotes

the indicator function, so, the frequency with which the MC switches to state lj when it is in state li.

Now let us assume that L(t) follows a HMM or, stated differently, a Markov chain with noise. The
value of L(t) relies on the value S(t) of an underlying MC, denoted by S. Let {1, 2, . . . ,K} denote the
states of S and (Pij)1≤i,j≤K its transition probabilities. L(t) is a random function of S(t), characterized
by a probability density function pi(s), where i = S(t). For example, in the Gaussian case, one can
assume that if S(t) = i then L(t) ∼ N(li, σ

2
i ). It has a Gaussian distribution with mean li and variance

σ2i : pi(l) = 1√
2πσi

exp(− 1
2σ2

i
(l − li)

2). The parameters of the HMM are the transition probabilities

Fig. 1: Location of RIPE Atlas anchors.
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Fig. 2: Minimum IPv6 delay measured between two RIPE Atlas anchors over one week.
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Pij and the parameters of the conditional distributions of L(t) knowing that S(t) = i, for example
(li)i=1,...,K and (σ2i )i=1,...,K in the Gaussian case.

Tuning the parameters of a HMM is not straightforward since the values of S(t) are not observed
directly. In fact, this is a parameter estimation problem with unknown (also called missing) data.
A classical approach to solve such a problem is the Expectation Maximization (EM) algorithm [13].
This algorithm makes it possible to perform ML estimation of the parameters of a statistical model
when there are missing data. However, for RTT measurements, the number K of states is not known
in advance and a standard HMM model trained with an EM algorithm cannot be applied directly to
characterize them.

So far, several techniques have been proposed to cope with unknown HMM order. Recently efficient
generic methods have been developed to estimate HMM parameters. These methods offer flexibility
to capture the variability observed in different kinds of real datasets. This kind of methods, known as
Hierarchical Dirichlet Process HMM (or, HDP-HMM [14]) builds on Bayesian inference. The number
of states of the HMM as well as the parameters of the probability distribution of observations in each
state of the Markov chain are considered as random variables.

In a Bayesian setting, a prior distribution is assumed for the parameters. The distribution of
parameters conditioned on the observations (posterior likelihood) is computed to estimate the pa-
rameters, typically by looking at posterior modes or means. In HDP-HMM, Dirichlet Processes (DP)
are used as priors on the transition matrix rows, which makes it possible to specify that the number
of states is unknown. To ensure that these transition probabilities weight the same emission distri-
butions, these DPs are parameterized by the same base distribution. This base distribution itself is
modeled by a DP prior, hence the Hierarchical Dirichlet Process (HDP) structure of this modelling.
This hierarchy of random dependences and vague priors introduce enough flexibility in the model to
let it adapt to many different time series, such as RTT measurements.

In practice, the exact computation of the posterior distribution of parameters is intractable. How-
ever, it is possible to draw samples from this posterior distribution. This can be done by using MCMC
(Markov Chain Monte Carlo) methods, that are classical stochastic simulation methods for Bayesian
inference [15], and in particular Gibbs sampling.

A graphical representation of the HDP-HMM is given in Figure 3, where the arrows represent
the dependencies. The HMM itself is represented by states and observations {(S(k), L(k))}k≥1. Its
parameters are {(θk, πk)}k≥1: θk represents the parameters of the observation process in state k and
πk represents probability transitions vector from state k. α, γ, λ are the hyper-parameters. γ and λ are
the parameters of the Dirichlet process that lies at the top of the HDP hierarchy: this Dirichlet process
can be written in the form of a random distribution G0 =

∑
k>0 βkδθk . The process β = (βk)k≥1 is

a stick-breaking process: the βks can be seen as the lengths of the pieces of a unit length stick, the
remaining part of which is broken infinitely many times [16]. Each πk is modelled by a Dirichlet
process that can be described via parameters α and β. See [14] for more details.

Note that in the literature Dirichlet Processes have already been considered to model RTT series:
in [12], Dirichlet processes are used to estimate distributions of daily RTT series using a mixture
model with unknown order. Then, dependence among successive daily mixtures is investigated and a
heuristic approach is proposed. As it can be seen in Figure 2, there exists a strong dependence among
successive RTT measurements and more accurate modelling can be achieved by accounting for this
dependency.

We fitted the proposed HDP-HMM models using the pyhssm library [17]. Then, it was possible to
estimate the underlying states of data sequences via a Viterbi algorithm. An example of the resulting
data clustering is shown in Figure 4.

Since parameter estimation for HMM is not the main goal of this article, we shall not go into further
details of this topic here. In what follows, we shall focus on the problem of optimal monitoring. The
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Fig. 3: The Hierarchical Dirichlet Process - Hidden Markov Model.
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Fig. 4: States learned using HDP-HMM on a delay measurement between two RIPE Atlas anchors.
Identical colors represent identical states.

goal is to reduce the frequency of measurements but be able to select the path in order and get a
performance close to the delay of the fastest path. We will assume that an appropriate Markov or
HMM model has been trained for the different paths between origin nodes and destination nodes.
Our approach will be validated in Section 8 where we consider delay measurements in an overlay of
30 RIPE Atlas anchors.

3 Routing optimization

To start with we will consider some simple settings in order to obtain closed form solutions for the
optimal monitoring policy. So, we first consider, in Sections 3, 4 and 5, the case of two paths. In
Section 6 we introduce Markov Decision Processes (MDPs) to solve problems with more than two
paths and any number of states per path and also to take into account the benefits of monitoring on
future routing performance.

Let us now consider the case of two paths. These two paths have the same Origin node and the
same Destination node but they have different delays. One of the paths has a deterministic delay l
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whereas the other path has a random delay. To be more precise it is assumed that the delay of the
random path is a Markov chain or a Hidden Markov Model.

At each time step two decisions must be taken: first of all the monitoring decision, and then
the routing decision. At each time step one first decides to measure the random path or not, which
is represented as M(t) = 0 (no measure at time t) or M(t) = 1 (measure). Then, based on past
information, one decides which path to select: C(t) = 1 means that the random path is chosen whereas
C(t) = 0 means that we opt for the deterministic path.

In what follows It represents the information available at time t (after L(t) has possibly been
measured). So, It = σ{L(u) s.t. M(u) = 1;u ≤ t} where σ stands for sigma-algebra. It takes into
account all past measurements, including the measure at time t if M(t) = 1.

3.1 Filtering and forecasting

3.1.1 Case of a Markov chain model

Assume that L(t) follows a MC model. Because of the Markov property the information in It which is
useful to forecast the future values of L is summed up by the filter γt,t(i) = P(L(t) = li | It). The first
index t refers to It, that is to say that we assume information is available up to time t. The second
index t refers to L(t), that is to say that we infer the value of the random path delay at time t.

Obviously, if L has been monitored at time t then the value of L(t) is known accurately and γt,t(i)
is 1 for the corresponding i value and 0 for the others. On the contrary, if L(t) has not been monitored
then the belief about its value can be computed from the belief about L(t − 1) taking into account
the Markov dynamics. To sum up, it comes that:

γt,t = 1IM(t)=1

∑
i

1IL(t)=liei + 1IM(t)=0γt−1,t−1P (1)

where ei is an all-zero row vector except in position i which is equal to 1 and where γt−1,t−1 and γt,t
are row vectors. Equivalently, γt,t(i) = 1IM(t)=11IL(t)=li +1IM(t)=0

∑
j γt−1,t−1(j)Pji. Future values can

be forecasted based on information available at time t. To do so, the predictor γt,t+u(i) = P(L(t+u) =
li | It) is introduced. It can be computed as γt,t+u = γt,tP

u. In particular, the one-step predictor is
γt,t+1 = γt,tP or equivalently, γt,t+1(i) =

∑
j γt,t(j)Pji.

3.1.2 Case of a Hidden Markov Model

Let us consider now the HMM model. In that case the filter is defined as γt,t(i) = P(S(t) = i | It) and
the predictor as γt,t+u(i) = P(S(t+ u) = i | It). These quantities can be updated as follows.

First if M(t) = 0 then no new measurement is available and γt,t = γt−1,t−1P . Similarly, it is
always true that γt,t+u = γt,tP

u. Now, if M(t) = 1 then knowing the exact value of L(t) brings new
information about S(t). In that case,

γt,t(i) = P(S(t) = i | It−1, L(t))

∝ p(S(t) = i, L(t) | It−1)

= p(L(t) | S(t) = i)P(S(t) = i | It−1)

= pi(L(t))γt−1,t(i)

= pi(L(t))
∑
j

γt−1,t−1(j) Pji.
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In the equation above, ∝ means ”proportional” and the proportionality factor can be computed
by normalization:

∑
i γt,t(i) = 1.

So, if one considers both situations, M(t) = 0 and 1, it comes that

γt,t = 1IM(t)=0γt−1,t−1P + 1IM(t)=1
γt−1,t−1Pdiag(pi(L(t)),i=1,...,K)

γt−1,t−1Pdiag(pi(L(t)),i=1,...,K)eT
, (2)

where e = (1, 1, . . . , 1) is the all-one row vector and diag(pi(L(t)), i = 1, . . . ,K) is a diagonal matrix
with elements pi(L(t)) on the diagonal.

3.2 Path selection

Let us now consider the choice of a rational agent that has to select, at time t, either the path of
deterministic delay l or the path of random delay L(t). The decision is taken on the basis of the
information It, that is to say all measurements available up to time t (including L(t) if M(t) = 1).

We assume that the agent opts for the random path if its expected delay is lower than l, otherwise
she prefers the deterministic path. The expected delay of L(t) given It is either the observed value of
L(t) if M(t) = 1 or

∑
i liγt,t(i) if M(t) = 0. Note that in the last equation li is one of the states of the

Markov Chain in the MC model, or the average value E(L(t) | S(t) = i) of the conditional distribution
in the HMM model.

So, if C(t) = 1 means that the path of random delay is selected whereas C(t) = 0 means that the
path of deterministic delay is prefered, it comes that:

C(t) = 1IM(t)=11IL(t)<l + 1IM(t)=01I∑
i liγt,t(i)<l

. (3)

4 QoS monitoring optimization: a first simple model

4.1 Reward

As stated previously our goal is to develop a theoretical framework to optimize monitoring decisions.
One has to take into account the benefits of routing optimization and the cost of monitoring. We
can consider that a fixed cost c has to be paid each time M(t) = 1. This represents that frequent
measurements are not encouraged since, for example, active probing may load the network.

On the other hand the benefits of monitoring can be measured in terms of delay since a more
accurate prediction of the path delays permits a better routing decision. We take as a reference value
the delay l of the deterministic path and evaluate the gain as the difference between l and the delay of
the selected path: G(t) = 1IC(t)=1(l − L(t)). This can be null if C(t) = 0 (deterministic path chosen),
or positive or negative if the random path is chosen, depending on whether its delay is indeed smaller
or greater than l. If the cost of monitoring is taken into account the penalized gain is then:

G̃(t) = 1IC(t)=1(l − L(t))− c1IM(t)=1 (4)

When the monitoring decision has to be taken the available information is It−1 = σ{L(u) s.t. M(u) =
1;u ≤ t − 1}. We thus compare E(G̃(t) | It−1;M(t) = 1) and E(G̃(t) | It−1;M(t) = 0) and opt for the
choice M(t) which provides the greatest reward. Note that conditioning by It−1 and M(t) = 0 or 1
means that we assume what the monitoring decision is but we do not take into account the monitoring
result L(t), since this value is unknown when the monitoring decision is taken.
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M(t) = 0 E(G̃(t) | It−1;M(t) = 0) = 1IL(t)<l(l − L(t)),

where L(t) =
∑
i γt−1,t(i)li

M(t) = 1 MC model: E(G̃(t) | It−1;M(t) = 1)
= l
∑
i/li<l

γt−1,t(i)−
∑
i/li<l

liγt−1,t(i)− c

HMM model: E(G̃(t) | It−1;M(t) = 1)

= l
∑
i γt−1,t(i)Fi(l)−

∑
i γt−1,t(i)

∫ l
0 upi(u)du− c

Gaussian HMM: E(G̃(t) | It−1;M(t) = 1)

= l
∑
i γt−1,t(i)Φ( l−li

σi
)

−
∑
i γt−1,t(i)(liΦ( l−li

σi
)− σiφ( l−li

σi
))− c

Table 1: Reward for M(t) = 0 and M(t) = 1. MC, HMM and Gaussian HMM models.

Case M(t) = 1: We opt for the non deterministic road if L(t) < l. So,

E(G̃(t) | It−1;M(t) = 1) = l P(L(t) < l | It−1)− E(L(t)1IL(t)<l | It−1)− c. (5)

In the MC model P(L(t) < l | It−1) =
∑
i/li<l

γt−1,t(i) and E(L(t)1IL(t)<l | It−1) =
∑
i/li<l

liγt−1,t(i).

In the HMM model P(L(t) < l | It−1) =
∑
i γt−1,t(i)Fi(l) and E(L(t)1IL(t)<l | It−1) =

∑
i γt−1,t(i)

∫ l
0
upi(u)du,

where Fi(x) =
∫ x
0
pi(u)du is the cumulative distribution function of the probability distribution

of [L(t) | S(t) = i] and pi(u) is the probability density function of [L(t) | S(t) = i]. In partic-
ular, in the Gaussian case [L(t) | S(t) = i] ∼ N(li, σ

2
i ) it comes out that Fi(l) = Φ( l−liσi

) and

E(L(t)1IL(t)<l | S(t) = i) =
∫ l
0
upi(u)du = liΦ( l−liσi

) − σiφ( l−liσi
) where φ(x) = 1√

2π
exp(−x2/2) and

Φ(x) =
∫ x
−∞ φ(u)du are the p.d.f and c.d.f. of N(0, 1).

Case M(t) = 0: Let L(t) = E(L(t) | It−1) =
∑
i γt−1,t(i)li. We opt for the non deterministic road

if L(t) < l. We can note that this choice is not random with respect to It−1. If we know that M(t) = 0
then the routing decision at time t, C(t), is already known at time t − 1: C(t) = 1IL(t)<l. And the

reward is 1IC(t)=1(l − L(t)), that is to say:

R = E(G̃(t) | It−1;M(t) = 0) = 1IL(t)<l(l − L(t)). (6)

These results are summarized in Table 1.

4.2 Monitoring decision optimization

The rational agent takes at time t the monitoring decision with maximum reward, that is to say
M∗(t) = Arg maxM∈{0,1} E(G̃(t) | It−1;M). One should remark that the decision depends on the
one-step predictor γt−1,t only.

In what follows we are going to consider the particular case of a MC or HMM model with K =
2 states and show that we arrive to a simple threshold policy. To do so we observe that because
γt−1,t(0) + γt−1,t(1) = 1 the reward can be stated as a function of x = γt−1,t(0) only.
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MC model with 2 states: in the MC model we can assume without loss of generality that
l0 < l < l1. Otherwise the optimal routing decision would always be to opt for the deterministic path
(l < l0, l1) or for the random path (l0, l1 < l) and there would be no need to monitor. Using the
definition x = γt−1,t(0) and 1− x = γt−1,t(1) the reward can be expressed as:

E(G̃(t) | It−1;M(t) = 0) = ((l1 − l0)x− (l1 − l))1I(l1−l0)x−(l1−l)>0

E(G̃(t) | It−1;M(t) = 1) = (l − l0)x− c
(7)

and the difference between rewards with and without monitoring is ∆ = E(G̃(t) | It−1;M(t) = 1) −
E(G̃(t) | It−1;M(t) = 0) = ((l − l0)x− c)− ((l1 − l0)x− (l1 − l))1I(l1−l0)x−(l1−l)>0.

Let us first consider the case x > l1−l
l1−l0 . In that case, ∆ = (l1 − l)(1 − x) − c so that ∆ > 0 if

x < 1− c
l1−l . On the contrary if x < l1−l

l1−l0 then ∆ = (l− l0)x− c so that ∆ > 0 if x > c
l−l0 . The optimal

monitoring decision is therefore:

x > max{ l1−ll1−l0 , 1−
c

l1−l} ⇒ M∗(t) = 0
l1−l
l1−l0 < x < 1− c

l1−l ⇒ M∗(t) = 1
c

l−l0 < x < l1−l
l1−l0 ⇒ M∗(t) = 1

x < min{ l1−ll1−l0 ,
c

l−l0 } ⇒ M∗(t) = 0

(8)

Let us now check if the two intervals in the middle in (8) exist. This is true if l1−l
l1−l0 < 1− c

l1−l and if
c

l−l0 <
l1−l
l1−l0 . Both conditions are in fact equivalent to c < (l−l0)(l1−l)

l1−l0 .

So, if the cost of monitoring is too large, more precisely if c > (l−l0)(l1−l)
l1−l0 , then it is never rec-

ommended to probe the random path since the benefit of routing optimization would be in any case
lower than the monitoring cost. In other words, M∗(t) = 0 for all x.

On the other hand, if c < (l−l0)(l1−l)
l1−l0 then it may be advisable to monitor the random path. More

precisely one should do so if c
l−l0 < x < 1 − c

l1−l ; in that case M∗(t) = 1. That is, if the uncertainty
about the state of the non deterministic path is large then it is recommended to monitor it once again
in order to update conveniently the filter γ and take better routing decision. On the contrary if x is
close to 0 or 1, more precisely if x > 1− c

l1−l or x < c
l−l0 , we are ”pretty sure” of the state of L(t) and

it is not worth monitoring the path. These results are summed up in Table 2. Another formulation
of this optimal policy, in terms of number of time steps after which a new measurement must be
performed, is also provided in Appendix A.

c >
(l1−l)(l−l0)

l1−l0
M∗(t) = 0

x > 1− c
l1−l

⇒ M∗(t) = 0

c <
(l1−l)(l−l0)

l1−l0
c

l−l0
< x < 1− c

l1−l
⇒ M∗(t) = 1

x < c
l−l0

⇒ M∗(t) = 0

Table 2: MC with 2 states vs. deterministic path. Optimal monitoring decision as a function of
x = γt−1,t(0). Simple threshold policy.
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5 A simple model in the case of two random paths

In the previous section we have considered the case of two paths: one path had a deterministic delay
and the second path was a two-states MC or HMM. We have proven that the optimal monitoring
strategy is in that case a simple threshold strategy. If the cost of monitoring is large one should never
monitor, and if not, one should monitor the random path only if the uncertainty about its state is
sufficiently large.

In this section we still pursue a closed-form solution but we consider the case of two paths, each of
them with random delays (more precisely, a MC or HMM). We will prove that the monitoring decision
can be formalized as a partitioning of the space of beliefs (over the states of the paths).

So, let us now consider that one has to take a decision between two random paths and that each
of them can be modeled as a Markov Chain (with any number of states). Let us denote as path 0 and
path 1 these two random paths. Li(t) is the delay of path i at time t. It is assumed that Li is a MC
with Ki states, with state space {li0, li1, . . . , liKi−1} and with transition matrix P (i).

The problem is now to decide which path should be taken at time t, and also if the delay of path
0 or path 1 (or both) should be monitored at time t. M i(t) = 1 indicates that the decision is taken to
monitor the delay of path i at time t (and conversely M i(t) = 0 means that path i is not monitored).
C(t) = 1 if path 1 is selected for routing whereas C(t) = 0 indicates that one opts for path 0.

5.1 Filtering

The filters γ
(i)
t,t are defined as follows: γ

(i)
t,t (j) = P(Li(t) = lij | It) where It denotes the information

(measurements) available up to time t. Similarly to Equation (1) it is easily proven that the filters

γ
(i)
t,t , written as row vectors, are updated as follows:

γ
(i)
t,t = 1IMi(t)=1

Ki−1∑
j=0

(1ILi(t)=lij
ej) + 1IMi(t)=0γ

(i)
t−1,t (9)

The predictors γit−1,t are defined as previously: γit−1,t(j) = P(Li(t) = lij | It−1). They can be

computed from the filters γit−1,t−1 taking into account the Markov dynamics:

γ
(i)
t−1,t = γ

(i)
t−1,t−1P

(i). (10)

5.2 Calculating rewards

The optimal routing choice is to opt for the path whose expected delay is the smallest conditionally
to It, so:

C(t) = 1IE(L1(t)|It)≤E(L0(t)|It) (11)

The penalized gain, in the case of two random paths, can be defined as:

G̃(t) = −1IC(t)=1L
1(t)− 1IC(t)=0L

0(t)− c11IM1(t)=1 − c
01IM0(t)=1 (12)

where c0 and c1 are the costs of monitoring path 0 or path 1. Similarly to the case of a random path
and a deterministic path, the reward is here defined as the expected value of the penalized gain given
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It−1:

R = E(G̃(t) | It−1;M0(t),M1(t)),

= −E(1IC(t)=1L
1(t) | It−1;M0(t),M1(t))

−E(1IC(t)=0L
0(t) | It−1;M0(t),M1(t))− c01IM0(t)=1 − c

11IM1(t)=1. (13)

R depends implicitly on M0(t), M1(t) and It−1, or, equivalently, on M0(t), M1(t), γ
(0)
t−1,t, and

γ
(1)
t−1,t. Indeed all the information It−1 available from past measurements that is useful to predict

future values of Li is summed up in the predictor γ
(i)
t−1,t at time t − 1. To make this dependance

explicit, we shall sometimes write RM0,M1(γ
(0)
t−1,t, γ

(1)
t−1,t) instead of just R.

In Appendix B, we analyse the four possible cases (M0 = M1 = 0; M0 = M1 = 1; M0 = 0,M1 = 1;
and M0 = 1,M1 = 0) and establish the rational routing decision and the reward for each of them.
The results are summed up in Table 3 below, in which we use the notation Li(t) = E(Li(t) | It−1) =∑
j l
i
jγ

(i)
t−1,t(j). Comparing the four values of rewards, we can decide which monitoring decision is the

optimal one, as described in what follows.

M0(t) = 0 C(t) = 1I
L1(t)≤L0(t)

M1(t) = 0 R = −C(t)L1(t)− (1− C(t))L0(t)

M0(t) = 0 C(t) = 1I
L1(t)≤L0(t)

M1(t) = 1 R = −
∑
j:l1j≤L

0(t)
l1jγ

(1)
t−1,t(j)− L0(t)

∑
j:l1j>L

0(t)
γ
(1)
t−1,t(j)− c1

M0(t) = 1 C(t) = 1I
L1(t)≤L0(t)

M1(t) = 0 R = −
∑
i:l0i<L

1(t)
l0i γ

(0)
t−1,t(i)− L1(t)

∑
i:l0i≥L

1(t)
γ
(0)
t−1,t(i)− c0

M0(t) = 1 C(t) = 1IL1(t)≤L0(t)

M1(t) = 1 R = −
∑
i,j γ

(0)
t−1,t(i)γ

(1)
t−1,t(j) min(l0i , l

1
j )− c0 − c1

Table 3: Rational routing decisions and rewards for two Markovian paths.

5.3 Monitoring optimisation

In the case of two MCs the goal is to decide if the delays of path 0 and path 1 should be measured,
which sums up to selecting the appropriate value for the pair (M0(t),M1(t)). In that case the optimal

monitoring decision is to maximize the reward RM0,M1(γ
(0)
t−1,t, γ

(1)
t−1,t) as given in Table 3, so that:

(M0,M1)∗ = Arg max
M0,M1

RM0,M1(γ
(0)
t−1,t, γ

(1)
t−1,t) (14)
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Again, the decision depends only on the values of the one-step predictors γ
(0)
t−1,t and γ

(1)
t−1,t for paths

0 and 1.
In the case of the monitoring decision-making problem for a deterministic path and a MC with

two states we have shown that the optimal policy is a threshold policy over x = γt−1,t(0). This simple
threshold policy has been summed up in Table 2.

Such a threshold policy exists for the case of two MCs of two states each but we were not able to find
a closed form solution for the border between the four decision domains (M0,M1)∗ = (0, 0), (0, 1), (1, 0)
and (1, 1) as a function of x0 = γ0t−1,t(0) and x1 = γ1t−1,t(0). The solution is consequently in that case
numerical.

On the other hand, we have checked that the results we obtain for the case of two MCs of two
states each generalize the results obtained for the case of a deterministic path and a MC with two

states. To do so, we have examined what happens if one of the predictor values, γ
(i)
t−1,t(0) is equal

to 0 or 1, which comes up to assuming that the path i has a constant delay (li0 or li1). In that case
the optimal monitoring decision on the other path is the same that one would obtain with the simple
threshold policy of Table 2.

5.4 Case of two hidden Markov models

Let us assume now that each of the random paths is not modeled as a Markov Chain but as a Hidden
Markov Model. In what follows we are going to calculate the four reward functions RM0,M1 in that
case.

So, for each path i (where i = 0 or 1), Li(t) is a random function of a MC Si(t). More precisely,
Si(t) is a MC with transition probability matrix P (i) and the path delay Li(t) depends on the value of

Si(t) only. The probability density function (pdf) of Li(t) given that Si(t) = j is the function p
(i)
j (•).

The filters γ(i)(t, t) and predictors γ
(i)
t−1,t for both paths i = 0, 1 can be computed as stated

in Equation (2). Given It−1 the path delay Li(t) is distributed as a mixture distribution with pdf∑
j γ

(i)
t−1,t(j)p

(i)
j (l). As we assume that the two paths are independent the pdf of the couple (L0(t), L1(t))

is
∑
i,j γ

(0)
t−1,t(i)γ

(1)
t−1,t(j)p

(0)
i (l0)p

(1)
j (l1).

Proceeding as in Section 5.2, we can establish which is the rational routing decision and what is the
reward for each of the four possible cases. All results are given in closed-form in Appendix C. Similarly
to Section 5.3 the optimal monitoring decision can be obtained by maximizing RM0,M1(γ0t−1,t, γ

1
t−1,t)

over the pair (M0,M1) as stated in (14).

6 Taking into account future rewards with Markov Decision Processes

Up to now we did not take into account that monitoring path delays not only permits a better routing
decision at time t but also improves future decisions. Indeed if we gain some knowledge about a path
delay by monitoring it at time t then it will increase the accuracy of our belief about the state of the
path, not only at time t but also in the future, thus permitting better future routing decisions.

From now on, we are thus going to take into account future rewards. We will also consider any
number of paths whereas in the previous sections we restricted the study to the case of two paths to
obtain closed-form solutions for the optimal monitoring strategy. In this section we use the theory of
Markov Decision Processes (MDP, see [18]) to solve the monitoring optimization problem.

We assume that we have P different paths between a same origin and destination. Each path is
indexed by i, where i ∈ {1 . . .P} and each path i’s delay is modeled as a Markov chain with Ki states.
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Let Li(t) denote path i’s delay at time t. For each path i we can take at any time the decision of
monitoring that path or not, this is represented by M i, where M i = 1 means that path i is measured.
We assume that monitoring path i incurs a cost of ci.

All information It provided by past measurements up to time t and useful to predict future values

Li(t + k), k ≥ 0 is summarized in the filter γ
(i)
t,t . It can be noticed that the filter takes on continuous

values. However, it can also be observed that the information It can equivalently be summed up, for
each path i, as the pair si = (τ i, Lilast), where τ i is the number of time steps since the last measurement
and Lilast is the last measured value. For example, if we are at time t and if we have just measured
the value of Li(t) then τ i = 0 and Lilast is the measured value of Li(t). If we are at time t, a value
τ i ≥ 1 means that Li was monitored for the last time at t− τ i and the corresponding value was Lilast.

With these notations it comes that γ
(i)
t,t = eLi

last
(P (i))τ

i

, where eLi
last

is the canonical vector with a 1

in position Lilast.

We can thus define the state of a controlled Markov chain as s = {si}i={1...P} = {(τ i, Lilast)}i={1...P}.
Please note that with this definition of states we have a discrete state space and if τ i is limited up to a
certain value, say τ imax, the state space is as well finite. In addition, the vector of actions is denoted as
M where M = {M i}i∈{1...P}. With these definitions s is a discrete-time-discrete state Markov Chain
controlled by the monitoring decision M .

In order to properly define the MDP problem we need to define the instantaneous reward. First
let us define the minimum expected delay over the P paths:

D(s) = min
i

E(Li(t) | It) = min( min
i:τ i≥1

E(Li | τ i, Lilast), min
i:τ i=0

Lilast). (15)

Note that if τ i ≥ 1 then E(Li | τ i, Lilast) =
∑
j l
i
jγ

(i)
t,t (j) with γ

(i)
t,t = eLi

last
(P (i))τ

i

.

With this definition we can define the instantaneous reward as:

R(s) = −D(s)−
∑
i

ci1Iτ i=0. (16)

Let nowM be the set of all possible actions and S the set of states. Let Π be the set of all possible
policies π, where π = {µ0, µ1, µ2, . . . , µt, . . .} and µt is a function mapping, at time t, S into M. µt(s)
represents for the considered policy the monitoring decision M(t) that is taken at time t if the system
is in state s.

We now introduce the infinite horizon discounted cumulative reward J , which is defined as:

Jπ(s0) = Eπ(
∞∑
t=1

ρtR(st) | s0) (17)

where 0 < ρ < 1 is a discount factor that gives more importance to rewards in the close future (and
also makes sure that the sum is finite).

The problem is therefore to maximize Jπ over Π. It is well known that the MDP problem has an
optimal policy that is time stationary [18], that is to say that at the optimum µ0 = µ1 = µ2 = . . . = µ.
So, from now on, we assume that µt(s) depends on s but not on t. Consequently the infinite horizon
discounted cumulated reward J is from now on parameterized by µ and denoted as Jµ(s).

The transition probabilities of the MC s controlled by M can be computed as follows.

P(s′ | s,M) =
∏
i

P(s′i | si,M
i). (18)
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If M i = 0 then with probability 1 the transition is of the form (τ i, Lilast) → (τ i + 1, Lilast). On
the contrary, if M i = 1 then the possible transitions are (τ i, Lilast) → (0, lij), j = 1 . . .Ki and the

corresponding probabilities are eLi
last
P τ

i+1
i eTj where •T is the transposition operator.

The optimal value function and the optimal policy are defined as:

V (s) = maxµ Jµ(s) µ∗ = Arg maxµ Jµ(s) (19)

It is well known that the optimal value function is the unique solution of Bellman’s equation,
which in our case is given by the following equation:

V (s) = max
M∈M

∑
s′

P(s′ | s,M)(R(s′) + ρV (s′)). (20)

The function V can be approximated as closely as desired thanks to the value iteration algorithm
[19]. The value iteration algorithm is a successive approximation algorithm. Iteration n of the algorithm
updates function Vn(s) as follows:

Vn+1(s) = max
M∈M

∑
s′

P(s′ | s,M)(R(s′) + ρVn(s′)) (21)

The optimal policy µ∗(s) is then obtained at convergence as the argument of the maximum in the
above equation:

µ∗(s) = Arg max
M∈M

∑
s′

P(s′ | s,M)(R(s′) + ρVn(s′)) (22)

The complexity of the Value Iteration algorithm depends upon the number of states which is∏
iK

iτ imax, and thus grows fast with the number of paths and their possible delays.

7 Implementation considerations

7.1 Implementation framework

The focus of this paper is not to provide a detailed implementation framework, however, a discus-
sion regarding implementation guidelines is still pertinent. Traditional overlay routing solutions have
existed since several decades in a completely distributed fashion, as will be detailed in Section 9.
In such solutions, typically a software agent runs at each node. This agent performs measurements
against all the other nodes, and potentially shares this information with the other nodes. Alterna-
tively, other solutions propose to use adaptive learning techniques to avoid measuring all links in the
overlay. With link performance information, each node can compute the optimal path to a destination
node. Regarding signaling, a message is defined to be exchanged among agents. This message typically
encapsulates the original packet and specifies in its header the path the packet must follow across the
overlay. Each agent on the path unpacks the original packet, and repacks it in a new encapsulated
message, containing information about the subsequent hops and addressed directly to the next hop.
Examples of such an approach are [20] for an all-test solution and [21, 22] for a learning approach.

Such distributed approaches present scalability issues, as mentioned in Section 1. Our approach
is substantially different and relies on the SDN paradigm. Recent proposals have also adopted SDN
principles as a solution at the Internet scale or the WAN scale, rather than the initial SDN intra-
datacenter solutions. Examples are [23], which responds to the many BGP problems by adding an
Internet-scale controller, or the well known B4 network from Google [24], which showcases a SDN
implementation at a worldwide scale. Even more recently, inter-datacenter connection under the SDN
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paradigm was studied in [25], which seeks for resiliency, in [26] which focuses on a cognitive approach
for routing decisions, as well as in [27] which discusses an architecture for inter-datacenter QoS-aware
routing.

Adopting an SDN paradigm allows us to have a solution with three main features. First, a logically
centralized controller allows the communication with each overlay site (node) as well as programming
each node. Second a centralized application collects measurements and decides about our two control-
ling decisions: when to monitor each path, how to route each flow. And third, programmable switches
are notified of forwarding rules according to the paths determined by the centralized application. In
particular, the standardized OpenFlow protocol can fulfill such programming task. This architecture
has been presented in more details in [27].

On the other hand, path delay between two switches is more difficult to measure in a SDN archi-
tecture. OpenFlow switches do not timestamp packets, therefore passive measurement of path delay in
OpenFlow is unfeasible. In the last years, two interesting works [28] [29] have focused on the problem
of active measurements using OpenFlow messages. OpenFlow has a PacketOut message, which is sent
by the controller to the switch and allows injecting a packet into the network. Both proposals use a
PacketOut message, which carries a timestamped raw packet to be injected into the switch. However,
this approach has some inaccuracies. Another approach is to allow the centralized application to ask
a probe packets generator to inject measurements packets to the SDN network and program the SDN
switches to properly forward these packets and collect the measurements [27].

7.2 Scalability of the MDP approach

In this section we discuss considerations regarding the implementation of the MDP approach for
our problem. The Markov Decision Processes framework allows for a simple formulation of the joint
monitoring and path selection problem, for an arbitrary number of paths, taking into account rewards
on the long-term. However this comes at the cost of an important numerical complexity. Indeed the
state and action spaces of the MDP problem grow exponentially with the number of paths.

Let A denote the action space of an MDP and S its state space. The value iteration algorithm
requires to store the value function and the policy vectors of dimension |S|, the reward matrix of size
|A| × |S|, and the transition matrices of size |S|2 for each action. At each iteration |A| × |S|2 products
are computed to update the value function as in Equation 20. Following the notations of Section 6,
we have: P is the number of paths of the MDP problem, Ki is the number of Markov states of path
i, and τmax is the number of time steps after which the stationary distribution is considered to be
attained. With these notations we have |A| = 2P and |S| =

∏P
i=0K

iτmax. For example if we consider
two paths of two states each, with τmax = 200, the resulting MDP consists of (2 × 200)2 = 160, 000
states. Even for such a small problem, storing one transition matrix would be difficult as it would
contain (1.6 × 105)2 = 2.56 × 1010 coefficients, approximately 200GB of memory considering 64 bits
floating-point numbers.

However these transition matrices are very sparse and this can be used to considerably reduce the
required memory, as well as the number of products in the update of the value function. For a given
monitoring action M , the number of non-zero coefficients is given by |S|×

∏
i/Mi=1K

i if we measure at

least one path, and |S| if we measure zero path. Indeed if we don’t measure a path i, with probability
1 the transition is of the form (τ i, Lilast) → (τ i + 1, Lilast). For our two paths problem example, the
largest transition matrix (M i = 1, ∀i) contains only 640, 000 non-zero coefficients, so approximately
5MB of memory.
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Another observation is that for each origin-destination pair in the overlay, the MDP problems can
be solved in parallel. There is no need to consider all the overlay paths jointly since they are optimized
independently.

8 Validation results

In this section we will show different validation results. We start with two simple examples with
simulated data. Then we consider more realistic contexts with RIPE Atlas measurements: the case of
two paths between one origin and one destination, and to end an overlay of 30 RIPE Atlas nodes.

8.1 A first simple example

Let us first consider a simple example of the choice between a path of deterministic delay l = 8 and a
path which delay is modeled as a two-states discrete-time Markov Chain. The state space of this MC

is {l0 = 5, l1 = 10} and the transition matrix is P =

[
0.99 0.01
0.02 0.98

]
. The cost of monitoring is assumed

to be c = 0.65 which is lower than the threshold (l1 − l)(l − l0)/(l1 − l0) = 1.2 (see Table 2). The
steady-state vector of P is [π0 = 2

3 , π1 = 1
3 ] and its second eigenvalue is λ2 = 0.97 which is positive.

Assume that the simple policy of Section 4 is applied. In that case, for values of the one step
predictor γt−1,t(0) in the interval [xmin, xmax] with xmin = c/(l− l0) = 0.22 and xmax = 1−c/(l1− l) =
0.675 the delay of the stochastic path is monitored. For larger or smaller values the rational choice is
not to monitor.

The following simulations were performed. A trajectory of the Markov chain was simulated for
T = 3000 consecutive time steps and the simple monitoring and routing policy was applied. Results
are displayed on Figure 5. The simulated trajectory is shown on the upper part of the figure, and the
values of the one step predictor x = γt−1,t(0) are in the middle part of the figure. The monitoring
instants are displayed as stars on the upper part. Each time a new measure is performed the filter
is updated to γt,t(0) = 0 or 1 depending on the result of the measurement (L(t) = l1 or L(t) = l0),
so that the one-step predictor γt,t+1 is eiP with i = 0 or 1. As one can see from the figure, between
two measurements, the predictor converges geometrically towards the steady state distribution of the
Markov Chain, [π0, π1]. As soon as a bound xmin or xmax is attained a new measure is performed.
Note that once the filter γt,t(0) has been updated to 0 (or 1) the threshold xmin (or xmax) is attained

in a fixed number of steps, min{τ s.t. e1P
τ [

1
0

] = xmin} (or min{τ s.t. e0P
τ [

1
0

] = xmax}), which can

also be pre-computed rather than maintaining the up-to-date value of γ. This precomputation can
be done using Eq. (25) of Appendix A. The values obtained for these thresholds are θ0 = 122 and
θ1 = 13. Further, since λ2 > 0, the threshold ηi = θi − 1, i = 0, 1. Thus, the simple policy for this
setting will be of the form given in Table 4.

Table 4: Structure of the simple policy for this example

State measured Next monitoring Optimal path
at instant t instant

0 t+ 122 stochastic path until t+ 121
1 t+ 13 deterministic path until t+ 12
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Fig. 5: Choice between a deterministic path and a path modeled as a 2-state MC. Simple threshold
policy.

The cumulated value of the penalized gain
∑T
t=1 G̃(t) =

∑T
t=1[1IC(t)=1(l − L(t)) − c1IM(t)=1] has

been computed for T = 1 to T = 3000. On the lower part of Figure 5 the evolution of the cumulated
penalized gain is compared in the case of three policies: the simple policy M∗(t) of Section 4, the
constant monitoring policy (M(t) = 1 for all t) and the no monitoring policy (M(t) = 0 for all t). The
cumulated penalized gain evolves randomly. But on the average one can observe a linear tendency
with a slope E(G̃(t);M∗) which is greater for the monitoring policy M∗ than for the permanent or no
monitoring policies as we were expecting.

We have then compared the simple policy of Section 4 to the optimal policy obtained with the
MDP approach (Section 6). Different values of the discount factor ρ have been considered: ρ = 0.01,
0.50 and 0.99. We have computed the total number of measurements performed during the T = 3000
time slots as well as the average penalized gain 1

T

∑T
t=1 G̃(t) for the different policies: no monitoring,
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permanent monitoring, simple policy (Section 4), and MDP optimal policies (Section 6) with ρ = 0.01,
0.50 and 0.99. Each of these figures has been averaged over the 100 runs. The results are displayed in
Table 5.

No Permanent Simple MDP MDP MDP
Monitoring Monitoring policy ρ = 0.01 ρ = 0.50 ρ = 0.99

Average number 0 3000 54.15 56.56 206.29 418.68
of measures
Average 1.33 1.35 1.526 1.532 1.77 1.82
Penalized Gain

Table 5: Comparison of the performance of MDP optimal policies and simple policy

We can get analytical values for the average penalized gain of the no monitoring policy, the
permanent monitoring policy and the simple policy. For the no monitoring policy it is l−(π0l0+π1l1) =
1.33. For permanent monitoring, we get π0(l − l0) − c = 1.35, and for the simple policy, the average
penalized gain is given by (27) which for this example evaluates to 1.52. The average number of
measures in 3000 time slots can be computed using the formula 3000

ξ0θ0+ξ1θ1
(see (28)) which yields 52.8.

The values in Table 5 correspond well to these analytical values.
As one can observe, when ρ is close to 0 then the performance of the simple policy and of the

optimal MDP policy are pretty close, which is what we were expecting. As ρ increases from 0.01 to
0.99 the average penalized gain but also the number of measures increase, respectively from 1.532 to
1.82 and from 54 to 419. It can be remarked that in that case, for ρ = 0.5 the performance in terms of
average penalized gain is close to the performance that would be obtained with ρ = 0.99 (1.77 versus
1.82) but the number of measurements is divided by a factor of 2 (206 instead of 418).

8.2 Two Markov Chains of two states each

Next, we consider the case of two stochastic paths, each of them being represented as a Markov Chain
with two levels of delay. The chosen parameters are the following ones. For path 0 the two values of
delays are l00 = 0.5 and l01 = 2 and the probability transition matrix is P (0) = [[0.7, 0.3], [0.3, 0.7]]. The
cost of monitoring path 0 is set to c0 = 0.05. For path 1 the two values of delays are l10 = 1 and l11 = 3
and the probability transition matrix is P (1) = [[0.9, 0.1], [0.1, 0.9]]. The cost of monitoring path 1 is
assumed to be c1 = 0.15.

Let us compute the optimal policy in that case. It can be noticed that in the case of two-state
Markov Chains, i.e. K0 = K1 = 2 the rewards RM0,M1 of (30), (32), (34) and (36) can be stated as

functions of x0 = γ0t−1,t(0) and x1 = γ1t−1,t(0) since γ
(i)
t−1,t(0) + γ

(i)
t−1,t(1) = 1.

We proceed with a numerical approach, discretizing the space of possible values for x0 and x1, and
computing the reward RM0,M1(x0, x1) for each pair (x0, x1) of predictors values, and each possible
monitoring action (M0,M1). Finally, we choose the optimal monitoring policy as the action providing
the largest reward, for each pair of predictors values. The results obtained for this set of parameters
are shown in Figure 6, where the four decision regions (M0 = 1,M1 = 1), (M0 = 0,M1 = 0),
(M0 = 0,M1 = 1) and (M0 = 1,M1 = 0) are displayed in different colors.

It can also be checked that, when there is no uncertainty about the state of one of the paths, then
the optimal monitoring decision on the other path is consistent with the results obtained in the case
of a deterministic path and a 2-state Markov chain path (Table 2).
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Fig. 6: Choice between two paths, each of them being modeled as a 2-state Markov Chain. Simple
monitoring policy and MDP with ρ = 0.01.

Assume that there is no uncertainty on path i (with i = 0 or 1), that is to say that xi = 0 or xi = 1.
The delay of path i is then known to be l, with l = li0 if xi = 1 and l = li1 if xi = 1. Let us denote as
path j the other path. If the cost of monitoring cj is greater than cmax = (lj1−l)(l−l

j
0)/(lj1−l

j
0) then the

delay on this second path should never be monitored. On the contrary, if cj < cmax then the optimal
monitoring decision depends on the value of the predictor xj = γjt−1,t(0). More precisely, the path

delay should be monitored only if the value of xi is in the interval [xmin, xmax] with xmin = cj/(l− lj0)

and xmax = 1− cj/(lj1 − l).

We have considered four cases: x0 = 0 or 1, and x1 = 0 or 1. For each of those cases we have
computed the thresholds cmax, xmin and xmax that should be used to take a monitoring decision on
the other path. The results are summarized in Table 6.

In particular, it can be observed that, as l00 = 0.5 < l10 and l00 < l11 then if x0 = 1 the value of c1max

is negative, so that the monitoring decision on path 1 is M1 = 0 whatever the cost c1 of monitoring
this path. Similarly, as l11 = 3 > l00 and l11 > l01 we get when x1 = 0 a negative value for c0max and the
monitoring decision on path 0 is M0 = 0 whatever the cost c0.
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In the other two limiting cases, namely x0 = 0 or x1 = 1, the bounds xmin and xmax have been
computed. It can be checked that these bounds are consistent with what can be oberved for the
corresponding limiting cases on Figure 6.

Path 0 Path 1

x0 = 0 Deterministic delay l = l01 = 2 cmax =
(l11−l)(l−l

1
0

l11−l
1
0

=
(3−2)(2−1)

3−1
= 1

c1 = 0.15 < cmax

xmin = c1

l−l10
= 0.15

2−1
= 0.15

xmax = 1− c1

l11−l
= 1− 0.15

3−2
= 0.85

M1 = 1 if x1 ∈ [xmin, xmax]

x0 = 1 Deterministic delay l = l00 = 0.5 cmax =
(l11−l)(l−l

1
0)

l11−l
1
0

=
(3−0.5)(0.5−1)

3−1
= −0.625

c1 = 0.15 > cmax

No monitoring: M1 = 0

x1 = 0 cmax =
(l01−l)(l−l

0
0)

l01−l
0
0

=
(2−3)(3−0.5)

2−0.5
= −1.67 Deterministic delay l = l11 = 3

c0 = 0.05 > cmax

No monitoring: M0 = 0

x1 = 1 cmax =
(l01−l)(l−l

0
0)

l01−l
0
0

=
(2−1)(1−0.5)

2−0.5
= 0.33 Deterministic delay l = l10 = 1

c0 = 0.05 < cmax

xmin = c0

l−l00
= 0.05

1−0.5
= 0.1

xmax = 1− c0

l01−l
= 1− 0.15

2−1
= 0.95

M0 = 1 if x0 ∈ [xmin, xmax]

Table 6: Border conditions: optimal monitoring decisions when x0 = 0 or 1 and when x1 = 0 or 1.

Finally we have compared the simple policy to the MDP policy obtained with ρ = 0.01, a rather
low value of ρ. The MDP decisions are displayed as dots and the same colors are used for the simple
and MDP policies to permit a comparison. As it can be observed on Figure 6 the decisions are the
same since ρ is very close to 0. It must be remarked that in the simulations the predictors γ0,1t−1,t take

on only a finite number of values. These values are in the form of eLi
last

(P (i))τ
i

. This is why MDP

decisions are displayed as colored dots on the [0, 1]× [0, 1] space.

8.3 Two paths between two anchors on RIPE Atlas

Let us now consider real datasets. As a matter of example we consider RTT we have obtained in the
framework of the RIPE Atlas measurement campaign we have mentioned in Section 2. We consider
three particular probes located in Hong Kong (HK), Latvia (LV) and Khazakstan (KZ) and two
different paths with the same origin (HK) and destination (KZ): the direct Internet path HK → KZ,
which will be referred to as path 1 in the following, and the path HK → LV → KZ (in which the LV
node is used as a routing proxy), which will be referred to as path 0.
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Path 0 Path 1
(HK → LV → KZ) (HK → KZ)

Number of states K0 = 2 K1 = 2
Mean and variance of l00 = 350, (σ0

0)2 = 30 l10 = 320, (σ1
0)2 = 30

delay in each state l01 = 440, (σ0
1)2 = 100 l11 = 370, (σ1

1)2 = 30
Transition probability

matrix P (0) =

(
0.995 0.005
0.05 0.95

)
P (1) =

(
0.995 0.005
0.005 0.995

)

Table 7: Parameters of the HMM models for the two paths between HK and KZ.

The RTTs between each pair of nodes have been monitored during 7 days. The performance of
both paths is displayed on the upper part of Figure 7. As one can see from this figure the shortest
path is sometimes HK → KZ and sometimes HK → LV → KZ. A Gaussian HMM model is used in
order to characterize both paths. The parameters of these HMMs are shown in Table 7.

The optimal MDP policy has been computed for ρ = 0.9 with the value iteration algorithm (cf.
Section 6) , assuming that the cost of monitoring either of the two paths is c0 = c1 = 4. To do so
we have simplified the HMM models of the delays to MC models, by neglecting the Gaussian noise
of the HMM model and assuming that the delay of path k when in state i is its mean value lki . Once
the optimal monitoring policy µ∗ computed, it was applied by processing the time series of delays

sequentially from t = 0 to t = T = 1008. At each time t, the values of the filters γ
(i)
t,t were updated for

both paths according to Equation (2). The state of the controlled Markov chain was also updated.
Note that since we do not directly observe the state of path i, this state was estimated to be lij , where
j is the index of the most likely component of the HMM given past observations, that is to say the

Argmaxj γ
(i)
t,t (j).

In our dataset around 2% of the measurements were missing. This corresponds to cases when the

RIPE Atlas probe did not answer. Missing data are simply dealt with by upgrading γ
(i)
t,t according to

γ
(i)
t,t = γ

(i)
t−1,t−1P

(i) for the corresponding time indexes t. Equivalently, the pdf p
(i)
j (Li(t)), j = 1, . . . ,Ki

are all set to an equal probability 1/Ki in Equation (2) if Li(t) is missing. We also have to deal with
a few outliers, that is to say values Li(t) for which pdf pij(L

i(t)) are extremely low for all components
j of the HMM model (in fact numerically equal to 0). In order to avoid numerical problems in the

update of the filter γ
(i)
t,t we assume a minimum value of pij(L

i(t)) that has been set to 10−4.

Results are displayed on Figure 7. On the upper part the delays of both paths are displayed (in blue
and red). Below one can observe at which instants each path is monitored (dots along the timeline).

One can also see the evolution of the values of the filters γ
(i)
t,t , i ∈ {0, 1} along the timeline. Then we

show which path is chosen at each instant (C = 0 or C = 1) and the delay of the chosen path (black
stars) along time (compared to the delays of the two possible paths, in blue and red dotted lines).

We observe that in these simulations the average frequency of monitoring is 11% for HK → KZ

and 12.5% for HK → LV → KZ. This depends of course on the value of the monitoring costs ci as
well as on the value of ρ. The larger ρ is the more frequent measurements are, and the larger the costs
ci are the less frequent monitoring is. Table 8 sums up some performance indicators. Whereas the
average delay on paths HK → KZ and HK → LV → KZ are 396 and 397 msec, the average delay on
the optimized path is 345 msec. The optimized path is on the average around 50 msec shorter than
the two other paths. Now, if both the delay and the cost of monitoring are taken into account, the
average cost is 346 for the optimized path, compared to 396 and 397 for the direct Internet path and
for the two hops path.
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Fig. 7: RIPE Atlas dataset. Choice between two paths. MDP approach.

Optimized Path Internet Path Alternative Path
HK → KZ HK → LV → KZ

Average Delay 345 msec 396 msec 397 msec
Average Cost 346 396 397
(Delay + Monitoring)

Table 8: RIPE Atlas dataset: path HK → LV → KZ versus Internet path HK → KZ. Monitoring
optimized with a MDP approach (ρ = 0.9).

8.4 Overlay of 30 RIPE Atlas anchors

Following the methodology of the previous section, we give quantitative results of the monitoring
optimization on a larger topology. We simulated a 30-node topology by choosing a subset of anchors
in the RIPE Atlas dataset described in Section 2. Five anchors were randomly selected on each of
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Fig. 8: Distribution of the percentage of time
the alternative path is faster than direct path.
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Fig. 9: Distribution of the number of states
learned.

the six continents. For each origin-destination pair we kept the two paths which were the shortest
ones most of the time. We refer to the path that is the shortest most of the time as the direct path,
and to the other path as the alternative path. Figure 8 displays the distribution of the percentage
of time the alternative path is faster than the direct path. We kept the origin-destination pairs for
which the alternative path is the fastest at least 10% of the time, and learned the paths models using
the HDP-HMM method described in Section 2. The distribution of the number of states learned per
HMM is given on Figure 9.

The optimal path is the path that would result from an optimal routing decision at each time step
if the exact values of the paths’ delays were known. So, the optimal path is not always the same
path: it is sometimes the direct path and sometimes the alternative path, but on the optimal path
the delay is always the smallest one. Figure 10 displays the distribution of the average delay gain
of the optimal path, versus the average delay of the direct path and of the alternative path for the
retained origin-destination pairs of the considered topology. Box bounds correspond to the 25th and
75th percentile, middle bar is the median, and whiskers indicates min. and max. values. As can be
seen from the two upper box plots, choosing dynamically the path in an overlay at each time step
obviously allows to reduce the average delay from source to destination.

For each origin-destination pair we have then simulated three monitoring policies, always measure,
never measure, and MDP. We have set the measurement cost to c = 1 for every path, and we have
solved the MDP problems with τmax = 500 and ρ = 0.9. The always measure policy can be used to
benchmark our Markovian models. In the always measure policy the routing decision is taken on the
basis of the expected value of the paths’ delays under the HDP-HMM model. Imperfections in the
models may result in expected delay values slightly different from the true delays.

Figure 10 displays the additional average delay observed for each policy, compared to the optimal
path. Two observations can be made. We first observe that the average delay with an always measure

policy is very close to the delay of the optimal path, meaning that HMMs provides sufficiently correct
delay estimation for an optimal path selection. Next we observe that the average delay with the MDP
policy is very close to the delay of the always measure policy but with a really small measurement cost.
Indeed the average measurement cost with the MDP policy is 0.17 (max 0.65), so 91% lower than
the constant cost of 2 for the always measure policy. This means that on average, with the parameters
that we have chosen, each of the two paths is monitored 8.5% of the time only and yet the routing
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performance in terms of delay is very close to the performance that one could get if both paths were
constantly monitored.

0 5 10 15 20 25 30
Delay difference (msec)

MDP

Always
 measure

Never
 measure

Direct
 path

Alt.
 path

Average additional delay over the optimal path

Fig. 10: Comparison of delay for constant and optimized path selection
versus the ideal path.

These results demonstrate that the MDP approach succeeds in providing a parsimonious monitor-
ing policy, where a small number of measurements in particular states allow to maintain a sufficient
knowledge about the state of the network to correctly choose the shortest path most of the time.

Using a single-threaded Julia [30] implementation of the value iteration algorithm, it took ap-
proximately 4 minutes and 600MB of memory to solve one problem with two paths of three states
each and τmax = 500, on an Intel Core i7-7600U CPU @ 2.80GHz. Using a Python implementation
of HDP-HMM [17] it took approximately 6 seconds to learn the model for a single path (2520 data
points).

To end, Figures 11 and 12 display the effect of the measurement cost c on the frequency of
measurements and on the delay. We have compared the average delay of the MDP policy for different
values of c with the average delay of an always measure policy. For large values of c we tend to a never

measure policy, while for c = 0 we obtain a delay equal to an always measure policy. Obviously the
number of measures tends to 2 when c → 0. But for very small values of c the average number of
measures is significantly lower than 2 (it rapidly drops down to 0.5). Indeed the paths’ performance is
very stable, and for most paths the probability to remain in the current state is extremely high. The
HDP-HMM model and the MDP policy capture the fact that, even if the measurement cost is very
low, it is not always necessary to measure to take an optimal routing decision. On Figure 11 the curve
displays the median while the color fill shows the 25th and 75th percentiles of the average number of
measurements per time slot. Figure 12 displays the value of the additional delay of the MDP policy

(w.r.t. the always measure policy path) as a function of the average number of measures per time slot.
Each dot corresponds to a particular value of c and a particular origin-destination pair.
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9 Related Work

Even if overlay networks are mainly used nowadays for overlaying virtualized Layer-2 networks over
Layer-3 networks [31, 32] or for dynamic content delivery [33–37], they have been used in the past for
a variety of purposes, including self-organization in peer-to-peer networks [38–40], application-layer
multicast in IP networks [41–45], and protection against DDoS attacks [46, 47].

The first works to demonstrate the potential of overlay networks for route optimization were
Detour [48] and RON (Resilient Overlay Network) [20], inspiring many other approaches [49–53]. All
these routing overlay technologies use the all-pair probing approach, that is, they regularly monitor the
health of all overlay links in order to dynamically select the best source-destination paths in the overlay
according to application-specific metrics. Although this approach guarantees optimal performance, its
main drawback is that it does not scale very well: as the number of participating routers n increases,
the O(n2) probing overhead becomes a limiting factor. Evidences indicate that in practice it can
support only about 50 routers before the probing overhead becomes overwhelming [20]. As shown by
Chen et al. [54] this probing overhead can be slightly reduced by selectively monitoring k ≤ O(nlog(n))
linearly independent paths that can fully describe all the O(n2) paths (see also [55]).

The design of parsimonious monitoring strategies allowing to deploy routing overlays over a sizable
population of routers without compromising route quality has been addressed only recently. The use
of adaptive learning techniques inspired from Cognitive Packet Networks (CPN) [21, 22] was investi-
gated in [56], providing evidences that near-optimal routing can be achieved with a modest monitoring
effort (see also [57] for the application of CPN techniques to peer-to-peer overlay networks). Another
approach based on the adversarial learning algorithm EXP3 was investigated in [58], where signifi-
cant improvements over native IP routing were obtained, both in terms of latency and throughput.
Whereas the above results were obtained with routing overlays using legacy IP technologies, an SDN-
based architecture for distant points interconnection through a resilient and high-performance overlay
network was proposed in [27] (see also [59]) . Note that in [56, 58], it is assumed that a small, but
given number of paths are probed at each measurement epoch, and the only question is therefore how
to select these paths for minimizing the routing cost. In contrast to these works, the present paper
seeks for an optimal trade-off between the monitoring and routing costs, without any constraint on
the monitoring budget.
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Similar questions have been addressed in the context of network tomography [60–63]. Tomographic
techniques infer the state of network elements from end-to-end probe exchanged between a few probing
nodes (usually referred to as beacons or monitors). These techniques are known to provide a cost-
efficient alternative to placing and operating sophisticated monitors at all nodes in a network. Some
authors have designed solutions for minimizing the cost of the monitoring infrastructure, that is, for
placing the minimum number of monitors to identify all the links, a problem which is known to be
NP-hard [64–68]. Besides, since active probing can generate tremendous traffic and degrade the overall
network performance, the minimization of the online probing cost has been addressed in [69–72]. The
issue here is that not all the probing paths contain useful information for identifying the link metrics
of interest, implying that monitoring paths have to be selected so as to optimize a trade-off between
identifiability and probing cost. Recently, it was shown in [71] that by carefully selecting the probing
paths, the amount of probing traffic can be significantly reduced while achieving the same monitoring
performance as would be obtained with all-path probing. Despite some similarities, the above works
are different from our work in that they focus on identifying the performance of each individual link
with as few end-to-end probes as possible, whereas in our case the monitoring decisions are driven by
the perspective of lower routing costs. In addition, the above works consider a static setting, whereas
the problem addressed in the present paper is fundamentally a sequential decision-making problem.

A more-closely related work is [73]. In the context of wireless networks, the authors use the
approach of multi-armed bandits to obtain heuristic policies to determine which links to monitor.
The approach consists of relaxing a strict constraint on the maximum number of links that can be
monitored simultaneously to a weaker constraint on the long-term average number of links. They show
that optimal monitoring policy for the relaxed problem lies in the set of threshold policies under some
assumptions on the structure of the transition probabilities of the Markov chains as well as on the
reward structure. One of these assumptions requires that the reward of choosing a link be higher with
newer information. The problem we consider and the approach we take differs [73]. First of all, we
have a monitoring cost that is included in the objective but there is no constraint on the number of
links monitored. Second, the reward for routing on a link needs not to be restricted by the assumption
of a better reward for newer information.

Another contribution of this article is to introduce a new statistical model for Internet delays.
Previously finite mixture models [11] and more recently infinite mixture models [12] have been used
to characterize delays. In our article we introduce a new model for delays, the Hierarchical Dirichlet
Process - Hidden Markov Model (HDP-HMM). HMMs are generalization of mixture models. With
HMMs the dependence of delay values over previous values is taken into account, whereas a mixture
model assumes that they are independent. The HMM captures the stability of the performance of
paths over time. This is essential to limit the number of measurements that are required to maintain
an accurate information on the expected values of the paths delays and take close to optimal routing
decisions. The work in [12] uses Dirichlet process priors to cope with unknown orders in mixture
models, while HDP-HMMs use Dirichlet process priors for flexible description of dependency among
successive observations via HMM of unknown order. Optimal monitoring of HMM has been addressed
in [74, 75] but with a cost function dependent on the state estimation error, in contrast with the
reward dependent on the path selection in our article.

10 Conclusions and future work

A Markov Decision Process formulation of a decision making problem in which one decides which
paths to monitor in a network was presented. The objective of the decision maker was to minimize a
linear combination of long-run average delay and monitoring cost.
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We first introduced the application of HDP-HMM for estimating HMMs parameters from delay
observations where the number of states is not known a-priori. We then established the structure of
the optimal myopic policy for a simple scenario, in which there is a deterministic path and a stochastic
path whose delay evolves randomly according to a MC or a HMM with two states. It turns out that
the optimal myopic policy amounts to monitor the stochastic path only when the uncertainty on
the state of the stochastic path is sufficiently high. In other words, this path should be monitored
when the belief on this path being in ”good state” is in between two thresholds. Similarly, an explicit
characterization of the optimal myopic policy was obtained for the case of two stochastic paths. For
the general case of more than two paths and more than two states, we have shown that the problem
of maximizing the cumulated discounted reward can be cast as a MDP, whose optimal policy can
be obtained with the Value Iteration algorithm. We have demonstrated the validity of our approach
in different settings. In particular, using a 30 nodes topology and a dataset of RTT measurements
between RIPE Atlas anchors, we have shown that with a reduction of monitoring load by 91% it is
possible to obtain a routing performance which is the same that one would obtain if the performance
of paths was monitored permanently.

Our ongoing work focuses on several directions. We would like to improve the scalability of the
decision-making problem in case of large number of paths and large number of states. A possible
approach could be to exploit the insights obtained in this paper in simple scenarios in order to design
efficient policies for that general case. We may design policies in which the monitoring decision depends
on the uncertainty on the state of a few paths that may have the minimum delay.

As another research direction, we would like to use the theory of Partially Observable Markov
Decision Processes in order to study the case where the delays of the paths are modeled as HMMs.
We would also like to investigate how online learning methods, for example Q-learning, could be used
in order to learn the optimal policy. We also think that the properties of the value function of the
MDP problem could be studied and lead to faster resolution algorithms, in particular we would like
to investigate modified policy iteration methods.

Concerning the statistical characterization of RTT series with an unknown number of states, we
would like to investigate further HDP-HMMs. We would also like to consider other metrics, such as
the number of hops available from traceroute measurements, or BGP announcements and the AS
paths.

With respect to implementation of the proposed overlay framework, we are currently developing
an SDN emulated testbed so as to challenge our proposal with a real implementation.

Finally, we believe that the same methodology could be applied to other network metrics and in
other contexts. Regarding the first point, we would be interested in extending our work to a context
in which the routing metrics is the available bandwidth, although this metrics is notably difficult to
accurately estimate. Regarding the second point, we would like to study contexts in which control
decisions are based on the system state, but where this state cannot be measured constantly, so that
a parsimonious monitoring strategy is relevant.An example of such a context is the allocation of tasks
to servers in large data-centers.
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A Another formulation of the optimal myopic policy of Section 4

The transition matrix of a two-state MC has certain properties that can also be used to compute the thresholds and
the long-term average reward. Here, the long-term average reward is defined as

Ḡ = lim
T→∞

1

T

T∑
t=1

G̃(t).

This quantity does not depend on the initial conditions. Hence, on the right-hand side, we have omitted to specify
them.

Let the transition matrix of the stochastic path be

P =

0 1[ ]
0 p 1− p
1 1− q q

(23)

where the labels indicate the index of the stochastic path. It is known that Pu can be expressed as

Pu =

0 1[ ]
0 π0 + π1λu2 π1 − π1λu2
1 π0 − π0λu2 π1 + π0λu2

(24)
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where λ2 is the second eigenvalue of P (the first one being 1) and

π := [π0, π1] =

[
1− q

1− p+ 1− q
,

1− p
1− p+ 1− q

]
is the steady state probability vector of P . Thus, γt,t+u can be computed explicitly given γt,t.

Suppose that at time instant 0, we measure state i = 0 or 1. Define

θi = min{u > 0 : M(u) = 1|M(0) = 1, L(0) = i}.

Then, θi is the first instant after 0 at which we decide to measure, given that we measured state i at time 0. From
Table 2 for t > 0, M(t) = 1 if

c

l − l0
< x < 1−

c

l1 − l
,

where x = P(L(u) = 0|L(0) = i). Thus,

θi = min

{
u > 0 : [P ]ui,0 ∈

(
c

l − l0
, 1−

c

l1 − l

)}
. (25)

where [P ]ti,0 can be computed from (24).

Note that θi can be infinite. In this case, once we measure state i, there will be no further measurements. A
sufficient condition for θi to be finite is

π0 ∈
(

c

l − l0
, 1−

c

l1 − l

)
.

For the threshold policy we can also compute Ḡ. For this, we shall embed L(t) at measurement epochs. Let us
call this embedded chain E(t). Then, the transition matrix of E(t) is given by

Q =

0 1[ ]
0 [P ]θ00,0 [P ]θ00,1
1 [P ]θ11,0 [P ]θ11,1

. (26)

Note that [P ]ti,j can be computed using (24). Let ξ = [ξ0, ξ1] be the steady-state vector of Q. Then,

ξ0 =
[P ]θ11,0

[P ]θ00,1 + [P ]θ11,0
.

Define Gi to be the average cumulated reward between successive measurement epochs given that the measured state
was i. Then,

Gi = −c+ max(0, l − li) +

θi−1∑
t=1

max(0,E(l − L(t)|L(0) = i)).

The first two terms are for the reward at the instant we measure and the last term is for the total expected reward
during the interval between two measurements.

The average long-term reward of the threshold policy can then be computed using the formula

Ḡ =

∑
i ξiGi∑
i ξiθi

. (27)

To see this, let Wi(T ) be the number of visits to state i of the chain E in the interval {1,T}. The starting state is
not important and can be arbitrary. Then,

Ḡ = lim
T→∞

1

T

T∑
t=1

G̃(t)

= lim
T→∞

1

T
(W0(T )G0 +W1(T )G1)

= lim
T→∞

W0(T )G0 +W1(T )G1

W0(T )θ0 +W1(T )θ1

=

∑
i ξiGi∑
i ξiθi

.
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A similar reasoning can be employed to compute the probability of measuring in a time slot. This probability
evaluates to

1

ξ0θ0 + ξ1θ1
. (28)

Special case of λ2 > 0: When λ2 > 0, E(L(t)|L(0) = i) is a monotone function of t which is increasing for i = 0 and
decreasing for i = 1. Thus, the optimal policy will have the following property: in state 0, for the first η0 steps the
message will be sent on the stochastic path and then for the remaining θ0 − η0, it will be sent on the deterministic
path. On the other hand, if the measured state is 1, then for the first η1 steps, the message will be sent on the
deterministic path and for the remaining θ1− η1 it will be sent on the stochastic path. The thresholds η0 and η1 can
be computed using the relation

η0 = max

{
u ∈ {0, θ0 − 1} : λu2 >

E(L∞)− l
π1(l1 − l0)

}
, (29a)

η1 = max

{
u ∈ {0, θ1 − 1} : λu2 >

l − E(L∞)

π0(l1 − l0)

}
, (29b)

where E(L∞) = π0l0 + π1l1 is the stationary mean delay on the stochastic path.

Since it is assumed that l1−l
l1−l0

< 1− c
l1=l

, for this special case, after some algebra, it can be seen that ηi = θi−1.

Table 9 summarizes the optimal policy for λ2 > 0.

Table 9: Structure of the optimal policy for λ2 > 0

State measured Next monitoring Optimal path
at instant t instant

0 t+ θ0 stochastic for t ∈ {0, θ0 − 1}
1 t+ θ1 deterministic for t ∈ {0, θ1 − 1}.

B Proof of Results in Section 5.2

In what follows, we are going to consider four cases: M0 = M1 = 0; M0 = M1 = 1; M0 = 0,M1 = 1; and
M0 = 1,M1 = 0. In each case we establish which is the rational routing decision and what is the reward. To simplify

notations, we let Lk(t) = E(Lk(t) | It−1) =
∑
j l
k
j γ

(k)
t−1,t(j) denote the expected delay of path k when Mk(t) = 0.

First case: M0(t) = M1(t) = 1

In that case the routing decision C(t) is not independent from the path delays L0(t) and L1(t) (knowing It−1).
Indeed the values L0(t) and L1(t) are measured and the routing decision is C(t) = 1IL1(t)≤L0(t). As a consequence,
the reward can be rewritten as:

R = −E(1IL1(t)≤L0(t)L
1(t) | It−1)− E(1IL0(t)<L1(t)L

0(t) | It−1)− c0 − c1,

= −
∑
i

∑
j

γ
(0)
t−1,t(i)γ

(1)
t−1,t(j) min(l0i , l

1
j )− c0 − c1. (30)
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Second case: M0(t) = M1(t) = 0

In that case the routing decision C(t) is independent from the path delays L0(t) and L1(t) (conditionnally to It−1)
since L0(t) and L1(t) are not measured. C(t) is deterministic given It−1 and equals:

C(t) = 1I
L1(t)≤L0(t)

. (31)

The reward is thus equal to:

R = −C(t)E(L1(t) | It−1)− (1− C(t))E(L0(t) | It−1),

= −C(t)L1(t)− (1− C(t))L0(t). (32)

Third case: M0(t) = 0,M1(t) = 1

In that case the delay of path 1, L1(t), is monitored whereas the delay of path 0 is forecasted based on past
measurements. Consequently the routing decision is:

C(t) = 1I
L1(t)≤L0(t)

. (33)

And the reward is equal to:

R = −E(L1(t)1I
L1(t)≤L0(t)

| It−1)− E(L0(t)1I
L1(t)>L0(t)

| It−1)− c1,

= −
∑

j:l1j≤L
0(t)

l1jγ
(1)
t−1,t(j)− P

(
L1(t) > L0(t)

)
L0(t)− c1,

= −
∑

j:l1j≤L
0(t)

l1jγ
(1)
t−1,t(j)− L0(t)

∑
j:l1j>L

0(t)

γ
(1)
t−1,t(j)− c1. (34)

Fourth case: M0(t) = 1,M1(t) = 0

Similarly to the previous case, when M0 = 1,M1 = 0 the optimal routing decision is:

C(t) = 1I
L1(t)≤L0(t)

. (35)

And the reward has the following expression:

R = −E(L0(t)1I
L1(t)>L0(t)

)− E(L1(t)1I
L1(t)≤L0(t)

)− c0,

= −
∑

i:l0i<L
1(t)

l0i γ
(0)
t−1,t(i)− P(L0(t) ≥ L1(t) | It−1)L1(t)− c0,

= −
∑

i:l0i<L
1(t)

l0i γ
(0)
t−1,t(i)− L1(t)

∑
i:l0i≥L

1(t)

γ
(0)
t−1,t(i)− c0. (36)

C Proof of Results in Section 5.4

We derive below the expression of the rewards RM0,M1 for the four combinations of M0 and M1 in the HMM case.

In why follows, it is assumed that l0i and l1i denote the mean values of the paths 0 and 1 when in state i, that is

to say l0i = E(L0(t) | S0(t) = i) and l1i = E(L1(t) | S1(t) = i). As in Section 5.2, we let Lk(t) = E(Lk(t) | It−1) =∑
j l
k
j γ

(k)
t−1,t(j).
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First case: M0(t) = M1(t) = 1

In that case it holds according to Equation (30) that:

R = −E(1IL1(t)≤L0(t)L
1(t) | It−1)− E(1IL0(t)<L1(t)L

0(t) | It−1)− c0 − c1,

where

E(1ILn(t)≤Lm(t)L
n(t) | It−1) =

∑
i,j

γ
(m)
t−1,t(i)γ

(n)
t−1,t(j)

∫ ∫
1Iln≤lm l

np
(m)
i (lm)p

(n)
j (ln) dlmdln,

for m,n ∈ {0, 1}, n 6= m. Consequently,

R = −
∑
i,j

γ
(0)
t−1,t(i)γ

(1)
t−1,t(j)

∫ ∫
min(l0, l1) p

(0)
i (l0) p

(1)
j (l1) dl0dl1 − c0 − c1. (37)

Second case: M0(t) = M1(t) = 0

With l0i , l1i and Lk(t) as defined in the introduction of this section, when M0(t) = M1(t) = 0 Equations (31) and
(32) are still true, that is to say:

C(t) = 1I
L1(t)≤L0(t)

,

and

R = −C(t)L1(t)− (1− C(t))L0(t).

Third case: M0(t) = 0,M1(t) = 1

Following the same reasoning as in Equations (33) and (34) it holds that:

R = −E(L1(t)1I
L1(t)≤L0(t)

| It−1)− L0(t)P(L1(t) > L0(t))− c1. (38)

If F 1
j is the cumulative distribution function of L1(t) when S1(t) = j, then

P(L1(t) > L0(t)) = 1−
∑
j

γ
(1)
t−1,t(j)F

1
j (L0(t)), (39)

and

E(L1(t)1I
L1(t)≤L0(t)

| It−1) =
∑
j

γ
(1)
t−1,t(j)

∫ L0(t)

0
y p

(1)
j (y) dy. (40)

Let us consider in particular the Gaussian case, that is to say [L1(t) | S1(t) = j] ∼ N(l1j , (σ
1
j )2). Then, as we have

observed in Section 4.1, the following closed forms can be used:

F 1
j (l) = Φ(

l−l1j
σ1
j

) and
∫ l
0 y p

(1)
j (y)dy = l1jΦ(

l−l1j
σ1
j

)− σ1
jφ(

l−l1j
σ1
j

) (41)

where φ(x) and Φ(x) are the p.d.f and c.d.f. of N(0, 1).
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Fourth case: M0(t) = 1,M1(t) = 0

Reciprocally, we consider the case M0(t) = 1,M1(t) = 0. Then,

R = −E(L0(t)1I
L0(t)≤L1(t)

| It−1)− L1(t)P(L0(t) > L1(t))− c0,

where

P(L0(t) > L1(t)) = 1−
∑
i

γ
(0)
t−1,t(i)F

0
i (L1(t)), (42)

and

E(L0(t)1I
L0(t)≤L1(t)

| It−1) =
∑
i

γ
(0)
t−1,t(i)

∫ L1(t)

0
y p

(0)
i (y) dy. (43)

Again, in the Gaussian case, a closed form expression can be found for F 0
i (l) and for

∫ l
0 y p

(0)
i (y)dy.
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