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Abstract

Relational Concept Analysis (RCA) has been designed to classify sets of objects

described by attributes and relations between these objects. This is achieved

by iterating on Formal Concept Analysis (FCA). It can be used to discover

knowledge patterns and implication rules in multi-relational datasets. The clas-

sification output by RCA is a family of lattices whose graphical representation

facilitates the analysis by an expert. However, RCA comes with specific com-

plexity issues. It iterates on the building of interconnected concept lattices, so

that each concept in a lattice might be the cause of generating other concepts in

other lattices. In complex analyses, it relies on the successive choice of scaling

operators which affects the size and the understandability of the results. These

operators are based on a set of quantifiers which are studied in this paper: we

indeed focus on the comparison of scaling quantifiers and highlight a general-

ity relation between them. Our theoretical proposition is complemented by an

experimental evaluation of the exploration space size, based on a real dataset

upon watercourses. This work is intended for data analysts, to provide them

with an overview on the different strategies offered by RCA.
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Generality relation

1. Introduction

Many data are inherently relational, and several approaches have been im-

plemented to explore such data [1]. Among them, Relational Concept Analysis

(RCA) is a descriptive approach based on Formal Concept Analysis (FCA) that

both builds a classification (a lattice of formal concepts) for each category of

objects contained in a dataset, and allows to obtain implication rules includ-

ing relations between objects [2, 3]. RCA has been applied to multi-relational

datasets from various domains, e.g. for analyzing the quality of watercourses [4],

for the fuzzy semantic annotation of web resources [5], or for the analysis and

reengineering of software models [6] or semantic wikis [7].

RCA, as FCA, comes with a major challenge, linked to the fact that dealing

with complex (relational, but also fuzzy, or multi-polar) data produces huge and

complex results. Many methods have been proposed to reduce the lattice size,

either by reducing the original data, e.g. by granular reduction [8] or by projec-

tion [9], or by reducing the number of concepts to be built, e.g., by thresholding

[10], or by using AOC-posets [11] -always trying to keep the principal results.

Another way is to help the user navigate within the results and select interest-

ing concepts, based on various measures [12, 13]. In RCA, the user is given the

chance to orientate the search while it is running, so that a specific problem is

to help him/her making the choice of the direction search. This is the question

we focus on, which has received few attention until now.

We are indeed interested in providing experts with tools that can help deep-

ening the understanding of the data and the analysis. Our experience has shown

that RCA can be useful for knowledge extraction, and more precisely relational

data exploration [14], even by a non computer scientist domain expert with little

training. This comes from several features of RCA:

• lattices, which is the output of RCA, have a graphical representation as a

Hasse diagram (see for example Fig. 2). Firstly, this graphical represen-
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tation facilitates the understanding of the relations between categories of

objects. Secondly, this representation organizes relational concepts con-

tained in the dataset in a way that helps the navigation between them

when performing the analysis;

• the implication rules highlight existing correlations;

• the process is iterative, providing temporary interpretable results, thus

allowing to tune the analysis during the process in case the expert realizes

that it is interesting to orientate the analysis in one direction or another.

RCA applies on a set of object-attribute relations that describe objects of a

given type by a set of attributes, and object-object relations that represent the

links between two categories of objects (possibly the same category). The main

idea is to transform object-object relations into relational attributes thanks to

so called scaling quantifiers. Scaling quantifiers are actually used to quantify

a relation between a given object and a subset of objects (a concept extent)

it is linked to through the given relation. The generated relational attributes

can then be added to the initial object-attribute relation. The combination of

a scaling quantifier, a relation, and a set of concepts is called a scaling operator

and it is applied to a given object-attribute relation in order to extend it with

new information.

The RCA process thus allows the user to make different choices at each step

of the iterative process in order to focus the exploration of the data:

• the object-attribute relations or object-object relations to add or remove

from the analysis;

• the object-object relations to transform so as to create new relational

attributes;

• the corresponding scaling quantifiers (the scaling quantifier assigned to an

object-object relation can be changed and several scaling quantifiers can

even be assigned at one step to an object-object relation).
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On the one hand, these choices enrich the process, allowing to perform a

wider range of analyses. On the other hand, it may be difficult to decide which

choice to make, and moreover results including relational information are more

abundant and may be harder to understand for data analysts so that they may

be lost in results, especially when the scaling quantifiers vary from one step to

another. In a previous work, we have proposed an adaptation of RCA to explore

relations in a guided way, by defining exploratory paths, allowing to increase

the performance and the pertinence of the results [14].

In this paper, our purpose is to further improve the data exploration with

RCA. We focus on theoretical aspects deepening the understanding of the RCA

process. These results can be used to help the data analyst to understand the

current outputs and to make choices for the next step, thus guiding her/him in

its analysis. This research is also a theoretical basis for improving the navigation

and visualization of RCA results (some tuning facilities are already integrated

in the RCAexplore tool1). More precisely, the aim of this paper is to compare

the scaling quantifiers used in RCA, focusing on a generality relation between

them. Variants of the scaling quantifiers (existential, universal and contains) are

considered and their effects on RCA results are studied. The generality relation

on scaling quantifiers is formalized and proved for the different quantifiers. The

resulting hierarchy of quantifiers can then be used as a guide to help an analyst

forecast the kind of results she/he will obtain. An illustrative example, and

some numerical results are given on a dataset from the Fresqueau2 project.

The paper is organized as follows. Section 2 motivates the usage of formal

concepts provided with their specialization partial order, gives the background of

this work and the principles of RCA-based data exploration. Section 3 presents

the core of our proposition. Section 4 describes experimental results on a real

dataset upon watercourses. Related work is discussed in Section 5 and Section

6 concludes the paper with some perspectives.

1http://dolques.free.fr/rcaexplore/
2http://engees-fresqueau.unistra.fr/presentation.php?lang=en
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2. Background

In this section, we motivate the use of formal concepts in knowledge discovery

(Section 2.1), then we introduce the basics for Formal Concept Analysis (Section

2.2) and for Relational Concept Analysis (Section 2.3).

2.1. Formal concepts in knowledge discovery

In her paper in the 40th anniversary volume of Annual Review of Infor-

mation Science and Technology [15], Uta Priss nicely introduces formal con-

cepts as describing "a natural feature of information representation which is as

fundamental to hierarchies and object/attribute structures as set theory or re-

lational algebra are for relational databases". She explains that the notions of

concept “extension” and concept “intension” are adapted from philosophy, and

that "the basic FCA structures have been rediscovered over and over by different

researchers and in different settings.", fostering the idea of its inherent univer-

sality. Roots of formal concepts and concept lattices were introduced in 1940

by G. Birkhoff [16], and developed by M. Barbut and B. Monjardet [17] to cite

just a few, and the FCA terminology and conceptual approach have been fully

developed since 1982 following R. Wille [18] vision.

Formal concepts help in forming object/attribute groups and building hier-

archical structures on these groups, with strong mathematical properties, such

as the duality of objects versus attributes or the canonicity of the building: for a

given object set description, a unique concept lattice is built, contrarily to most

approaches in conceptual clustering that are approximate. The hierarchical

structure and the groups highlight many properties such as frequent patterns,

attribute implications, mutual exclusion within attribute groups, or object sim-

ilarities. Querying through concept lattices helps organize groups (concepts) of

similar answers that can be navigated through the specialization structure [19].

They also help in reformulating queries when the answer set is empty. All these

qualities explain the spread of FCA in domains such as information retrieval

[20], recommendation systems [21], or machine learning [22, 23]. Furthermore,

FCA emphasizes the visualization of concepts and their partial ordering which
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is meaningful for knowledge discovery and data exploration. When lattices are

too complex, they are not fully displayed to the user. To give a few examples,

in Credo [24], the lattices are displayed through a kind of explorer akin to file

explorers, and the hierarchy can be expanded; in Carpineto and Romano [25]

fish-eye displays help to focus on specific parts; in [26], smart tag clouds allow

the expert to navigate into the lattice.

FCA can be applied to various forms of data, going from the simplest one

(objects described by binary attributes) to more complex ones, including numer-

ical data [27], labeled graphs [28], interval data [29], hierarchical attributes [24],

composite attributes [30], fuzzy data [31], multi-dimensional data [32, 33] or

pattern structures [34]. Multi-relational data are taken into account within the

RCA framework, which extends the purpose of FCA [2, 3].

The Uta Priss’s web page3 gathers a number of FCA softwares, some of them

being available online. There is a rich literature about algorithms as [35], as well

as analysis tools such as specific metrics dedicated to formal concepts relevance

evaluation [36]. Thanks to its properties and available softwares, FCA has been

used for applications in a wide range of domains, such as Software engineering

[37], Linguistics [38], chemical graphs [28], water datasets [30], candidate CV

exploration in recruitment [39], Organised Crime monitoring [40] or symbol

recognition [41].

2.2. Concept Lattices

Formal Concept Analysis [27] is based on lattice theory and can be used in

particular to discover knowledge in data.

This section begins by explaining the simplest form, which extracts an or-

dered set of concepts from a binary dataset, called an object-attribute context

(or formal context), composed of objects described by attributes. An object-

attribute context K is a 3-tuple (G,M, I), where G is an object set, M an

attribute set, and I ⊆ G×M an object-attribute relation. Figure 1 (left-hand

3http://www.upriss.org.uk/fca/fcasoftware.html
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side) shows an object-attribute context KIngredients = (GIngredients ,MIngredients ,

IIngredients) which describes ingredients by their origin (e.g. vegetable, meat,

etc.) or preparation form (e.g. sauce).

KIngredients da
ir

y

ve
ge

ta
bl

e

me
at

sa
uc

e

cream × ×
mozza ×
goatcheese ×
emmental ×
fourmeambert ×
onion ×
basilic ×
tomatosauce × ×
olive ×
mushroom ×
ham ×
chicken ×
bacon ×

CIngredients0
 
 

CIngredients1
dairy

mozza
goatcheese
emmental

fourmeambert

CIngredients2
 
 

CIngredients4
meat
ham

chicken
bacon

CIngredients5
 

tomatosauce

CIngredients6
 

cream

CIngredients3
vegetable

onion
basilic
olive

mushroom

CIngredients7
sauce

 

Figure 1: Object-attribute context KIngredients , lattice L0Ingredients

Given a K = (G,M, I) object-attribute context, let X ⊆ G, X ′ is the set

of all attributes of M that all objects of X share. Let Y ⊆ M , Y ′ is the set

of all objects of G that have all attributes of Y . A formal concept associates

a maximal set of objects with the maximal set of attributes they share. A

formal concept is thus a pair C = (X, Y ), where Y = X ′ and X = Y ′. X =

Extent(C) = {g ∈ G|∀m ∈ Intent(C), (g,m) ∈ I} is called the extent of the

concept (objects covered by the concept). Y = Intent(C) = {m ∈ M |∀g ∈

Extent(C), (g,m) ∈ I} is the intent of the concept (shared attributes). With

these notations, Extent(C) = Intent(C)′ and Extent(C)′ = Intent(C).

Let CK be the set of all concepts built from K. Given two formal concepts

C1 = (E1, I1) and C2 = (E2, I2) of CK , the concept generalization order �C is

here defined by C1 �C C2 if and only if E2 ⊆ E1 (and equivalently I1 ⊆ I2)4.

C1 �C C2 means that C1 is more general than C2, or equivalently C1 is a

superconcept of C2, or C2 is a subconcept of C1. The set CK , provided with

the generalization order is the concept lattice LK=(CK , �C) associated with K.

4We borrow the �C notation for subsumption from Inductive Logic Programming.

7



Besides, the fact that C1 �C C2 is represented with C1 above C2 in the lattice

diagrams.

Figure 1 (right-hand side) shows the concept lattice L0
Ingredients associated

with context KIngredients (the 0 exponent will be explained later in the paper).

Let us notice that to simplify the notation, we will write L0
Ingredients rather

than L0
KIngredients . As every attribute is top-down inherited, and every object

is bottom-up inherited, the representation is usually simplified. It shows an

attribute (resp. an object) only in the highest (resp. lowest) concept where

it appears (this concept is the introducing concept). In Fig. 1, the vegetable

attribute is introduced in CIngredients3 and is inherited by its subconcepts:

CIngredients5 and CIngredients2. Furthermore the cream object is intro-

duced in CIngredients6 concept, and inherited by CIngredients6 supercon-

cepts: CIngredients7, CIngredients1 and also CIngredients0.

2.3. Principles of Relational Concept Analysis (RCA)

Relational Concept Analysis [2] has been introduced to extend the scope of

FCA to multi-relational data encoded in a Relational Context Family (RCF). An

RCF is composed of several categories of objects and relations between these ob-

jects, respectively described within object-attribute contexts and object-object

contexts (also called relational contexts).

Definition 1 (Relational Context Family (RCF)). A Relational Context
Family is a (K,R) pair where: K = {Ki}i=1,...,n is a set of Ki = (Gi,Mi, Ii)
object-attribute contexts. R = {rj}j=1,...,p is a set of rj relations where rj ⊆
Gk ×Gl for some k, l ∈ {1, . . . , n}. In the following, for a given relation rj , its
domain is denoted by dom(rj ) and its range is denoted by ran(rj ).

To illustrate RCA, we use the RCF presented in Tab. 1, composed of: three

object-attribute contexts, KPeople , KPizzas , and KIngredients , corresponding to

three categories of objects; two object-object contexts, rlikes and rhastopping ,

that represent in extension the corresponding object-object relations and that

show respectively which pizzas people like, and which ingredients are on top of

pizzas. Let us note that KPeople and KPizzas do not have any specific attribute,

however for KPizzas identity attributes have been created leading to a diagonal
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Table 1: RCF composed of people, pizza and ingredient categories, with object-object relations
likes (or rlikes) and hastopping (or rhastopping )

KPeople
Arthur
John
Alice
Juliet
Nancy
Ellen

KPizzas au
ve

rg
ne

Id

ma
rg

he
ri

ta
Id

th
re

ec
he

es
eI

d

fo
ur

ch
ee

se
Id

fu
rt

ra
de

rI
d

ve
ge

Id

si
mp

le
Id

auvergne ×
margherita ×
threecheese ×
fourcheese ×
furtrader ×
vege ×
simple ×

KIngredients da
ir

y

ve
ge

ta
bl

e

me
at

sa
uc

e

cream × ×
mozza ×
goatcheese ×
emmental ×
fourmeambert ×
onion ×
basilic ×
tomatosauce × ×
olive ×
mushroom ×
ham ×
chicken ×
bacon ×

rlikes au
ve

rg
ne

ma
rg

he
ri

ta

th
re

ec
he

es
e

fo
ur

ch
ee

se

fu
rt

ra
de

r

ve
ge

si
mp

le

Arthur × × × × ×
John × ×
Alice × × ×
Juliet × × × ×
Nancy × ×
Ellen × ×

rhastopping cr
ea

m

mo
zz

a

go
at

ch
ee

se

em
me

nt
al

fo
ur

me
am

be
rt

on
io

n

ba
si

li
c

to
ma

to
sa

uc
e

ol
iv

e

mu
sh

ro
om

ha
m

ch
ic

ke
n

ba
co

n

auvergne × × × × ×
margherita × × × ×
threecheese × × × ×
fourcheese × × × × ×
furtrader × × × × × × × × ×
vege × × × ×
simple ×

table. This is because KPizzas is the range of a relation, and we will explain

later in this section the benefits of such a modeling for the RCA process.

To deal with relational data, RCA works by enriching object-attribute con-

texts with new attributes, called relational attributes. For each K object-

attribute context, the idea is to capture in these attributes an additional in-

formation coming from the relations that have K as domain. For example, one

could add in KPeople attributes about the kind of pizzas liked thanks to rlikes

object-object relation that has dom(rlikes) = KPeople .

More precisely, RCA transforms an object-object context r, that has K as

domain, into new relational attributes in K quantifying the relation between

objects of r and concepts formed on objects of ran(r). The type of quantification

captured depends on the choice of scaling quantifier.
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Definition 2 (Relational attribute). A relational attribute is an expression
qr(C), where q ∈ Q is a scaling quantifier, r a specific relation, and C a specific
concept whose extent contains objects from ran(r).

Q ⊇ {∃,∃∀,∃⊇} and other quantifiers will be introduced later (Section

2.5). The objective is to go beyond a simple description by attributes like

“has-topping: mozza”. For example, RCA allows to identify the group of dairy

ingredients, then the group of pizzas that have at least one dairy ingredient,

and finally, the group of people that like pizzas that have at least one dairy

ingredient by composition of several object-object relations. In this example,

“at least” is a kind of scaling quantifier (∃ quantifier). Other quantifiers would

give attributes like “all ingredients are dairy ingredients” (“for all” quantifier:

∃∀) or “contains all the dairy ingredients” (“contains all” quantifier: ∃⊇). Let us

note that in a more general version of RCA, several quantifiers could be applied

to r and ρ(r) would denote a set of quantifiers associated with r.

Table 2 presents the result of the application of the existential scaling quanti-

fier to relation rhastopping , using the concepts of L0
Ingredients shown in Fig. 1. First

columns correspond to the initial object-attribute context on pizzas, namely

KPizzas . The attributes of the last 8 columns are the obtained relational at-

tributes, which encode relations between pizzas and groups of ingredients. Re-

lational attribute ∃rhastopping(CIngredients1) is thus assigned to threecheese

pizza because this pizza has at least one of the (dairy) ingredients grouped in

concept CIngredients1. Figure 2 shows the corresponding lattice L1
Pizzas . The

pizzas classification initially showed only trivial (singleton) groups, each one

corresponding to a pizza, because KPizzas is a diagonal table. Thanks to the

added relational attributes, the lattice now contains new relevant groups such

as CPizzas9 which groups pizzas with at least one dairy ingredient (as we said,

these ingredients are grouped in CIngredients1). Let us note that thanks to

the diagonal of KPizzas , single pizzas can be used in relational attributes based

on relation rhastopping through singleton concepts, so that relational attributes

can bring information related to a single pizza.
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2.4. Extending an object-attribute context

Adding relational attributes to an object-attribute context is done through

a scaling operation, based on a scaling quantifier. In order to provide a generic

definition of this operation, a generic function κ is introduced which maps a

scaling quantifier q, a relation r and an object subset in the range of r to an

object subset from the domain of r.

κ : Q × R ×
⋃
i=1,...,n 2

Gi →
⋃
i=1,...,n 2

Gi

κ returns the group of domain objects that are connected for r and q with a

certain group of range objects. For example, κ(∃, rhastopping , {mozza, goatcheese,

emmental , fourmeambert})= {auvergne,margherita, threecheese, fourcheese, fur -

trader}. The reader can check that every pizza of the image {auvergne,margherita,

threecheese, fourcheese, furtrader} has at least one of the toppings of {mozza, goat-

cheese, emmental , fourmeambert}. More specifically, for r, q and a concept C,

κ(r, q, C) is the set of objects that own the relational attribute qr(C). In our

example, C is CIngredients1.

Table 2: Relational extension of KPizzas : KPizzas is concatenated with its derived context
S(rhastopping ,∃),CIngredients

(KPizzas), based on the existential scaling of rhastopping

KPizzas au
ve

rg
ne

Id

ma
rg

he
ri

ta
Id

th
re

ec
he

es
eI

d

fo
ur

ch
ee

se
Id

fu
rt

ra
de

rI
d

ve
ge

Id

si
mp

le
Id

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s0
)

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s1
)

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s2
)

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s3
)

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s4
)

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s5
)

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s6
)

∃
ha

st
op

pi
ng

(C
In

gr
ed

ie
nt

s7
)

auvergne × × × × × × ×
margherita × × × × × ×
threecheese × × × × ×
fourcheese × × × × ×
furtrader × × × × × × × ×
vege × × × × ×
simple × × × × ×

The generic notion of scaling operator, an operator that yields a relational

extension of a context Kk = (Gk,Mk, Ik) along a relation r, a scaling quantifier

q and a concept set Cl, can now be defined as follows.
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CPizzas0
∃ hastopping(CIngredients0)
∃ hastopping(CIngredients7)

 

CPizzas1
auvergneId
auvergne

CPizzas12
∃ hastopping(CIngredients4)

 

CPizzas2
∃ hastopping(CIngredients2)

 

CPizzas3
margheritaId
margherita

CPizzas4
threecheeseId
threecheese

CPizzas5
fourcheeseId
fourcheese

CPizzas6
furtraderId
furtrader

CPizzas7
vegeId
vege

CPizzas8
simpleId
simple

CPizzas13
 
 

CPizzas15
∃ hastopping(CIngredients6)

 

CPizzas14
∃ hastopping(CIngredients5)

 

CPizzas9
∃ hastopping(CIngredients1)

 

CPizzas10
 
 

CPizzas11
∃ hastopping(CIngredients3)

 

Figure 2: Lattice of pizzas at step 1 L1Pizzas , built from Tab. 2

Definition 3 (Scaling operator and partial relational extension). Let us
consider Kk = (Gk,Mk, Ik) and Kl = (Gl,Ml, Il) two object-attribute contexts,
r ⊆ Gk ×Gl a relation, Cl the set of concepts on Kl , and q a scaling quantifier.
The scaling operator S(r,q),Cl over Kk yields the partial relational extension
S(r,q),Cl(Kk ) = (G+,M+, I+), where the elements are as follows: G+ = Gk,
M+ = {q r(c) | c ∈ Cl}, and I+ =

⋃
c∈Cl κ(q, r,Extent(c))× {q r(c)}.

The relational extension of an object-attribute context Kk is obtained by

extending it with all the partial relational extensions generated from the rela-

tions that have Kk as a domain and their assigned scaling operator. Thus, let

us consider an RCF that contains only the above-mentioned context Kk , the

context Kl and relation r with dom(r) = Kk and ran(r) = Kl . The relational

extension of Kk when assigning quantifier q to r is the union of the initial and

derived contexts Kk ∪ S(r,q),Cl(Kk ) = (Gk,Mk ∪M+, Ik ∪ I+).

Table 2 shows the relational extension of context KPizzas , when considering

ρ(rhastopping) = ∃ and the concept set of L0
Ingredients lattice of Fig. 1. If an

additional relation connecting pizzas to another kind of objects, for example,

rservedin , connecting pizzas to restaurants, was in the dataset, then the relational

extension of KPizzas would also include the scaling upon rservedin .

The general case is defined as follows:
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Definition 4 (Relational extension of a context Kk = (Gk,Mk, Ik)). Un-
der Def. 3, let Rk = {rj , 1 ≤ j ≤ pk|dom(rj) = Gk} be the set of relations with
domain Gk. Let ρ be a mapping from R to Q which associates a scaling quan-
tifier to each object-object relation rj . Let L be a set of concept lattices con-
taining, for every rj ∈ Rk, a lattice Lran(rj) where the concepts group objects
of the range of rj . The relational extension of context Kk consists in apposing
to Kk the respective scaling upon each rj ∈ Rk:

Eρ,L(Kk ) = Kk | S(r1,ρ(r1)),Cran(r1)
(Kk ) | . . . | S(rpk ,ρ(rpk )),Cran(rpk

)
(Kk )

The relational extension of the whole K is composed of all the relational exten-

sions of all Ki in K.

Definition 5 (Relational extension of an RCF). Under the previous defi-
nitions, the relational extension of K is:

E∗ρ,L(K) = {Eρ,L(K1 ), . . . ,Eρ,L(Kn)}

With the lattices built at the initial step (step 0), and with the mapping

ρ = {(rlikes ,∃∀), (rhastopping ,∃)}, the relational extension of K would be com-

posed of the relational extensions of KPeople , KPizzas and KIngredients . The rela-

tional extension of KPeople is presented in Fig. 3 (bottom-left-hand side), with

the corresponding lattice L1
People on the right-hand side (exponent 1 stands for

step 1). The relational extension of KPizzas has been shown in Tab. 2. The

relational extension of KIngredients is simply KIngredients , because there is no out-

going relation. At this step, there is no pizza groups; since everybody likes more

than one pizza, the relational extension of KPeople obtained after the application

of scaling operator S(rlikes ,∃∀),C0Pizzas
(C0Pizzas being the set of concepts correspond-

ing to KPizzas at step 0) has only empty columns except one, corresponding to

∃∀rlikes(CPizzas0) (Fig. 3, bottom-left-hand side).

The whole construction process consists in building a finite sequence of con-

texts and concept lattices. The lattices at one step are used to calculate the

relational extensions for the next step. The last sequence is obtained when the

lattice family at one step is isomorphic to the one from the previous step and

the extended contexts are unchanged (keeping the same scaling quantifier for a

given relation).
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Figure 3: Lattice L0People (top/left), lattice L0Pizzas (top/right), context resulting from the
scaling operation S(rlikes ,∃∀),C0Pizzas

(KPeople) (bottom/left), lattice L1People (bottom/right)

Algorithm 1, adapted from [43], describes the construction process of RCA.

Its inputs are a relational context family (K,R) and a scaling quantifier mapping

which associates a scaling quantifier with each relation of R. Its output is a set

of concept lattices, one for each context of K. These concept lattices are stored

in an array whose indices correspond to the context indices in K. The algorithm

uses a variable K to store the current relational extensions of all contexts of K.

The variable Lprevious stores the concept lattices built at the previous step. Two

external algorithms, not described here, compute respectively a concept lattice

associated with a formal context (fca algorithm) and whether two concept

lattices are isomorphic (isomorphic algorithm). The reader can easily find

these algorithms in the literature [44, 45].

Lines 10-11, each L is initialized with an empty concept lattice (represented

by an empty set).

The instructions from lines 12-17 describe the RCA iterative process. First

(Line 13), Lprevious keeps the current lattices before their modification. Then

for every i, 1 ≤ i ≤ n, K[i] receives the relational extension computed with Ki
and the current concept lattices (Line 15). New lattices are built (Line 16),
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based on the current relational extensions. The algorithm stops when all the

built lattices are the same at two successive steps. For efficiency purpose, due

to its incremental monotonous nature, the algorithm can be implemented by

updating at each step the lattices and the relational extensions, rather than

computing them from scratch at lines 15-16.

1: Algorithm RCA
2: In: (K,R) an RCF, ρ a scaling quantifier mapping
3: Out: L array [1, . . . , n] of lattices
4: Internal: K array [1, . . . , n] of contexts
5: Internal: Lprevious array [1, . . . , n] of lattices of previous step
6: Calls: fca algorithm, which returns the concept lattice associated

with a context
7: Calls: isomorphic algorithm, which returns true if the two input

lattices are isomorphic
8: –––––-
9: begin
10: for i from 1 to n do
11: L[i] ← ∅
12: repeat
13: Lprevious ← L
14: for i from 1 to n do
15: K[i] ← Eρ,Lprevious(Ki) // Ki ∈ K
16: L[i] ← FCA(K[i])
17: until ∀i ∈ {1, . . . , n}, isomorphic(L[i],Lprevious[i])
18: end

Algorithm 1: RCA process, adapted from [43]

The RCA process time complexity is detailed in [2]. By using the worst-case

complexity known for concept lattice building and adding the cost of the scaling

operations, the time complexity is in O(nstep ∗ncm ∗nom ∗ (nam+nom)), where:

nstep is the step number (which is the least common multiple of the circuit

lengths in the data model), ncm is the number of concepts in the largest lattice

(in the whole process), nom is the number of objects in the largest extended

context, nam is the number of objects in the largest context.

For the Pizza example, the fixed point is obtained after four steps starting

from step 0. The final lattice for people at step 3, L3
People is shown in Fig. 4.

CPeople2 represents the group of people (Arthur, John and Ellen) who own

relational attribute ∃∀rlikes(CPizzas9) (CPizzas9 comes from Fig. 2), meaning
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Figure 4: Lattice of people (L3People) (step 3 of RCA)

that all the pizzas they like contain at least one individual from CIngredients1

(dairy ingredients).

2.5. Various Scaling Quantifiers

We define here some quantifiers that we have informally introduced in the

previous section, and their variants: the existential quantifier ∃, the universal

strict scaling quantifier ∃∀, the contains strict quantifier ∃⊇, a general contains-

percent quantifier ∃⊇≥n% and a general universal-percent quantifier ∃∀≥n%.

These last scaling quantifiers come in various levels, according to application

needs, to quantify the strength of the link between objects from a set and

objects from another set, or to handle noisy results. In the following definitions,

we consider two object-attribute contexts K = (G,M, I) and Kr = (Gr ,Mr , Ir),

and a relation r, where dom(r) = G, and ran(r) = Gr ; Cr is the concept set

built on Kr , n a percent-value, n ∈ [0, 100]. For o ∈ G, the image set of o is

denoted by r(o) = {o2 ∈ Gr|(o, o2) ∈ r}.

Definition 6 (Existential scaling). For every object o ∈ G and every con-
cept Ci ∈ Cr , if r(o) ∩ Extent(Ci) 6= ∅, then the relational attribute ∃r(Ci) is
added to the attribute set of o. This operation is called existential scaling on
K, Cr and r.

For example, ∃rhastopping(CIngredients1) from Tab. 2 is assigned to pizzas
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(objects from dom(rhastopping)) that have at least one of the dairy ingredients

grouped in CIngredients1.

Definition 7 (Universal strict Scaling). For every object o ∈ G and every
concept Ci ∈ Cr , if r(o) 6= ∅ and r(o) ⊆ Extent(Ci), then relational attribute
∃∀r(Ci) is added to the attributes of o.

For example, in Fig. 4 relational attribute ∃∀rlikes(CPizzas9) in the intent of

concept CPeople2, indicates that objects (people) in the extent of this concept

only like pizzas grouped in concept CPizzas9, namely pizzas that have at least

one of the dairy ingredients (grouped in CIngredients1).

Definition 8 (Contains strict Scaling). For every object o ∈ G and every
concept Ci ∈ Cr , if Extent(Ci) 6= ∅ and Extent(Ci) ⊆ r(o), then the relational
attribute ∃⊇r(Ci) is added to the attributes of o.

Definition 9 (Universal-Percent Scaling). For every object o ∈ G and ev-
ery concept Ci ∈ Cr , if more than n percent of r(o) is included in Extent(Ci)
(i.e. |r(o) ∩ Extent(Ci)| ≥ n|r(o)|/100), and |r(o) ∩ Extent(Ci)| > 0 then the
relational attribute ∃∀≥n%r(Ci) is added to the attributes of o.

Definition 10 (Contains-Percent Scaling). For every object o ∈ G and ev-
ery concept Ci ∈ Cr , if more than n percent of Extent(Ci) is included in r(o)
(i.e. |r(o) ∩ Extent(Ci)| ≥ n|Extent(Ci)|/100), and |r(o) ∩ Extent(Ci)| > 0,
then the relational attribute ∃⊇≥n%r(Ci) is added to the attributes of o.

2.6. Exploring data with RCA

As explained above, RCA is designed for extracting knowledge patterns and

classifications in data that conform to a model similar to a UML class diagram,

given through a relational context family. For example, a data analyst may

begin with a query pattern which assigns ∃ to rlikes and ∃ to rhastopping . Let

us recall that (non-trivial) ingredient concepts correspond to categories (dairy,

vegetable, etc.). When the corresponding relational extensions are built, the

obtained (non-trivial) pizza concepts are groups of pizzas that have at least one

ingredient from a specific category; the obtained (non-trivial) people concepts

are groups of people who like at least one pizza in a group that has at least one

ingredient from a specific category. The concept lattices exhaustively give these

people and pizza groups, in a classified way, that shows for example (see Fig. 2)
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that having at least one meat ingredient (∃rhastopping(CIngredients4)) implies

having at least one dairy ingredient (∃rhastopping(CIngredients1)); such knowl-

edge is supported by the lattice generalization order on the concepts introducing

the relational attributes (CPizzas9 �C CPizzas12 in lattice L1
Pizzas).

However, the data analyst may consider that the information obtained is

not satisfactory and decide to use different quantifiers, but for that purpose it

is useful to have an idea of the effect of such a change. Thus, when exploring

data with RCA, a main problem is to choose the scaling quantifiers to use, and

eventually to compare lattices built with different combinations of quantifiers.

We propose below a variation on the primitive RCA algorithm which aims

to sketch the way the impact of the changes in the scaling quantifiers can be

measured. It is presented in two parts. Algorithm 2 presents a skeleton of ex-

ploratory RCA. It includes at Line 21 an optional sub-algorithm (Algorithm 3)

which allows the expert to measure the impact that different scaling quantifier

selections would have in the next step, before choosing one. In Algorithm 2,

Lines 16-19 consist in asking the expert to select the object-attribute contexts,

the relations and the algorithms to build the conceptual structure (the concept

lattice, the AOC-poset or an Iceberg concept lattice), that she/he finds appro-

priate for her/his analysis. Line 20 is used to memorize in ICprevious the indices

of the object-attribute contexts that have already been computed in one previ-

ous step and check the consistency of the chosen relations. Indeed, a constraint

for selecting relations at Line 19 is that for any r ∈ SR, with r ⊆ Oi ×Oj , the

respective Ki, Kj are in SC and j ∈ ICprevious, meaning that a conceptual

structure (concept lattice, AOC-poset, Iceberg lattice) has been built in a pre-

vious step (which is not necessarily the immediately preceding step). Then Line

22, the expert selects a scaling quantifier for each selected relation. Lines 23-25,

the relational extensions and the new conceptual structures are computed. Line

26 shows that the expert can stop at every step.

Algorithm 3 (SeeImpact) measures the impact of changes of scaling quan-

tifiers. It computes a table UncertaintyChanges. UncertaintyChanges[e][i]

is the difference between the concept number of lattice i at the preceding step

18



1: Algorithm RCA-explore
2: In: (K,R) an RCF
3: Out: L array [1, . . . , n] of lattices
4: Internal: K array [1, . . . , n] of contexts
5: Internal: Lprevious array [1, . . . , n] of lattices of the preceding step
6: Internal: ICprevious indices of the object-attribute contexts that

have already been computed in any previous step
7: Internal: SR set of object-object contexts selected by the user
8: Internal: SC set of object-attribute contexts selected by the user
9: Internal: ISC indices of object-attribute contexts selected by the

user
10: Calls: ConceptStruct algorithm, which returns the chosen conceptual

structure: the concept lattice, the AOC-poset or an Iceberg concept
lattice associated with a context

11: Note: select is an expert action
12: –––––-
13: begin
14: ICprevious ← ∅
15: for i from 1 to n do
16: L[i] ← ∅
17: repeat
18: Lprevious ← L
19: select a subset SC ⊆ K of object-attribute contexts
20: select a subset SR ⊆ R of relations
21: select an algorithm ConceptStruct for each Ki ∈ SC
22: ICprevious ← ICprevious

⋃
ISC

23: Call SeeImpact - Algorithm 3
24: select the scaling quantifier ρ(r) for each r ∈ SR
25: for i ∈ ISC do
26: K[i] ← Eρ,Lprevious(Ki)
27: L[i] ← ConceptStruct(K[i])
28: until select STOP
29: end

Algorithm 2: RCA process adapted to exploration and measure impact of changes in
scaling quantifiers, adapted from [43]
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and the concept number of lattice i at the current step using the set of scaling

quantifiers of step e. Line 11, the expert selects a number of scaling quanti-

fier alternatives he wants to analyze. Line 12-17, an alternative e is examined.

Then the relational extension and the conceptual structures are built (resp. Line

15 and Line 16), then UncertaintyChanges[e][i] can be computed. Line 18

shows results to the expert.

1: Algorithm SeeImpact
2: In: Variables of Algorithm RCA-explore Lines 2-25
3: Out: UncertaintyChanges array [1, . . . , np][1, . . . , n] of values indicating

the difference between the concept number at the preceding step and
at the current step using an alternative set of scaling quantifiers

4: Internal: np the selected number of alternatives that the expert
wants to investigate

5: Internal: Kimpact array [1, . . . , np][1, . . . , n] of contexts
6: Internal: Limpact array [1, . . . , np][1, . . . , n] of lattices
7: Calls: ConceptStruct algorithm, which returns the chosen conceptual

structure: the concept lattice, the AOC-poset or an Iceberg concept
lattice associated with a context

8: Note: select is an expert action
9: –––––-
10: begin
11: select np a number of alternatives the expert wants to investigate
12: for e from 1 to np do
13: select the quantifier ρe(r) for each r ∈ SR
14: for i ∈ ISC do
15: Kimpact[e][i] ← Eρe,Lprevious(Ki)
16: Limpact[e][i] ← ConceptStruct(Kimpact[e][i])
17: UncertaintyChanges[e][i] = #Cpts(Limpact[e][i])−#Cpts(Lprevious[i])
18: Print UncertaintyChanges and metrics min, max, average, standard

deviation for e varying on i
19: end

Algorithm 3: Process for measuring the impact of different scaling quantifier selections
("Cpts" is a shortcut for Concepts)

These algorithms aim to give a support for the expert to measure the impact

of the scaling quantifiers when RCA is conducted in an exploratory manner.

This paper will now focus on understanding the foundations of the quantifiers

behaviors and guiding the navigation.
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3. Understanding quantifier generalization

In this section, we examine a generality relation between the previously in-

troduced scaling quantifiers. We first define a generality relation �A between

relational attributes. The comparison of relational attributes can be defined on

different relations and concepts as long as all relations have the same domain.

We first introduce the generality relation, and we illustrate it on an example re-

stricted to one relation. Then we examine how this generality relation enlightens

the relations between the lattices built with the different scaling operators.

3.1. The generality relation

Let us first define the generality relation on relational attributes.

Definition 11 (Generality relation �A on relational attributes). Let a1 =
q1r1 (C1) and a2 = q2r2 (C2) be two relational attributes such that r1 ⊆ G3×G1,
r2 ⊆ G3 × G2, Extent(C1) ⊆ G1 and Extent(C2) ⊆ G2: a1 is more general
than a2 (written a1 �A a2) if {a2}′ ⊆ {a1}′.

The generality relation on scaling quantifiers can then be introduced as fol-

lows. A scaling quantifier q1 is more general than a scaling quantifier q2, if

the combination of q1 with any relation r/concept C couple yields a relational

attribute more general than with the other quantifier q2.

Definition 12 (Generality relation �S on scaling quantifiers). Let q1 and
q2 be two scaling quantifiers; q1 is more general than q2 (written q1 �S q2) if
∀r,∀C, q1r(C) �A q2r(C).

Some generality relations can be observed between the previously defined

scaling quantifiers as depicted by Fig. 5. We detail in the following these

generality relations for the various scaling quantifiers.

Proposition 1. ∀n1, n2 ∈ [0, 100[, ∃∀≥n1% �S ∃∀≥n2% if n1 ≤ n2 .

Proof. Let r ⊆ G1 × G2 be an object-object relation, C a concept from the

lattice built on the object-attribute context (G2,M2, I2), a1 = ∃∀≥n1%r(C),

a2 = ∃∀≥n2%r(C) with n1 ≤ n2.
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Figure 5: Generality relation on quantifiers (left), and illustration: relation r between object
o and concept C extent, where C is a concept of a concept lattice on ran(r) (right)

According to the definition of ∃∀: {a1}′ =
{
o| |r(o) ∩ Extent(C)| ≥ n1|r(o)|

100

}
and {a2}′ =

{
o |r(o) ∩ Extent(C)| ≥ n2|r(o)|

100

}
Let o ∈ {a2}′, by definition of {a2}′, |r(o) ∩ Extent(C)| ≥ n2|r(o)|

100 , and

since n1 ≤ n2 this implies that |r(o) ∩ Extent(C)| ≥ n2|r(o)|
100 ≥ n1|r(o)|

100 , thus

o ∈ {a1}′.

Now let o ∈ {a1}′, by definition of {a1}′, |r(o) ∩ Extent(C)| ≥ n1|r(o)|
100 . Let

v = |r(o) ∩ Extent(C)|, we have v ≥ n1|r(o)|
100 and since n1 ≤ n2 we may have

v ≤ n2|r(o)|
100 in some cases, so that o /∈ {a2}′. Thus {a2}′ ⊆ {a1}′, but we do not

have {a2}′ = {a1}′.

Proposition 2. ∀n1, n2 ∈ [0, 100[, ∃⊇≥n1% �S ∃⊇≥n2% if n1 ≤ n2 .

The proof follows the same schema as for the previous proposition 1 except

that r(o) is replaced by Extent(C) in the right part of the conditions.

Proposition 3. The scaling quantifiers ∃, ∃∀≥0% and ∃⊇≥0% are equivalent

according to �S.

Proof. Let r ⊆ G1 × G2 be an object-object relation, C a concept from the

lattice built on the object-attribute context (G2,M2, I2).

{∃∀≥0%r(C)}′ = {o| |r(o) ∩ Extent(C)| > 0} = {o|r(o) ∩ Extent(C) 6=

∅} =def {∃r(C)}′ and {∃⊇≥0%r(C)}′ = {o| |r(o) ∩ Extent(C)| > 0} =def {∃r(C)}′

22



Proposition 4. ∀n1, n2 ∈ [0, 100[ the relational scaling quantifiers ∃∀≥n1% and

∃⊇≥n2% are not comparable according to �S.

Proof. According to definition 12 the quantifiers are not comparable if both

∃∀≥n1% �S ∃⊇≥n2% and ∃⊇≥n2% �S ∃∀≥n1% hold for at least one counter-

example. Let us define an RCF where both properties are verified: G1 is an

object set from an object-attribute context K1 , o1, o2 ∈ G1 two objects, r ⊆

G1×G2 a relation where G2 is the object set of a context K2 , and C a concept

from the concept set C2 of K2 .

If o1 is such that |r(o1)| = |r(o1) ∩ Extent(C)| = 1 then o1 ∈ {∃∀r(C)}′. If

|Extent(C)| > 100
n2

then we have a counter-example for ∃⊇≥n2% �S ∃∀≥n1%.

If o2 is such that |r(o2)∩Extent(C)| = |Extent(C)| then o2 ∈ {∃⊇r(C)}′. If

|r(o2)| > 100|Extent(C)|
n1

then we have a counter-example for ∃∀≥n1% �S ∃⊇≥n2%.

By assigning |Extent(C)| =
⌊
100
n2

⌋
+ 1 and |r(o2)| =

⌊
100
n1

(⌊
100
n2

⌋
+ 1
)⌋

+ 1

we are able to build a counter-example for any combination of n1 and n2, hence

proving that the quantifiers are not comparable.

3.2. Illustration of the generality relation

In this section, we introduce an example to illustrate the generality relation

presented in the previous section and the way its understanding may help ex-

ploring data. It is reduced to the observation of a single relation for which we

can show several quantifier combinations. The example will follow the evolution

of the extent of a concept introducing a relational attribute involving both this

relation and the same target concept when using different scaling quantifiers.

For a given relation r, this corresponds to the task of an expert interested in

knowing the group of objects of the r domain that are connected (in various ways

determined by the scaling quantifiers) to a specific group of objects (concept)

from the r range.

Table 3 shows an object-attribute context of dishes described by their main

ingredient type (fish, meat, cheese) and an object-attribute context of wines

described by their color, production area and flavor. Table 4 presents the
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matchesWith relation between dishes and wines, which is alternatively repre-

sented graphically in Fig. 6.

Table 3: Dish and Wine object-attribute contexts

KDish fi
sh

m
ea
t

ch
ee
se

FriedChicken ×
Paella ×
BeefStew ×
Raclette ×
OssoBucco ×
SalmonPekan ×
CodBrandade ×
CheeseSouffle ×
VealBlanquette ×

KWine w
h
it
e

re
d

ro
sy

al
sa
ci
an

b
u
rg
u
n
d
y

la
n
gu

ed
oc

fl
ow

er
y

fr
u
it
y

Riesling × ×
Gewurztraminer × ×
PinotGris × ×
Sylvaner × ×
Tokay × ×
Klevner × × ×
RomaneeConti × × ×
Mandourelle × × ×
Lestabel × × ×
Montrose × × ×
Bressades × × ×

Figure 7 presents the concept lattice of the object-attribute context of wines

(Tab. 3 bottom). In this concept lattice, Concept_Wine_5 represents famous

white wines produced in Alsace region (France). We will focus on relational

attributes with that concept as target but based on different quantifiers, of the

form qrmatchesWith(Concept_Wine_5).

The observed scaling quantifiers are inQ = { ∃⊇=∃⊇≥100%, ∃⊇≥60%, ∃⊇≥30%,

∃∀=∃∀≥100%, ∃∀≥60%, ∃∀≥30%, ∃=∃⊇≥0%=∃∀≥0%} (see Fig. 5). Figure 8 shows

7 concepts, extracted from the 7 concept lattices built with the scaling opera-

24



Table 4: matchesWith relation between dishes and wines

rmatchesWith R
ie
sl
in
g
(R

i)

G
ew

u
rz
tr
am

in
er

(G
)

P
in
ot
G
ri
s
(P

G
)

S
yl
va
n
er

(S
)

T
ok
ay

(T
)

K
le
vn

er
(K

)

R
om

an
ee
C
on

ti
(R

o)

M
an

d
ou

re
ll
e
(M

a)

L
es
ta
b
el

(L
)

M
on

tr
os
e
(M

o)

B
re
ss
ad

es
(B

)

FriedChicken × × × ×
Paella × × × × ×
BeefStew × × ×
Raclette × × × × × × × ×
OssoBucco × ×
SalmonPekan × ×
CodBrandade × × × × × × × × × × ×
CheeseSouffle × × × × × × ×
VealBlanquette × ×

Figure 6: Graphical representation of matchesWith relation
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Figure 7: Concept lattices of wines built from object-attribute context in Tab. 3 (right-hand
side)
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tors based on these 7 scaling quantifiers; each of these concepts introduces the

relational attribute qrmatchesWith(Concept_Wine_5). In the left branch of the

Figure 8: Concepts introducing the relational attribute q matchesWith(Concept_Wine_5) in
the different lattices of Q = { ∃⊇, ∃⊇≥60%, ∃⊇≥30%, ∃∀, ∃∀≥60%, ∃∀≥30%, ∃}

diagram, going from the top to the bottom (from specific to general quantifiers):

• Concept_Dish_7 introduces ∃⊇rmatchesWith(Concept_Wine_5); it repre-

sents the dishes that match with all Alsatian white wines.

• Concept_Dish_15 introduces ∃⊇≥60%rmatchesWith(Concept_Wine_5); it

represents the dishes that match with at least 60% of the Alsatian white

wines.

• Concept_Dish_24 introduces ∃⊇≥30%rmatchesWith(Concept_Wine_5); it

represents the dishes that match with at least 30% of the Alsatian white

wines.

• Concept_Dish_20 introduces ∃rmatchesWith(Concept_Wine_5); it repre-

sents the dishes that match with at least one Alsatian white wine.
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In the right branch of the diagram, going again from the top to the bottom

(from specific to general quantifiers):

• Concept_Dish_6 introduces ∃∀rmatchesWith(Concept_Wine_5); it repre-

sents the dishes that match only with Alsatian white wines.

• Concept_Dish_10 introduces ∃∀≥60%rmatchesWith(Concept_Wine_5); it

represents the dishes such that more than 60% of the matches are with

Alsatian white wines.

• Concept_Dish_11 introduces ∃∀≥30%rmatchesWith(Concept_Wine_5); it

represents the dishes such that more than 30% of the matches are with

Alsatian white wines.

In this diagram, the triangles indicate the dishes which are newly introduced

by the concept compared to the upper (more specific) ones. It is easy to see the

phenomenon of extent increase when going top-down, that is, from the use of a

specific to a more general quantifier. Additionally, it can be seen that all extents

are different which is the general case. In some special cases, two different qr(C),

for the same r and C, may be introduced in concepts with the same extent. The

extent increase corresponds to constraint relaxing, for example when the user

finds that the answer he obtained with a quantifier is too restricted and he

accepts to use a different, more general, quantifier.

For example, a waiter may want to propose a set of dishes to a group of

tourists in a restaurant in Strasbourg, which matches with all Alsatian white

wines, in order to offer a large local wine choice. He would first apply quan-

tifier ∃⊇. But the only dish which matches with all Alsatian white wines is

CodBrandade. Notice that CodBrandade matches also with some red and rosy

wines (so that it is not in Concept_Dish_6), meaning that if one tourist does not

like white wine, he can have a wine adapted to his dish. Thus the waiter could

relax the constraint and use the quantifier ∃⊇≥60%, and obtain CodBrandade,

Paella, and Raclette. This means that these dishes, even not matching with

all the (same) Alsatian white wines, have great affinity with that type of wine.
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The constraints may yet be relaxed by using ∃⊇≥30% or ∃. The same process

can be done in the other generalization branch, but the interpretation is slightly

different. If the waiter applies ∃∀, he will obtain dishes that match only with

Alsatian white wines. This means an even greater affinity of the dish (here

SalmonPekan) to Alsatian white wines, thus no possibility to propose another

wine to the tourist who does not like white wine. If this is too restrictive, the

∃∀≥60% quantifier will allow to propose dishes that match with many white

wines and not many other types of wines, thus allowing to focus the choice for

the tourist who does not like white wine.

The observed property about extent increase when generalizing a scaling

quantifier is given below.

Property 1 (Extent inclusion based on generalization). For two relational

attributes qgr(C) and qsr(C) with qg �S qs, the extent of the concept introducing

qgr(C) includes the extent of the concept introducing qsr(C).

This property enables us to compare the lattices obtained with two scaling

quantifiers qg and qs such that qg �S qs.

3.3. Impact of the generality relation on the concept lattices

Let us denote by Lfinal
K (q) the final concept lattice computed by RCA on

object-attribute context K = (G,M, I) with quantifier q applied to relation

r (with domain G). We have the following property that shows how concept

lattices built using qg and qs can be compared. It is then exemplified based on

Fig. 9 that shows the projection of Lfinal
Dish(∃∀≥60%) to L

final
Dish(∃∀≥30%).

Property 2 (Projection). Let us consider an RCF, an object-attribute con-

text K = (G,M, I) of the considered RCF, and two scaling quantifiers qg and

qs, with qg �S qs. There is a mapping from concepts of Lfinal
K (qs) to concepts

of Lfinal
K (qg) such that:

• A concept of Lfinal
K (qs) which introduces a simple (non relational) attribute

is mapped to the concept of Lfinal
K (qg) which introduces the same simple
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attribute. The concept extents are the same. The concept intent may be

different.

• A concept of Lfinal
K (qs) which introduces a relational attribute qsr(C) is

mapped in Lfinal
K (qg) to the concept which introduces the relational at-

tribute qgr(C). The concept extent may be larger for the concept intro-

ducing qgr(C).

• A concept C of Lfinal
K (qs) with an empty simplified intent is mapped in

Lfinal
K (qg) to the lowest concept which includes C extent.

Let us illustrate the different mappings and justify the property. For the first

category of concepts of Lfinal
K (qs), introducing no relational attribute, we have

for example: Concept_Dish_2 of Lfinal
Dish(∃∀≥60%) mapped to Concept_Dish_2

of Lfinal
Dish(∃∀≥30%). Both introduce the attribute fish. For this category, the set

of objects that have the simple attribute cannot change. This is sufficient to

establish the property.

For the second category of concepts of Lfinal
K (qs), introducing a relational

attribute qsr(C), we have for example: Concept_Dish_10 of Lfinal
Dish(∃∀≥60%)

mapped to Concept_Dish_11 of Lfinal
Dish(∃∀≥30%). Concept_Dish_10 of L

final
Dish(∃∀≥60%)

introduces ∃∀≥60%matchesWithConcept_Wine_5 and Concept_Dish_5 of Lfinal
Dish(∃∀≥30%)

introduces ∃∀≥30%matchesWithConcept_Wine_5. In this category, due to the

generality relation between relational attributes, the set of objects that have

qsr(C) will also have qgr(C). Thus there will be a concept in Lfinal
K (qg) intro-

ducing qgr(C) with an extent larger than the extent of the concept in Lfinal
K (qs)

which introduces qsr(C).

For the third concept category of Lfinal
K (qs), an example is given by the map-

ping of Concept_Dish_9 of Lfinal
Dish(∃∀≥60%) to Concept_Dish_2 of L

final
Dish(∃∀≥30%).

Concept_Dish_9 of Lfinal
Dish(∃∀≥60%) extent is {Paella, SalmonPekan}, Concept_Dish_2

of Lfinal
Dish(∃∀≥30%) extent is {Paella, CodBrandade, SalmonPekan}. In this case,

the objects that are in the extent of the concept will have the inherited simple

attributes and the inherited relational attributes of the form qsr(C). Then they
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will also inherit the relational attributes of the form qgr(C) in Lfinal
K (qg). Thus

they will continue sharing attributes in Lfinal
K (qg) and there will be a concept in

Lfinal
K (qg) whose extent will contain them.

Table 5 sums up the projections between concepts of Lfinal
Dish(∃∀≥60%) (left

column) and Lfinal
Dish(∃∀≥30%) (right column).

Table 5: Mapping from Lfinal
Dish (∃∀≥60%) to Lfinal

Dish (∃∀≥30%)

Concept number in Lfinal
Dish(∃∀≥60%) Concept number in Lfinal

Dish(∃∀≥30%)
Introducing a simple attribute

2 2
3 3
1 1

Introducing relational attributes
4 4
10 11
8 12
0 0

Empty simplified intent
9 2
7 9
5 5
6 1

This projection organizes the space in which a final user can move, by re-

laxing, or enforcing, or changing the constraints on the groups of objects. It

also guides (and traces) the user to move between the concepts of the different

concept lattices. The lattices are useful for exploring around a concept with the

same scaling quantifier.

4. Implementation

The quantifiers presented in this paper have been implemented and tested

in RCAExplore5 tool. It implements a modular version of RCA where core ele-

ments, such as concept generator algorithms and scaling operators, have several

5http://dolques.free.fr/rcaexplore
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alternatives that can be controlled interactively by the user. RCAExplore has

been developed in Java as part of the Fresqueau project to explore new ways

for extracting knowledge from watercourses quality data. Some features of the

tool have already been published. In [14] we present the interactive process and

in [11] we present the use of AOC-posets as an alternative to concept lattices.

AOC-posets have been introduced for several FCA applications. Given a con-

cept lattice (CK ,�C), its associated AOC-poset (for Attribute-Object-Concept

poset) is the suborder restricted to the set of object-concepts (which introduce at

least one object) and attribute-concepts (which introduce at least one attribute).

Lattice computation may have high complexity in time and space, as the size

of the lattice may rise up to 2min(|G|,|M |) concepts. The size of an AOC-poset

is bounded by |G|+ |M |. This significant size difference is observed in practice

[11, 42]. Particular implication rules (implication rules having a premise con-

taining one attribute) are extracted in the context of Fresqueau project in [11],

on a variant of the dataset used in the current paper. AOC-posets and Iceberg-

lattices are compared for this task, and the results highlight that, although

RCA is impracticable when Iceberg-lattices are used, the use of AOC-posets

makes RCA perfectly applicable in this case. In [42], with additional figures

given in the companion presentation6, RCA enables to normalize UML class

models in order to remove their redundancies and highlight relevant new ab-

stractions. The method is applied to 15 UML class models corresponding to

the successive versions of an information system on Pesticides and to 4 Java

programs in the domain of human resource management. The models are true

models coming from a public organism which works in the environment domain

(IRSTEA7) and from industry (Berger Levrault8). The results show that there

are no time computation problems and that the use of the AOC-posets makes

the method practical for design experts (that have to analyze the extracted new

abstractions) and far more efficient than with lattices.

6http://www.lirmm.fr/ huchard/Documents/Papiers/miralles2015.pdf
7http://www.irstea.fr/en/accueil
8https://www.berger-levrault.fr/
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Figure 10: Relational schema used for experiments on the watercourse quality dataset

The AOC-poset is sufficient to recover the entire object-attribute context,

and for several tasks, such as building non-redundant classifications or finding

implication rules with premise composed of a single attribute. Note that Iceberg

lattices can also be used in order to limit the exploration space, using threshold

on concepts and thus losing more or less information [10, 46].

For illustration purpose, we rely on data collected during the Fresqueau

project which aimed to study biological and physico-chemical parameters sam-

pled in waterbodies, in order to assess and monitor the hydrobiologic quality of

running waters [47]. Data were collected from various French databases such

as the ones proposed by the Eau France portal9. In the following we con-

sider a dataset dealing with taxons10, life traits which are taxon characteristics,

physico-chemical parameters, and water samples. This dataset was used in the

Fresqueau project to extract knowledge about physico-chemical values and their

link to life traits modalities, e.g. finding the characteristics of taxons that live

in water streams with a given physico-chemical quality. The water samples have

been taken from monitoring stations at different dates between 2005 and 2009,

that were considered representative by the biologists. The station names are

anonymized. The dataset is available online11, it has been analyzed with the

2015 RCAexplore version12.

Based on this dataset, we study the link between the scaling quantifiers

and the number of generated concepts, that represent the exploration space in

which an expert moves during his/her analysis tasks. We compare the number

9http://www.eaufrance.fr
10taxons represent animals or plants, at different levels as species, genuses or families
11https://www.lirmm.fr/ huchard/Documents/Papiers/latticedataset-taxons-hierarchy.rcft
12https://www.lirmm.fr/ huchard/Documents/Papiers/rcaexplore-20151012.jar
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of generated concepts when using the various quantifiers.

The relational schema used to parameterize the experiments is presented

in Fig. 10. Samples have been taken at various river sites and various dates.

Water samples are described by five object-object relations representing differ-

ent levels of physico-chemical parameter values and five object-object relations

representing different levels of abundance of taxons. Physico-chemical parame-

ters can be magnesium, chloride, organic carbon, ... and are described (in an

object-attribute relation) by several categories (metals, pesticides, ...). Tax-

ons are described by their parents at different hierarchical levels, e.g. Acan-

thoceras has for parent Chaetocerotales and Coscinodiscophyceae (the direct

parent of Chaetocerotales). Life traits are for example microhabitats, maximal

sizes, reproduction modes, respiration modes, etc. Taxons are described by five

object-object relations representing different levels of affinity with the life traits

modalities, e.g. Acentrella has an affinity level 1 for the modality "tegument"

and an affinity level 2 for the modality "gill" of trait "respiration modes".

In these experiments we use AOC-posets. Table 6 presents the size of the

contexts and AOC-posets for physico-chemical parameters and life traits modal-

ities at step 0 (they will not change in the following steps because they have

no outgoing relations). The 40 physico-chemical parameters are described by

their identity (40 attributes) and 12 classes (metals, pesticides, ...). The 116 life

traits modalities are described only by their identity (the relation is a diagonal).

Table 6: Size of the contexts and AOC-posets for physico-chemical parameters and life traits
modalities at step 0

#objects #attributes #concepts
Physico-chemical parameters 40 52 49

Life traits modalities 116 116 116

Table 7 presents the results obtained for the 392 taxons and 1702 water

samples while following the schema of Fig. 10 with different quantifiers. The

first table indicates the object and attribute numbers of the taxons and water

samples object-attribute contexts. Water samples are not described by any
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attribute, while taxons are described by their taxon parents.

Table 7: Size of the contexts and AOC-posets for Taxons and Water samples at step 3

Taxons Water samples
#objects 392 1702

#attributes 392 0
Taxons Water samples Generalization

#concepts #concepts
∃⊇ 832 2005 ↓

∃⊇≥60% 832 2015 ↓
∃⊇≥30% 832 2071 ↓
∃ 832 3742 �

∃∀≥30% 368 2183 ↑
∃∀≥60% 293 2013 ↑
∃∀ 293 2013 ↑

For high levels (level5) Taxons Water samples Generalization
#concepts #concepts

∃⊇ 288 731 ↓
∃⊇≥60% 288 733 ↓
∃⊇≥30% 288 812 ↓
∃ 288 923 �

∃∀≥30% 287 626 ↑
∃∀≥60% 252 270 ↑
∃∀ 252 247 ↑

Then the second table shows the numbers of concepts obtained with different

quantifier choices on the whole RCF. The highest numbers are obtained, as

expected, for ∃ quantifier (resp. 832 taxon concepts and 3742 water sample

concepts), and they decrease when more general quantifiers are used. Using

∃⊇ and its percent versions, the numbers of concepts decrease until reaching

respectively 832 for taxons and 2005 for water samples. Using ∃∀ and its percent

versions, the numbers of concepts decrease until reaching respectively 293 for

taxons and 2013 for stations.

The third table shows the numbers of concepts obtained with different quan-

tifier choices on the RCF restricted to the object-object relations corresponding

to the highest value (5) for physico-chemical, abundance and affinity levels.

The highest numbers are obtained, as expected, for ∃ quantifier (resp. 288
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taxon concepts and 923 station concepts), and they decrease when more general

quantifiers are used. Using ∃⊇ and its percent versions, the numbers decrease

until reaching respectively 288 for taxons and 731 for water samples. Using ∃∀

and its percent versions, the number of water sample concepts decreases until

reaching 247, while the number of taxon concepts reaches 252.

The last column in these two tables indicates the generalization order on

quantifiers as shown in Fig. 5.

The variations show the effect of scaling quantifiers on relaxing or reinforcing

the constraints, and thus on expanding or reducing the data exploration space.

To simplify our illustration, we applied the same quantifier to all object-object

relations, but of course, during an analysis, the object-object relations may

be associated to different quantifiers that besides may change according to the

analysis steps. Nevertheless, using the "extreme" combination of quantifiers (∃

versus ∃∀), our study shows the borders of the exploration space.

5. Related Work

Multi-relational data have been studied in the domain of Formal Concept

Analysis from several perspectives. In the earliest approaches [48, 49, 34], graphs

connecting objects are classified, while in RCA, objects are classified depending

on their relations to other objects. More recently, relational data have been

dealt with logical concept analysis [50]. The concepts’ intents may then contain

relational attributes such as (∃r.f). Meta-relations are also built for navigating

from a concept to another. But, contrarily to RCA, no iteration is performed. In

[51], authors compute a basis of general concept inclusions in Description Logics

ELgfp where cyclic concept definition has close connections with RCA. In [52],

they extract tuples of boolean factors from the various data tables. Several

connection schemas can be applied that are similar to the scaling operators of

RCA. Compared to RCA, the boolean factors are only a part of the formal

concepts that can be built from the object-attribute tables, and the approach

does not iterate and cannot propagate knowledge. In [53], a Galois connection

(and the derived concept lattice) is introduced to query sets of objects connected

37



by relations. Only existential queries are expressed and there is no iteration, thus

no possibility to progressively find the concepts. Ferré [54] proposes an extension

of FCA to knowledge graphs: in this framework, a context is a conceptual graph

G with various relations and entities; a concept extent is a set of k-tuples of

entities (k = 1, ...n) and the corresponding intension is a graph pattern, i.e. a

generalized graph from G that is matched by the extent tuples. A family of

lattices is built from G, with a lattice for each arity k. Kötters [55] investigates

the relations between power context families in PCFM and intension graphs in

IGM , both based on the set of attribute sets M . He shows that the pattern

structure ((G)n, IGnM , δ
n) where G is a set of objects (from a power context

family), and δn maps a n-uplet to a windowed intension graph, allows to build

a lattice that corresponds to the lattice built from an RCA process.

Generalization is widely used in Machine Learning in order to efficiently

search the space of possible solutions (hypotheses) [56]. Besides, quantifiers

are commonly used to query or extract knowledge from relational data. The

Inductive Logic Programming (ILP) field is concerned with the development

of methods for relational data mining [1]. Methods that are based on logical

formalisms use the existential quantifier. Nevertheless, the structuration of the

search space in ILP while using both the existential and the universal quantifier

has been studied theoretically in [57]. Our work has been inspired from this

one, but while ILP quantifies variables, RCA quantifies relations. Aggregates

and complex aggregates [58, 59] also allow to perform quantification. They

rely on aggregate functions (e.g., max , count) that can have some restrictions

on the objects whose value is aggregated. Our definitions on generalization of

scaling operators follow the idea of the one used for hypotheses in ILP [1] and

the one used for concepts in FCA. A set of quantifiers similar to the one of

RCA has been introduced a long time ago in logic and linguistics as generalized

quantifiers, and are studied in the field of databases to extend SQL [60].

Many variants of FCA have been developped to deal with multivariate, inter-

val or fuzzy or rough data [61]. Similarly, variants of RCA could be developped

to deal with e.g. fuzzy relational data, but as far as we know, no work has been
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done in this field. Links between FCA and rough sets (RS), when formulated

between two universes, have been widely studied [62, 63]. Indeed, both theories

attempt to formalize the notion of concept. In [62], the operators of FCA and

of RS are compared: the author states that the set X ′ consists of necessary

properties of an object in X while X� = {y ∈ M |∀x ∈ G(xIy ⇒ x ∈ X)}

consists of sufficient properties, and an object of X has at least one property in

the set X� = {y ∈ M |∃x ∈ G (xIy ∧ x ∈ X)}. Object, resp. attribute oriented

formal concepts can be defined by using both operators � and �. The set of

pairs (X,Y ) where X = Y � and Y = X�, resp. X = Y � and Y = X� forms a

lattice, as does the set of pairs (X,Y ) where Y = X ′ and X = Y ′ in the FCA

framework.

Furthermore using scaling quantifiers to build relational attributes between

objects and a concept in RCA can be related to the theory of rough sets over

two universes. More precisely, let us consider G and Gr two object sets in

a relational context family, and r the binary relation on G × Gr. Then, the

lower approximation of a concept extent Extent(Ci) ⊆ Gr is Extent(Ci)
� =

{o ∈ G : r(o) ⊆ Extent(Ci)}, that is all the objects of G having ∃∀r(Ci) as

relational attribute; the upper approximation of Extent(Ci) is: Extent(Ci)� =

{o ∈ G : r(o) ∩ Extent(Ci) 6= ∅}, that is all the objects of G having ∃r(Ci) as

relational attribute. Accordingly, the set of objects linked to a concept with a

given relational attribute can be seen as an approximation of the extent of this

concept. Besides, since RCA allows relations between Gr and several objects

sets, which are themselves linked, several nested approximations are built for

Extent(Ci). Furthermore, using various scaling quantifiers can be related to

probabilistic rough sets [64] or the variable precision rough set model described

in [65]. Finally, our aim is to analyse the effect of these scaling quantifiers in the

RCA framework, where iterative algorithms allow to build explicit hierarchies

of concepts from complex relation schemas, even with cycles.

RCA has been used for analysis and reengineering of UML elements, namely

in class diagrams and in use case diagrams [6]. In [66], RCA is used to exploit

relations between methods and attributes to detect and fix design defects. It is
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used to learn model transformations in [67]. In [68], relations between abstract

tasks in an abstract orchestration are used to classify relevant Web services to

instantiate the tasks. Other applications can be found in ontology engineer-

ing [69, 70]. In [14], we proposed an adaptation of RCA to explore relations

in a guided way in order to increase the performance and the pertinence of the

results. A variant of RCA is used in [11] for extracting rules from watercourse

datasets. These applications show that RCA is useful for data analysis, and it

is thus interesting to provide tools to better explain its functioning, especially

when interacting with an analyst.

6. Conclusion

Relational data are rich of many information for data analysts. Among the

possible ways to analyze such data, Relational Concept Analysis focuses on

classifying objects of several categories taking into account their connections in

an interdependent manner. It builds hierarchies of concepts, that are groups

of objects (of the same category) similar with respect to their attributes and

their relationships to other groups of objects (of another or the same category).

The relationships between objects and groups, or among groups, are captured

by relational attributes that conform to specific scaling quantifiers. The choice

of scaling quantifiers by the analyst determines the kind of knowledge patterns

and classifications that are learnt from the dataset.

In this paper, we have compared the scaling operators according to a gen-

erality relation. Understanding this generality relation is a necessary step for

helping the data analyst to forecast the kind of results she/he may obtain and

to navigate between the multiple analysis possibilities. Based on a real dataset,

we have shown that the possibility to use different scaling quantifiers is relevant

for extracting various information levels. To summarize, our main contributions

concern:

• A formal definition of all percent scaling quantifiers used in RCA.
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• A generality relation between relational attributes in RCA, based on the

derived relational attributes.

• An illustrative scenario which shows how the method can be used.

• An illustration on real data, showing the effect of the chosen quantifiers

on the result size.

Furthermore, this theoretical exploration is a first step to a guide for the RCA

user with quantifiers. Indeed, it provides a basis for visualization tools that

show the lattices and their connections, or that highlight the analysis path

(summaries of the choices that are made at each step).

As future work, we would like to study the generality relation between more

complex sequences of scaling operators, and to analyze the case where data

contain cycles. We also plan to enhance the existing software RCAExplore for

exploiting these results on generalization in RCA. In particular we are develop-

ing an interface, in order to guide the experts in the choice of a scaling operator

at each step of the RCA process in an interactive way. We plan to study how

anticipating the effect of scaling quantifiers on the size of lattices can guide the

analysis process of various datasets. We are also studying a possible combi-

nation between RCA and propositionalization approaches and will deepen the

comparison between RCA, granularity computing, and rough sets.
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