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Abstract

Human-Robot Interaction challenges Artificial Intelligence in many regards: dynamic, partially unknown envi-
ronments that were not originally designed for robots; a broad variety of situations with rich semantics to understand
and interpret; physical interactions with humans that requires fine, low-latency yet socially acceptable control strate-
gies; natural and multi-modal communication which mandates common-sense knowledge and the representation of
possibly divergent mental models. This article is an attempt to characterise these challenges and to exhibit a set of key
decisional issues that need to be addressed for a cognitive robot to successfully share space and tasks with a human.

We identify first the needed individual and collaborative cognitive skills: geometric reasoning and situation as-
sessment based on perspective-taking and affordance analysis; acquisition and representation of knowledge models for
multiple agents (humans and robots, with their specificities); situated, natural and multi-modal dialogue; human-aware
task planning; human-robot joint task achievement. The article discusses each of these abilities, presents working im-
plementations, and shows how they combine in a coherent and original deliberative architecture for human-robot
interaction. Supported by experimental results, we eventually show how explicit knowledge management, both sym-
bolic and geometric, proves to be instrumental to richer and more natural human-robot interactions by pushing for
pervasive, human-level semantics within the robot’s deliberative system.

Keywords: human-robot interaction, cognitive robotics, perspective taking, cognitive architecture, knowledge
representation and reasoning

1. The Challenge of Human-Robot Interaction

1.1. The Human-Robot Interaction Context

Human-Robot Interaction (HRI) represents a challenge for Artificial Intelligence (AI). It lays at the crossroad of
many subdomains of AI and in effect, it calls for their integration: modelling humans and human cognition; acquiring,
representing, manipulating in a tractable way abstract knowledge at the human level; reasoning on this knowledge
to make decisions; eventually instantiating those decisions into physical actions both legible to and in coordination
with humans. Many AI techniques are mandated, from visual processing to symbolic reasoning, from task planning
to theory of mind building, from reactive control to action recognition and learning.

We do not claim to address here the issue as a whole. This article attempts however to organise it into a coherent
challenge for Artificial Intelligence, and to explain and illustrate some of the paths that we have investigated on
our robots, that result in a set of deliberative, knowledge-oriented, software components designed for human-robot
interaction.

We focus on a specific class of interactions: human-robot collaborative task achievement [1] supported by multi-
modal and situated communication. Figure 1 illustrates this context: the human and the robot share a common
space and exchange information through multiple modalities (we specifically consider verbal communication, deictic
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gestures and social gaze), and the robot is expected to achieve interactive object manipulation, fetch and carry tasks
and other similar chores by taking into account, at every stage, the intentions, beliefs, perspectives, skills of its human
partner. Namely, the robot must be able to recognise, understand and participate in communication situations, both
explicit (e.g. the human addresses verbally the robot) and implicit (e.g. the human points to an object); the robot must
be able to take part in joint actions, both pro-actively (by planning and proposing resulting plans to the human) and
reactively; the robot must be able to move and act in a safe, efficient and legible way, taking into account social rules
like proxemics.

A
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B

Figure 1: The robot reasons and acts in domestic interaction scenarios. The sources of information are multi-modal dialogue (A) and perspective-
aware monitoring of the environment and human activity (B). The robot must adapt on-line its behaviours by merging computed plans (C) with
reactive control. The robot explicitly reasons on the fact that it is (or not) observed by the human. Reasoning and planning take place at symbolic
as well as geometric level and take into account agents beliefs, perspectives and capabilities (D) as estimated by the robot.

These three challenges, communication, joint action, human-aware execution, structure the research in human-
robot interaction. They can be understood in terms of cognitive skills that they mandate. Joint action, for instance,
builds from:

• a joint goal, which has been previously established and agreed upon (typically through dialogue),

• a physical environment, estimated through the robot’s exteroceptive sensing capabilities, and augmented by
inferences drawn from previous observations,

• a belief state that includes a priori common-sense knowledge and mental models of each of the agents involved
(the robot and its human partners).

The robot controller (with the help of a task planner) decides what action to execute next [2], and who should
perform it, from the robot or the human (or both in case of a collaborative action such as a handover [3, 4]), how
it should achieved and what signals should be sensed and/or produced by the robot to facilitate human-robot joint
action [5, 6, 7, 8]. It finally controls and monitors its execution. The operation continues until the goal is achieved, is
declared unachievable or is abandoned by the human [9].

This translates into several decisional, planning, representation skills that need to be available to the robot [10].
It must be able 1. to represent and manipulate symbolic belief states, 2. to acquire and keep them up-to-date with
respect to the state of the world and the task at hand, 3. to build and iteratively refine shared (human-robot) plans, 4. to
instantiate and execute the actions it has to perform, and conversely, to monitor those achieved by its human partner.

Besides, such abilities should be designed and implemented in a task-independent manner, and should provide
sufficient levels of parametrization, so that they adapt to various environments, different tasks and variable levels of
engagement of the robot, ranging from teammate behaviour to assistant or pro-active helper.

These are the challenges that we will discuss in this article.
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1.2. Contribution and Article Overview
Our main contributions focus on the architecture of the decisional layer of social robots. Specifically, the delib-

erative architecture of a robot designed to share space and tasks with humans, and to act and interact in a way that
supports the human’s own actions and decisions. We present hereafter a model of cognitive integration for service
robots that:

• exposes a principled approach to integrate a set of complex cognitive components in an explicit, semantics-
oriented and yet loosely-coupled fashion;

• achieves multi-modal and interactive symbol grounding [11] in complex, real-world environments involving
one or several humans and a robot;

• distributes the computation of symbolic knowledge by combining perspective taking, affordances computation,
situated dialogue and logical inference;

• provides generic mechanisms for the robot to reason about the mental state of its human partners;

• reuses the same set of affordances and inferences, together with explicit contextual reasoning on humans and
robot abilities, to generate human-robot shared plans.

This architecture is fully implemented and we demonstrate it on several robotic platforms and in several interaction
scenarios. It eventually proves to be an effective framework for novel contributions about human-robot joint action [12,
13, 14], as well as for multi-disciplinary studies [15, 16, 17, 18, 19, 20].

The remaining of the article details this robotic architecture. We organise this discussion in five sections. The next
section introduces the architecture as a whole, as well as the knowledge model that we have developed for our robots.
Section 3 discusses each of the cognitive components of the architecture. Section 4 presents two studies that illustrate
in a practical way what can be currently achieved with our robots. The Sections 5 and 6 finally summarise our main
contributions and restate the key challenges that human-robot interaction brings to Artificial Intelligence.

2. Deliberative Architecture and Knowledge Model

2.1. Building a Human-Aware Deliberative Layer
Articulating multiple independent software modules in one coherent robotic architecture is not only a technical

challenge, but also a design and architectural challenge. In particular, properly managing the rich semantics of natural
interactions with humans raises a range of issues. Our basic assumption and guiding principle is that human-level in-
teraction is easier to achieve if the robot itself relies internally on human-level semantics. We implement this principle
by extensively relying on explicit knowledge representation and manipulation: software components communicate
with each other using first-order logic statements organised into ontologies and whose semantics are close to the ones
manipulated by humans.

Figure 2 gives an overview of our architecture. An active knowledge base (Oro), conveniently thought as a
semantic blackboard, connects most of the modules: the geometric reasoning module (Spark) produces at relatively
high frequency symbolic assertions describing the state of the robot environment and its evolution over time. These
logical statements are stored in the knowledge base, and queried back, when necessary, by the language processing
module (Dialogs), the symbolic task planner (HATP) and the execution controller (Shary or pyRobots). The output
of the language processing module and the activities managed by the robot controller are stored back as symbolic
statements as well.

For instance, a book laying on a furniture might be picked up by Spark and represented in symbolic terms as
〈BOOK1 type Book, BOOK1 isOn TABLE〉. These symbolic statements are stored in the knowledge base Oro and made
available to the other cognitive modules. Later, the robot might process a sentence like “give me another book”.
The Dialogs module would then query the knowledge base: find(?obj type Book, ?obj differentFrom BOOK1), and
write back assertions like 〈HUMAN desires GIVE_ACTION45, GIVE_ACTION45 actsOn BOOK2〉 to Oro. This would in turn
trigger the execution controller Shary to prepare to act. It would first call the HATP planner. The planner uses the
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Figure 2: Overview of the architecture. A deliberative layer, composed of six main modules, interacts with a low-level sensori-motor layer.
Knowledge is centrally managed in an active semantic blackboard, pictured above with a thick border. The links between components depicted
on the figure underline the central role of the knowledge base: many of the data streams are actually symbolic statements exchanged through this
semantic blackboard.

knowledge base to initialise the planning domain (e.g.find(BOOK2 isAt ?location)), and returns a full symbolic plan
to the execution controller. Finally, the controller would execute the plan and monitor its achievement, both for itself
and for the human. We present complete examples of similar interactions in Section 4.

Our architecture has not been designed to replicate or provide a plausible model of human cognition, and in this
sense, we distinguish ourselves from research on cognitive architectures. Instead, our main design principle is to
nurture the decisional components of the robot with models of human behaviour and human preferences in order to
develop an effective artifical cognition for a robot that is able to serve and interact seamlessly with humans. In this
sense, it shares its objectives with [21, 22].

At high level, this architecture relies on the same principles as a number of known robotic layered architectures [23,
24, 25, 26]. However, the main point for us was to refine and study in detail the internals of the deliberative layer. In
our model, we suggest that the interactions between components within this deliberative level have to be essentially
bidirectional. We also suggest not to introduce any sub-layers of abstraction amongst these deliberative components1.
The natural language processing component illustrates this structure: instead of being an independent input modality
whose outputs would be unidirectionally fed to “higher” decisional components, it lives in the deliberative space
at the same level as other deliberative components, and make use of the knowledge base in a bidirectional manner,
to interpret, disambiguate natural language, and eventually store newly produced interpretations (natural language
processing is discussed in Section 3.3). Another example is the intricate relation between high-level symbolic planning
and geometric planning to deal with affordances and human preferences.

Our architecture relates to Beliefs, Desires, Intentions (BDI) architectures. As put by Woolridge [27], BDI ar-
chitectures are primarily focused on practical reasoning, i.e. the process of deciding, step by step, which action to
perform to reach a goal. The management of the interaction between knowledge (the beliefs) and task and plan repre-

1We must clarify that we do have lower-level modules to execute actions or manage sensors, but all cognition-related modules live in the same
global deliberative space.
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sentation and execution (the desires and the intentions) is central, and aims at selecting at each step the best sub-goal.
It becomes then an intention that the robot commits to. As for any cognitive system, this fundamental interaction be-
tween knowledge and actions is central to our approach as well, and typically involves the dialogue module to acquire
desires from the other agents, and the planner and the execution controller to first decide to take into account (or not)
an incoming desire as a goal, and then to generate and manage intentions from these goals through the symbolic task
planner.

We extend upon BDI architectures by running other background deliberative tasks, without them being explicitly
triggered by desires in the BDI sense. The main ones include situation assessment, action monitoring and processing
of non-imperative speech (including performative dialogue that can possibly change the internal state of the robot, but
does not lead directly to the creation of desires, like assertion of new facts or question answering).

2.2. Knowledge Model

In our architecture, knowledge manipulation relies on a central server (the Oro server [28], Figure 5 top) which
stores knowledge as it is produced by each of the other deliberative components (the clients). It exposes a json-based
RPC API to query the knowledge base [29]. We represent knowledge as RDF triples in the OWL sub-language 2. Ev-
ery time triples are added or removed from the knowledge base, a Description Logics reasoner (Pellet [30]) classifies
the whole ontology and inserts all possible inferred triples. The clients of the Oro server are in charge of managing
themselves the knowledge (when to add, when to update, when to retract knowledge) as no meta-semantics are carried
over that let the server manage itself these dynamics.3

This architecture design (a central knowledge base that essentially appears as a passive component to the rest of
the system – even though it actually actively processes the knowledge pool in the background to perform inferences)
departs from other approaches like the CAST model [31] where knowledge is represented as a diffuse, pervasive re-
source, or the CRAM/KnowRob architecture [32] where the knowledge base is an active hub that pro-actively queries
perceptual components to acquire knowledge. We believe that our design leads to a good observability (knowledge
flows are explicit and easy to capture since they are centralised) as well as high modularity (modules communicate
through an explicit and unified API).

At run-time, the knowledge available to the robot comes from three sources. A priori knowledge is stored in
an ontology (the OpenRobots ontology, discussed hereafter) and is loaded at start-up. This static source implements
the common-sense knowledge of the robot, and might optionally include scenario-specific knowledge (for instance,
about objects that are to be manipulated). The second part of the knowledge is acquired at run-time from perception,
interaction and planning. The next sections go into details of these processes. The third source of symbolic statements
comes from the inferences produced by the reasoner.

Contrary to similar projects like KnowRob [33] that relies on the concept of computables to lazily evaluate/acquire
symbolic facts when needed, we have an explicit approach where we greedily compute and assert symbolic statements
(like spatial relations between objects, see Section 3.2). For instance, whenever a client queries KnowRob to know if
〈OBJECT1 isOn OBJECT2〉, KnowRob calls a geometric reasoner to evaluate if this specific spatial relation holds at that
point in time. With our approach, spatial relations are instead computed and asserted a priori by a dedicated process
that continuously runs in the background. This design choice trades scalability for explicit reasoning: at any time, the
full belief state is made explicit, and therefore provides the reasoner with the largest possible inference domain. This is
of special importance for an event-based architecture like ours (see Section 3.5), where an explicit and comprehensive
belief state is required to not miss events.

2.2.1. RDF as a Formalism for Semantics
The Oro server relies on Description Logics (OWL) to represent and manipulate knowledge. Relying on RDF

triples and Description Logics has advantages such as good understanding of its trades-off, thanks to being widespread
in the semantic Web community; the availability of mature libraries to manipulate the ontology; interoperability with
several major on-line knowledge bases (OpenCyc, WordNet, DBPedia or RoboEarth [34] for examples); open-world

2http://www.w3.org/TR/owl2-overview/
3With one exception: so-called memory profiles let the server automatically discard facts (i.e. forget about them) after a specific period of time.

We present this feature in section 3.1.3.
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Figure 3: The upper part of the Oro common-sense conceptualization (TBox). These concepts are shared with the OpenCyc upper-ontology. They
relate to each other through ‘is-a’ subsumption relations.

reasoning (which enables us to represent that some facts might be unknown to the robot); and the formal guarantee of
decidability (it is always possible to classify a Description Logics ontology).

It also has restrictions, both basic (the suitability of Description Logics when reasoning on –typically non-
monotonic– commonsense knowledge has been questioned) and practical: RDF triples imply binary predicates, which
constrains the expressiveness of the system or leads to inconvenient reifications. Alternatives have been proposed (like
KnowRob [33]) that interleave RDF with more expressive logic languages like Prolog with however other limitations,
like closed-world reasoning.

Classification performance is another issue: in our experience, an ontology sized for a typical study (about 100
classes and 200 instances), classification takes around 100ms, which may introduce perceptible delays during inter-
actions. Besides, the performances are difficult to predict: the insertion of seemingly simple statements may change
abruptly the logical complexity of the knowledge model and lead to a noticeable degradation of classification time.

This knowledge model also largely excludes representation of continuous phenomena (like time) or uncertain
phenomena. When required (for instance for action recognition), these are managed within dedicated components
(like Spark, discussed in Section 3.2), and are not represented in the knowledge base.

Alternative formalisms have been successfully investigated in robotics to address some of these restrictions. Be-
sides the Prolog/OWL combination relied upon by KnowRob, Answer Set Programming has been used in robotics [35,
36] for instance to better supports non-monotonic reasoning. We have also pointed in [37] how modal logics like the
epistemic logics could be relevant to the particular field of social human-robot interaction as they allow for the rep-
resentation of alternative mental models. First-order logic and OWL ontologies have however proved so far a simple,
effective and sufficient symbolic framework for our experimental applications.

Incidentally, and because ontologies and RDF statements remain conceptually simple (compared to full logical
languages like Prolog or modal logics), their adoption has also effectively helped to grow awareness amongst col-
leagues on the significance of the “semantic level” when developing new components for the robot.

2.2.2. The OpenRobots Ontology
As previously mentioned, the logical statements exchanged between the deliberative components are organised

within the Oro knowledge base into an ontology. The conceptualization (i.e. the system of concepts or TBox) of this
ontology is statically asserted4, while the instantiation (the ABox) of the ontology is generally dynamically asserted at
run-time, by the other cognitive components.

4It can however be altered at runtime, see the “Cat” example in Section 3.3.1.
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The OpenRobots common-sense ontology represents the statically asserted part of the ontology. It has been
designed from two requirements: being practical (i.e. covering our experimental needs) and conforming as much as
possible to existing standards (specifically, the OpenCyc upper ontology [38]).

This leads to a bidirectional design process: from bottom-up regarding the choices of concepts to model, top-down
regarding the upper part of the conceptualization. This upper part of the ontology is pictured on Figure 3. All the
classes visible in this figure belong to the OpenCyc namespace.

Aligning the upper part of the ontology on OpenCyc (as done by other knowledge representation systems, like
KnowRob [33] or PEIS K&R [39]) has multiple advantages. First the design of this part of the ontology is generally
difficult: it pertains to abstract concepts whose mutual relations comes to philosophical debates. The upper taxon-
omy of OpenCyc represents a relative consensus, at least within the semantic Web community. Then, because it is
a well established project with numerous links to other on-line databases (like Wikipedia or WordNet), the reuse of
key OpenCyc concepts ensures that the knowledge stored by the robot can be shared or extended with well-defined
semantics. The concept of Object is a good example as it represents a typical case of ambiguous meaning: in everyday
conversation, an object is a relatively small physical thing, that can be usually manipulated. A human is not usually
considered as an object. OpenCyc however precisely defines an object as anything at least partially tangible. This
includes obviously the humans, and actually many other entities that would not be commonly said to be objects (the
Earth for instance). By relying on well-defined and standard semantics to exchange information between artificial sys-
tems, we avoid semantic ambiguities. As the robot interacts with humans, we must however address the discrepancy
between OpenCyc concepts and human terminology. In these situations, we manually label the OpenCyc concepts
with appropriate human names: for instance, the OpenRobots Ontology associates the label “object” to the concept
cyc:Artifact instead of the concept cyc:PartiallyTangible. These labels are used in priority during the grounding
of verbal interactions.

Figure 3 also illustrates the fundamental disjunction in the Oro model between temporal and spatial entities
(formally, (TemporalThing u SpatialThing)I = ∅, with I the interpretation of our model).

On this same figure, the class PurposefulAction represents the superset of all the actions that are purposefully
performed by the robot (or another agent). Actual actions (i.e. subclasses of PurposefulAction like Give or LookAt)
are not initially asserted in the common-sense ontology. They are instead added at run-time by the execution controller
(in link with the symbolic task planner) and the natural language processor based on what the robot is actually able to
perform and/or to interpret in the current context (i.e. the current robot configuration and the actions required by the
scenario). The set of actions that the robot can interpret usually closely resemble the planning domain in use (i.e. the
set of tasks known to the symbolic task planner, with their corresponding pre- and post-conditions).

The tree5 in Figure 3 is not equally developed in every directions. For example, the subclasses of PartiallyTangibleThing
(i.e. what we commonly call objects) are shown in Figure 4. Our ‘bottom-up” design process of the ontology is ap-
parent on this figure: only the subclasses relevant to the context of service robotics in an human-like environment
are asserted: For performance reasons as well as clarity, we have decided against an extended conceptual coverage of
what “partially tangible things” might be. We instead opportunistically extend the common-sense knowledge when
required by studies.

Lastly, the Oro common-sense ontology contains several rules and class expressions that encode non-trivial infer-
ences. The definition of Bottle as found in the Oro ontology is a typical example:

Bottle ≡ Container ∧ GraspableObject ∧ hasShape ∈ CylinderShapeI ∧ hasMainDimension ∈ [0.1, 0.3]

If a human informs the robot that a given object is indeed a bottle, the robot can consequently derive more
information on the object. Conversely, if the human affirms that “a car is a bottle”, the reasoner may detect logical
contradictions (like inconsistent sizes) and reject the assertion. The Dialogsmodule relies on such logical consistency
checks when processing natural language inputs, both to ensure that the verbal input has been correctly acquired and
parsed, and also to verify that what the human says is logically consistent.

We further discuss the strengths and weaknesses of this knowledge framework in Section 5.4.

5While this subset of the ontology is a tree, it does not generally have to be the case. In particular, the concept system (the TBox) of the Oro
common-sense ontology does not form a tree.
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2.3. Symbol Grounding
Grounding (also called anchoring when specifically referring to the building of links between percepts and phys-

ical objects [40]) is the task consisting in building and maintaining a bi-directional link between sub-symbolic rep-
resentations (sensors data, low-level actuation) and symbolic representations that can be manipulated and reasoned
about [11]. This represents an important cognitive skill, in particular in the human-robot interaction context: in this
situation, the link that the robot has to establish between percepts and symbols must map as well as possible to the
human representations in order to effectively support communication.

Symbol grounding connects hence the knowledge model to the perception and actuation capabilities of the robot.
The different components that we have mentioned so far exhibit grounding mechanisms: geometric reasoning and
dialogue processing modules constantly build and push new symbolic contents about the world to the knowledge
base. We detail this process in the next sections.

3. Cognitive Skills

The previous section has introduced the integration model of our architecture, as well as the associated knowl-
edge model. We discuss in this section each of its building blocks. They are pictured in Figure 2, along with their
connections to the others components.

We call cognitive skills the deliberative behaviours that are 1. stateful, i.e. keeping track of previous states is
typically needed for the component to perform appropriately; 2. amodal in that the skill is not inherently bound to a
specific perception or actuation modality; 3. manipulate explicit semantics, typically by the mean of symbolic reason-
ing; 4. operate at the human-level, i.e. are legible to the humans, typically by acting at similar levels of abstraction.

We present first the main internal cognitive capabilities, implemented in the Oro knowledge base itself, and then
discuss successively the situation assessment module Spark, the dialogue processor Dialogs, the symbolic task planner
HATP, and finally the main features of our execution controllers Shary and pyRobots. Note that greater details on each
of these modules can be found in their respective publications (the corresponding references are provided hereafter).

3.1. Internal Cognitive Skills
We call internal those cognitive capabilities that are tightly bound to the knowledge model, and hence implemented

directly within the Oro server. We present here three of them: reasoning, theory of mind modelling and our (naive)
approach to memory management.

3.1.1. Symbolic Reasoning
As mentioned in the previous section, we use the Pellet open-source reasoner to reason on the knowledge base.

It supports several standard inference mechanisms: consistency checking, concept satisfiability, classification and
realisation (computation of the most specific classes that a concept belongs to). In case of logical inconsistency, the
reasoner can also provide explanations (we currently only use them for debugging purposes).
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Besides, Oro server implements several algorithms (presented in [17]) to identify similarities and differences
between concepts (classes or instances): the Common Ancestors algorithm, useful to determine the most specific
class(es) that include a given set of individuals; the First Different Ancestors algorithm that returns what can be in-
tuitively understood as the most generic types that differentiate two concepts; and clarification and discrimination
algorithms that play a key role in the process of interactive grounding of the semantics of concepts (we discuss this
process in section 3.3). Clarification and discrimination algorithms are based on what we call descriptors, i.e. proper-
ties of individuals, either statically asserted in the common-sense ontology, acquired by the robot through perception
or pro-active questioning of the human partner, or derived from other reasoning algorithms like the Common Ances-
tors and Different Ancestors. The discrimination algorithm consists then in looking for discriminants, i.e. descriptors
that allow a maximum discrimination among a set of individuals.

3.1.2. Theory of Mind
Theory of Mind (originally defined in [41]) is the cognitive ability that allows a subject to represent the mental

state of another agent, possibly including knowledge that contradicts the subject’s own model: for example, a book
can be at the same time visible for agent A, and not visible for agent B. Children develop this skill, which is essential
to understand others’ perspectives during interactions, around the age of three [42].

From the point of view of interactive robotics, it supposes the robot ability to build, store and retrieve separate
models of the beliefs of the humans it interacts with. Our knowledge base implements such a mechanism [28]: when
the robot detects that a new human has appeared, it initialises a new independent knowledge model (an ontology)
for this human agent. All the ontologies that are created share the same common-sense knowledge, but rely on
the estimation of the robot of each agent’s perspective for their actual instantiation. For example, the robot can
(geometrically) compute that a given book is in its own field of view, but not in the human one (the detail of this
computation, called perspective taking, is discussed in the next section). The robot updates accordingly the two
knowledge models it maintains: the robot model is updated with the fact 〈BOOK isVisible true〉, while the human model
is updated with 〈BOOK isVisible false〉. These two logical statements are simultaneously asserted, yet contradict
when taken together. Since the two knowledge models are however implemented as two independent ontologies, the
contradiction does not actually appear and both the models remain logically consistent.

One classical application of this cognitive skill is the so-called False-Belief experiment (also known as the Sally
and Anne experiment, introduced by [43] from an original experimental setting by [44]): a child is asked to watch a
scene where two people, A and B, manipulate objects. At some point, A leaves and B hides away one object. When
A comes back, we ask the child “where do you think A will look for the object?”. Before acquiring a theory of mind,
children are not able to separate their own (true) model of the world (where they know that the object was hidden)
from the model of A, which contains false beliefs on the world (A still thinks the object is at its original position since
he did not see B hiding it in a new place). Relying on these separate knowledge models in the knowledge base, we
have been able to replicate this experience with our robots [45], in a manner similar to Breazeal et al. [46].

3.1.3. Working Memory
Memory has been studied at length in the cognitive psychology and neuro-psychology communities: the idea of

short-term and long-term memory is due to Atkinson and Shiffrin [47]; Anderson [48] proposes to split memory into
declarative (explicit) and procedural (implicit) memories; Tulving [49] organises the concepts of procedural, semantic
and episodic memories into a hierarchy. Short-term memory is eventually refined with the concept of working memory
by Baddeley [50]. In the field of cognitive architectures, the Soar architecture [51] is one of those that try to reproduce
a human-like memory organisation. The GLAIR cognitive architecture [52] also has a concept of long term/short term
and episodic/semantic memories.

It is worth emphasising that while memory is commonly associated with the process of forgetting facts after
a variable amount of time, it actually covers more mechanisms that are relevant to robotics, like priming (concept
pre-activation triggered by a specific context [53]) or reinforcement learning.

The Oro server features a mechanism to mimic only minimalistic forms of memory families. When new statements
are inserted in the knowledge base, a memory profile is attached to them. Three such profiles are predefined: short
term, episodic and long term. They are currently attached to different lifetime for the statements (respectively 10
seconds, 5 minutes and no time limit). After this duration, the statements are automatically removed.
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Figure 5: Functional overview of the geometric situation assessment module Spark. Spark computes symbolic relationships between objects and
agents, and exports them to the knowledge base.

This approach is limited. In particular, episodic memory should primarily refer to the semantics of the statements
(that is expected to be related to an event) and not to a specific lifespan.

We rely however on this mechanism in certain cases: some modules like the natural language processor use the
short term memory profile to mark concepts that are currently manipulated by the robot as active concepts: if a human
asks the robot “Give me all red objects”, the human, the Give action, and every red objects that are found are marked
as active concepts by inserting statements such as 〈HUMAN type ActiveConcept〉 in the short-term memory (which can be
considered, in this case, to be a working memory). Likewise, recently seen or updated geometric entities are flagged
as ActiveConcept. We use this feature during dialogue disambiguation to access concepts recently referred to. On
the other hand, our perception layer does not make use of this mechanism. As described in the next section, the
environment model of the robot is continuously updated and the derived symbolic knowledge is therefore transient: it
lasts only as long as the environment remains in the same state.

3.2. Acquiring and Anchoring Knowledge in the Physical World

Anchoring perceptions in a symbolic model requires perception abilities and their symbolic interpretation. We
call physical situation assessment the cognitive skill that a robot exhibits when it assesses the nature and content of
its surroundings and monitors its evolution.

Numerous approaches exist, like amodal (in the sense of modality-independent) proxies [54], grounded amodal
representations [55], semantic maps [56, 57, 58] or affordance-based planning and object classification [59, 60].

We rely on a dedicated geometric and temporal reasoning module called Spark (SPAtial Reasoning & Knowledge,
presented in [61]). It acts as a situation assessment reasoner that generates symbolic knowledge from the geometry
of the environment with respect to relations between objects, robots and humans (Figures 5 and 6), also taking into
account the different perspective that each agent has on the environment. Spark embeds an amodal (as defined by
Mavridis and Roy in [55]: the different perceptual modalities are abstracted away into a blended spatial model)
geometric model of the environment that serves both as basis for the fusion of the perception modalities and as bridge
with the symbolic layer. This geometric model is built from 3D CAD models of the objects, furnitures and robots,
and full body, rigged models of humans (Figure 6(b)). It is updated at run-time by the robot’s sensors (usually,
a combination of vision-based tracking of 2D fiducial markers to identify and localise objects, and Kinect-based
skeleton tracking of humans, optionally assisted by motion capture to accurately track the head motion, which is
required to compute what the human is looking at).

Spark runs and continuously updates the knowledge base at about 10Hz. At each step, it re-computes spatial
relations and affordances for the whole scene, and send the delta (new relations and relations that do not hold anymore)
to the knowledge base. This approach may raise scalability concerns (we did not however observed performance
issues in our constrained scenarios, involving typically about 10 objects and two agents) as well as prevent reasoning
on the situation history, but simplifies the management of the dynamics of the knowledge (When do I discard outdated
knowledge? When do I update it?). Since it is equivalent to a reset of the reasoner domain, it also essentially nullifies
issues linked to non-monotonic reasoning in the knowledge base (see [62] for a discussion on that question).
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(a) Physical setting (b) Corresponding 3D model view

Figure 6: Test setup involving videotapes boxes that are manipulated, with other objects acting as supports or containers. After identification and
localisation of the set of objects (using fiducial markers) and acquisition of the position and posture of the human partner (using skeleton tracking),
the robot is able to compute that two tapes only are reachable by itself: the black and grey (in the 3D model) tapes. The third tape and the pink
container box are only reachable by the human. This physical situation is transformed by Spark into the set of facts presented in Table 1.

3.2.1. Building an Agent-Aware Symbolic Model of the Environment
Perspective Taking. Visual perspective taking refers to the ability for visually perceiving the environment from another
person’s point of view. This ability allows us to properly handle and represent situations where the visual perception of
one person differs from the other one. A typical example found in developmental psychology consists of two similar
objects in a room (e.g. two balls) that are both visible for a child, but only one is visible to the adult. When the adult
requests the child to hand over “the ball”, the child is able to correctly identify which ball the adult is referring to
(i.e. the one visible from the adult point of view), without asking [63]. Our architecture endows the robot with such a
cognitive skill.

Spatial perspective taking refers to the qualitative spatial location of objects (or agents) with respect to a frame
(e.g. the keys on my left). Based on this frame of reference, the description of an object varies [64]. Humans mix
perspectives frequently during interaction. This is more effective than maintaining a consistent one, either because
the (cognitive) cost of switching is lower than remaining with the same perspective, or if the cost is about the same,

Robot’s beliefs about itself (robot’s model)
〈PINK_BOX isReachable false〉
〈WHITE_TAPE isReachable false〉
〈BLACK_TAPE isReachable true〉
〈GREY_TAPE isReachable true〉
〈WHITE_TAPE isVisible true〉
〈BLACK_TAPE isVisible true〉
〈GREY_TAPE isVisible true〉
〈WHITE_TAPE isOn TABLE〉
〈BLACK_TAPE isOn TABLE〉
〈GREY_TAPE isOn TABLE〉

Robot’s beliefs about the human (human’s model)
〈PINK_BOX isReachable true〉
〈WHITE_TAPE isReachable true〉
〈BLACK_TAPE isReachable false〉
〈GREY_TAPE isReachable false〉
〈WHITE_TAPE isVisible true〉
〈BLACK_TAPE isVisible true〉
〈GREY_TAPE isVisible true〉
〈WHITE_TAPE isOn TABLE〉
〈BLACK_TAPE isOn TABLE〉
〈GREY_TAPE isOn TABLE〉

Table 1: Symbolic facts computed from the situation depicted in Figure 6. Note how reachability differs for the two agents.
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because the spatial situation may be more easily described from one perspective rather than another [65]. Ambiguities
arise when one speaker refers to an object within a reference system (or changes the reference system, i.e. switches
perspective) without informing her partner about it [66, 67]. For example, the speaker could ask for the “keys on the
left”. Since no reference system has been given, the listener would not know where exactly to look. However, asking
for “the keys on your left” gives enough information to the listener to understand where the speaker is referring to.
On the contrary, when using an exact, unambiguous term of reference to describe a location (e.g.. “go north”) no
ambiguity arises. In Spark, agent-dependent spatial relations are computed from the frame of reference of each agent.

Symbolic Locations. Humans commonly refer to the positions of objects with symbolic descriptors (like on, next to...)
instead of precise, absolute positions (qualitative spatial reasoning). These type of descriptors have been extensively
studied in the context of language grounding [68, 69, 70, 71, 72]. Spark distinguishes between agent-independent
symbolic locations (allocentric spatial relations) and agent-dependent, relative locations (egocentric spatial relations).

Spark computes three main agent-independent relations based on the bounding box and centre of mass of the
objects (Figure 5a, [61]): isOn holds when an object O1 is on another object O2, and is computed by evaluating the
centre of mass of O1 according to the bounding box of O2. isIn evaluates if an object O1 is inside another object O2
based on their bounding boxes BBO1 and BBO2 . isNextTo indicates whether an object O1 is next to another object
O2. Note that we do not use a simple distance threshold to determine if two objects are next to each other since the
relation is highly dependent on the dimensions of the objects. For instance, the maximum distance between large
objects (e.g. two houses) to consider them as being next to each other is much larger than the maximum distance we
would consider for two small objects (e.g. two bottles). Thus, the distance threshold is scaled with the objects’ size.
Finally, Spark also computes symbolic facts related to agent independent world dynamics. The predicate isMoving
states, for each tracked entity, whether it is currently moving or not.

Many other topological relations are dependent from the observation point (egocentric perspective). The predicate
hasRelativePosition represents the superset of such spatial relations between agents and objects that are agent-
dependent. We compute these spatial relations by dividing the space around the referent (an agent) into n regions
based on arbitrary angle values relative to the referent orientation (Figure 5b). For example, for n = 4 we would have
the space divided into front, left, right and back. Additionally, two proximity values, near and far, are also considered.
The number of regions and proximity values can be chosen depending on the context where the interaction takes
place. Through perspective taking, Spark computes for each agent a symbolic description of the relative positioning
of objects in the environment.

Table 2 summarises all the symbolic spatial relations computed by Spark.

3.2.2. Building a Model of Agents
Building a grounded symbolic model of the physical environment does not suffice in general to fully ground

the human-robot interaction, and a model of the current capabilities of the agents interacting with the robot is also
required.

Spark computes the following capabilities from the perspectives of each agent:

• Sees: this relation describes what the agent can see, i.e. what is within its field of view (FOV). In our current
implementation, this affordance is computed by dynamically placing an OpenGL camera at the location of the
eyes and running occlusion checks from it. In Figure 5c the field of view of a person is illustrated with a grey
cone (the wider one). While she is able to see the two small boxes on the table in front of her, the big box on
her right is out of her FOV, and therefore, she is not able to see it.

Besides, Spark also computes the seesWithHeadMovement relation by simulating a small left-right rotation of
the head. It represents what an agent could see with a minimal effort.

• Looks At: this relation corresponds to what the agent is focused on, i.e. where its focus of attention is directed.
This model is based on a narrower field of view, the field of attention (FOA). Figure 5c shows the field of
attention of a person with a green cone (the narrower one). In this example only the grey box satisfies the
looksAt relation.
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• Points At holds when an object is pointed at by an agent. This relation is computed by placing a virtual camera
on the hand, aligned with the forearm. pointsAt is typically used during dialogue grounding, for instance when
one of the agents is referring to an object saying “this” or “that” while pointing at it.

We apply an hysteresis filter at the geometric level to ensure a sufficiently stable recognition of these three capa-
bilities.

• Reachable enables the robot to estimate the agent’s ability to reach for an object, which is instrumental for
effective social task planning. For example, if the human asks the robot to give her an object, the robot must
compute a transfer point where she is able to get the object afterwards. Reachability is computed for each agent
(human or robot) based on Generalised Inverse Kinematics and collision detection. Besides, the robot is able to
compute an estimate of the effort needed by an agent to reach an object [73].

Table 2 also lists these abilities, along with the admissible classes for the subjects and objects of the statements.

Subject Predicate Object Notes
Location isAt ≡ cyc:objectFoundInLocation Location

→ isOn ≡ cyc:above_Touching

→ isIn

→ isNextTo

Location isAbove ≡ cyc:above-Generally Location inverse of isBelow

isOn⇒ isAbove

Location isBelow Location inverse of isAbove

Location hasRelativePosition Location

→ behind ≡ cyc:behind-Generally inverse of inFrontOf

→ inFrontOf ≡ cyc:inFrontOf-Generally inverse of behind

→ leftOf inverse of rightOf

→ rightOf inverse of leftOf

Object cyc:farFrom Agent

Object cyc:near Agent

Agent looksAt SpatialThing

Agent sees SpatialThing

SpatialThing isInFieldOfView xsd:boolean myself sees *⇔ * isInFieldOfView true

Agent pointsAt ≡ cyc:pointingToward SpatialThing

Agent focusesOn SpatialThing looksAt ∧ pointsAt⇔ focusesOn

Agent seesWithHeadMovement SpatialThing

Agent canReach Object

Object isReachable xsd:boolean myself canReach *⇔ * isReachable true

Table 2: List of statements describing agent-independent spatial relationships between objects (top), agent-dependent placements (middle), and
attentional states and abilities of agents (bottom). “→” indicates sub-properties. Where existing, the equivalent predicate in the OpenCyc standard
(prefix cyc:) is specified. Note that some relationships are not computed by Spark, but are instead inferred by the reasoner.

3.2.3. Primitive Action Recognition
Monitoring human activity is needed by the execution controllers to track the engagement of the human and the

progress of their actions. It is also needed to synchronise seamlessly its own actions with the human actions. Full
human action and activity recognition is a task that requires knowledge and reasoning both on high-level facts like
goals, intentions and plans, as well as bottom-up data from human and object motions. Spark implements a set of
simple temporal and geometric heuristics on human hand trajectories and possible objects placements to recognise
simple elementary actions. Those primitive actions are assessed by monitoring situations like “an empty hand is close
to an object on a table” (precursor for a pick), or “a hand holding an object is over a container” (precursor for a put).
Spark recognises a set of such primitives. When combined with the other geometric computations and a predictive
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Initial human model
〈BOOK1 type Book〉
〈HUMAN1 type Human〉

Input
HUMAN1 says:
“Give me the book”

Generated query to ontology
find(?obj type Book)
⇒ ?obj = BOOK1

Statements added to robot model
〈HUMAN1 desires SITUATION1〉
〈SITUATION1 type Give〉
〈SITUATION1 performedBy myself〉
〈SITUATION1 actsOnObject BOOK1〉
〈SITUATION1 receivedBy HUMAN1〉

Figure 7: Processing of a simple, non-ambiguous command, taken from [74]. Thematic roles (performedBy, actsOnObject, receivedBy) are
automatically extracted by Dialogs from the imperative sentence “Give me the book.” The resulting statements (right column) are added to the
knowledge base, and may eventually trigger an event in the execution controller (see Section 3.5.1).

plan of the human actions (see Section 3.4), the execution controller can track the fulfilment of the pre- and post-
conditions of the predicted human actions. The robot relies on these to monitor the engagement of the human and the
overall progress of the human-robot shared plan.

3.2.4. Limitations
In its current form, our situation assessment module makes two assumptions: the objects are known in advance

(hence, we can rely on proper 3D CAD model for spatial reasoning) and the robot benefits of an nearly perfect
perception, made possible by the use of fiducial markers. Each object receives a unique tag which enables an accurate
localisation in 3D and prevents recognition ambiguities that would be otherwise reflected in the knowledge base.
While Spark algorithms do not concern themselves with the nature of the input sources, and would work equally well
with a full object recognition stack, we did not investigate this research area so far.

Additionally, temporal reasoning (essential for accurate action recognition for instance) is not generally addressed
in the current state of our system. Temporal reasoning is used only locally, and does not allow for tracking of long
sequences or global events.

3.3. Multi-Modal Communication and Situated Dialogue

3.3.1. Natural Language Grounding
Natural language is a basic interaction modality that we use in our system both as an input (processing of the

human speech) and as an output (verbalization of the robot intentions, as well as human-robot shared plans). Natural
language processing is facilitated as our architecture manipulates semantics that are close to the human level. This
section presents the main features of our speech processor, Dialogs, that include semantic and multi-modal grounding,
and interactive disambiguation. Algorithms and implementation details are provided in [74].

We acquire natural speech input from the human participants through a custom Android-based interface. The
interface relies on the Google speech recognition API for speech-to-text (ASR) and relays the textual transcript to the
robot. The text is parsed into a grammatical structure (Part of Speech tagging) by a custom heuristics-based parser.
The resulting atoms are then resolved with the help of the knowledge base to ground concepts like objects (i.e. when
a user says “pick up the can”, it resolves to which instance of Can the user is referring to) and actions. Figure 7 gives
an example of the processing of a simple, non-ambiguous command. The first study (Section 4.1) walks through more
complex examples. Heuristics, like the presence of a question mark or the use of imperative mood, are used to classify
the sentences into questions, desires or statements. Dialogs processes these accordingly by answering questions or
updating the knowledge base.

The system supports quantification (“give me {a | the | some | all | any | n} can”), thematic roles (action-specific
predicates that qualify the actions), interactive disambiguation (the robot asks questions when it needs more informa-
tion), and anaphora resolution (“give it to me”) based on the dialogue history and the working memory. It also supports
knowledge extension by learning new semantic structures. For instance, a sentence like “learn that cats are animals”
is converted into 〈Cat subClassOf Animal〉 and added to the knowledge base after checking for possible contradictions
with existing knowledge. Dialogs finally interprets common temporal and spatial adverbs (like above or tomorrow)
and translates simple expressions of internal state into experiences (for instance, “I’m tired” is processed into 〈HUMAN1
experiences STATE1, STATE1 hasFeature tired〉, see also Section 3.5.2). A full account of the Dialogs features and the
corresponding algorithms is available in [74].
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3.3.2. Dialogue and Multi-Modality
Because all of the components of our architecture rely on the same RDF formalism to represent their outputs, the

different communication modalities are presented in a homogeneous way, as symbolic statements in the knowledge
base. This applies both to explicit modalities (verbal communication, deictic gestures, gaze focus), and implicit
modalities (like the body position of the human). The dialogue grounding process makes use of them at two distinct
levels to provide multi-modal concept grounding.

First, specific steps of the grounding process explicitly check for the presence and value of certain facts. For
instance, when several instances match a category (the human says “give me the bottle” and the robot knows about
three bottles), the module may decide to discard some of the candidates based on their visibility for the speaker
(implicit communication context taking into account the human position). In this particular case, the heuristic is
selected by Dialogs based on the quantifier preceding the class (“give me the bottle”). The first study (Section 4.1)
illustrates the details of this process.

As another example, when the human says “this”, the robot checks if the human is currently pointing at an object.
In that case, this is replaced by the object focused on. Otherwise, the robot performs anaphora resolution by looking
up in the dialogue history to find a previous concept that the user could refer to.

Note that while the system benefits from complementary modalities, they are not all required. The system can run
with the verbal modality alone, at the cost of a simpler interaction. For example, if the human says “this” without the
robot tracking what the human points at, no 〈HUMAN1 pointsAt ...〉 fact is possibly available in the knowledge base,
and the robot falls back on the anaphora resolution step alone.

The second level of integration of multi-modality is implicit. By continuously computing symbolic properties from
the geometric model, richer symbolic descriptions are available to the system to verbalise or discriminate entities. For
instance, the robot may compute that one bottle is next to a glass, while another one stands alone. These symbolic de-
scriptions are transparently re-used in a dialogue context to generate unambiguous references to discriminate between
similar objects: “do you mean the bottle that is next to the glass?”. The physical context of the interaction is used
as an implicit communication modality by Dialogs. [17] provides a detailed account of our approach to interactive
concept clarification and discrimination, along with the related algorithms.

3.4. Human-Aware Task Planning
Whenever necessary, the execution controllers rely on symbolic task planning to convert long-term desires into a

set of partially ordered elementary actions. This is the role of the HATP planner (Human Aware Task Planner) [75,
76, 77].

The HATP planning framework extends the traditional Hierarchical Task Network (HTN) planning domain rep-
resentation and semantics by making them more suitable to produce plans which involve humans and robots acting
together toward a joint goal. HATP is used by the robot to produce human-robot shared plans [78, 79, 80] which are
then used to anticipate human action, to suggest a course of action to humans, or possibly to ask help from the human
if needed.

The HATP planning domain defines a set of methods describing how to incrementally decompose a task and to
allocate subtasks and actions to the robot and/or the human depending on the context. This represents the procedural
knowledge of the robot as well as its knowledge about the actions that the human partner is able to achieve. It is stored
outside of the central knowledge base, using a specific formalism (see the related discussion at the end of this section).

We discuss next how HATP incrementally builds and synchronises streams of actions for each or the agents
(humans and robot) involved in a task, and how it promotes plans that satisfy humans needs and preferences as well
as comfort and legibility.

3.4.1. Agents and Action Streams
The originality of HATP resides in its ability to produce shared plans which might involve the robot as well as the

other participants.
HATP treats agents as “first-class entities” in the domain representation language. It can therefore distinguish

between the different agents in the domain as well as between agents and the other entities such as tables and chairs.
This enables a post-processing step that splits the final solution (sequence of actions) into two (or more if there are
several humans) synchronised solution streams, one for the robot and one for the human, so that the streams may be
executed in parallel and synchronised when necessary (Figure 8).

15



This effectively enriches the interaction capabilities of the robot by providing the system with what is in essence a
prediction of the human behaviour. This prediction is used by the robot execution controller to monitor the engagement
of the human partner during plan achievement.

The planner also generates causal links and synchronisation points between the robot and his human partners.
For instance, in the plan depicted on Figure 8, the human needs to wait for the success of the robot’s action PUTRV.
The robot monitors the success of its own action (by checking for the fulfilment of the action post-conditions; in
this particular case 〈HUMAN sees BOTTLE〉 and 〈HUMAN canReach BOTTLE〉) to estimate what and when the human is likely to
perform his next action (here, TAKE(BOTTLE, TABLE)). This, in turn, allows the robot to monitor the human engagement
and the progress in the shared plan execution. A complete example is presented in Section 4.1.

The hierarchical structure of the shared plans obtained through the HTN refinement process provide a good basis
for plan verbalization. Upon request, it allows the robot to explain to its human partner how a task can be shared [12,
14].
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Figure 8: An example of plan produced by HATP for a task consisting in cooperatively moving objects into their associated bins. Two action
streams are generated (human actions at the top, robot actions at the bottom, PUTRV stands here for Put it so it is both Reachable and Visible). The
arrow between the two streams represents a synchronization point between the robot and the human based on a causal link.

3.4.2. Action Costs and Social Rules
A duration and a cost function are associated to each action. The duration function provides a duration interval

for the action achievement. It serves both to schedule the different streams and as an additional cost function. Besides
time and energy consumption, the cost function integrates factors that measure the satisfaction of the human in terms
of acceptability and legibility of the resulting robot behaviour.

HATP includes mechanisms called social rules to promote plans that are considered as suitable for human-robot
interaction. The following constraints can be set:

Wasted time: avoids plans where the human spends a lot of her time being idle;
Effort balancing with respect of human desires: avoids plans where efforts are not distributed among the agents

taking part to the plan, respective of the human preferences. It is indeed sometimes beneficial to balance efforts
between the human and the robot. Sometimes the human wants to do more, or on the contrary, prefers to leave the
robot do most of the work;

Simplicity: promotes plans that limit as much as possible the interdependencies between the actions of agents
involved in the plan, as an issue during the execution of one of those actions would put the entire plan at risk. Also
intricate human-robot activity may cause discomfort since the human will find herself repeatedly in a situation where
she is waiting for the robot to act;

Undesirable sequences: avoids plans that violate specific user-defined sequences (for instance sequences which
can be misinterpreted by the human).

Combining the above criteria, we yield shared plans with desirable interaction features like having the human
engaged in a number of tasks while her overall level of efforts remains low, or avoiding having the human to wait for
the robot by preventing the action streams from having too many causal links between them.

Figure 9 illustrates such a socially-optimised plan where the no wasted time social rule is applied: compared to
the plan depicted in Figure 8, the robot first moves the bottle so that the human can immediately take it and put it into
the bin, thus reducing the human idle time.
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In the current implementation, the social rules are effectively implemented as filters applied to the set of all possible
plans computed by the planner. In the future, we intend to extend the plan-search algorithm and integrate the social
rules in the process itself.
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Figure 9: An alternative plan for the task presented in Figure 8 where the no wasted time social rule is used to optimise the total duration of the
task.

As HATP is a generic symbolic task planner and does not enforce any abstraction level for the planning domain,
we have designed a planning domain made of top-level tasks whose semantics are close to the one used in the human-
robot dialogue: the planner domain effectively contains concepts like Give, table, isOn. This leads to an effective
mapping between the knowledge extracted from the situation assessment or the dialogue, and the planner.

Due to expressiveness issues, we do not represent the planning domain (i.e., the set of tasks with their pre- and
post-conditions) in the knowledge base directly (see appendix B of [81] for the full rationale). This effectively leads
to independent declarative (the Oro knowledge base) and procedural (the planner) knowledge stores.

3.5. Robot Execution Control

While parts of the architecture (Spark, Oro) have been deployed with external execution controllers (like Cram [32]
or the BERT platform [82], as reported in [28]), we have also developed dedicated robot controllers which integrate
into the deliberative architecture introduced in Figure 2. Shary [83] is the main one, written in the Procedural Rea-
soning System (PRS) language [84]. We have also developed the Python-based pyRobots [85] that provides a large
set of high-level actions and an event-based architecture well suited for prototyping. They both rely on extensive
integration with the knowledge base, that serves as the primary source of semantics for the decision making process.

One of the main roles of Shary is to control the production and execution of shared plans. This means essentially
context-based refinement and execution of actions, as well as monitoring of those achieved by its human partner. One
of the key design goals is to build such abilities in a generic way, and to provide several levels of parametrisation
allowing to adapt to various environments and various levels of involvement of the robot, ranging from teammate
behaviour to assistant or proactive helper. Based on this, the robot controller invokes the adequate human-aware
planners and react to events triggered by the Oro knowledge base (as described below).

Execution control systems for social robots are expected to account not only for the task achievement but also
for the communication and monitoring acts needed to support human-robot interactive task achievement [86, 87, 5].
Shary supports as well such a mechanism [88]. It allows to bind action execution to communication policies in order
to produce multi-modal signals towards the human and to react to human actions and signals. The communication
act is the central concept in this formalism. It represents an information exchange between the two agents and plays
the role of a transition condition. This exchange can be realised through speech, through an expressive motion or
a combination of the two. It enables the robot as well as the human to communicate their beliefs about the task
to be achieved, in order to share mutual knowledge and to synchronise their activities. This is done through real-
time task-based situation assessment achieved by the combination of Shary monitoring processes and Oro inference
mechanisms. In Shary, each action description contains not only how to execute it and monitor it, but also how to
initiate it (e.g. in the case of a shared action, how both agents need to commit to the task) and how to suspend (or
cancel) it. In each of these cases, the action description also makes explicit how the transition has to be communicated
to the human partner if necessary. This is supported by a description of the beliefs of each of the agents regarding the
action achievement process, as well as a set of so-called monitoring processes that update them.
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Two recent developments have further improved the robot’s ability to adapt to human action, both at the action
level and at the plan level. In [89], an extension is proposed for the system to estimate the intentions of the human
during collaborative tasks using POMDP models. The controller adjusts then appropriately the chosen set of actions.
In [13], the controller is complemented with a framework that allows the robot to estimate the mental state of the
human partner, not only related to the environment but also related to the state of goals, plans and actions. They are
then accounted for by the execution controller.

3.5.1. Event-Driven Control
The Oro server supports two paradigms to access its content: RPC-style queries (based on the standard SPARQL

language) or events. A module can subscribe to an event by registering an event pattern (in its simplest form, a partial
statement like 〈? type Book〉) and a callback. Each time a new instance of a book appears in the knowledge base, the
callback is triggered.

This allows us to write reactive robot controllers with a high level of expressiveness: for instance, by subscribing to
the event 〈HUMAN1 desires ?action, ?action type Give, ?action actsOnObject ?obj, ?obj type Book〉, we effectively
trigger a behaviour when the human expresses (through dialogue, gestures...) that he wants the robot to give her a
book.

The robot controller designer does not need to directly care about how this desire is produced (this is delegated to
perception modules), he can instead focus on the semantics of the desire.

Note that we transparently take advantage of the reasoning capabilities of the system to trigger event to trigger
events: for example, the type of the object (〈?obj type Book〉) may not be explicitly asserted, but inferred by the
reasoner based on other assertions.

3.5.2. Complying with Human Desires and Experiences
We divide the interaction situations perceived from the situation assessment and the communication components

into two categories: desires (related to performative acts in Austin’s classification of speech acts [90]) and experiences.
Desires are typically human commands (“Give me that book”). The nature of the desired action (to pick, to give,

to look, to bring, to show...), along with the action parametrization (thematic roles) are fetched by the execution
controller in the knowledge base, and are either sent as goals to the task planner, or executed if the elementary action
is directly available.

Experiences, on the other hand, comprise of emotions, states and questions (when asking a question, we consider
the human to be in an interrogative state). When the knowledge base states that an agent experiences a particular
emotion or state, the execution controller may decide to handle it, typically by trying to answer the question or using
the emotional or physical state as a parameter for subsequent actions. As an example, when the speaker says “I feel
tired”, we change the motion planner parametrization to lower the effort the human needs to provide for the following
joint manipulation tasks.6

3.5.3. Human-Aware Action Refinement
Before being executed, elementary actions are further refined by the execution controller with the help of a set of

dedicated human-aware geometric motion planning functions provided by a component called Mhp (see architecture
in Figure 2).

These functions are designed to plan navigation [91] and manipulation [92, 93] paths not only safe but also
comfortable and socially acceptable by reasoning explicitly on human’s kinematics, vision field, posture and prefer-
ences [94, 95, 96]. They also provide routines to compute spatial placements for robot and objects that obey constraints
related to the interaction, like optimal mutual reachability or optimal visibility [97].

Finally, when an action requires the motion of both the human and the robot, Mhp can plan for both of them in
order for the robot to take the lead by automatically computing where the interaction might preferably take place [3, 4].
This can effectively smoothen the interaction by off-loading a part of the cognitive load of the interaction from the
human to the robot. As such, this is the geometric counterpart of the HATP symbolic task planner: it is able to make
use of a set of social rules to adapt geometric plans to social interactions.

6Note that this specific example has been implemented as a proof-of-concept. A broader framework that would support action alteration based
on the user’s experienced states remains to be investigated.
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Study Focus Reference
Point & Learn (2010) Interactive knowledge acquisition [28]
Spy Game (2010) Interactive object discrimination [17]
Interactive Grounding I (2011) Multi-modal interaction, perspective taking [98]
Roboscopie (2011) Human-Robot theatre performance [99]
Cleaning the table (2011) Complete architecture integration [100]
I’m in your shoes (2012) False beliefs [45]
Give me this (2012) Natural joint object manipulation [101]
Interactive Grounding II (2012) Multi-modal interaction, perspective taking [102]

Table 3: Main studies conducted with our cognitive architecture.

4. Support Studies

Our architecture has been deployed and tested in a number of studies on several robotic platforms. Table 3 lists
the most significant ones, with their main focuses and reference publications.

We present here elements of two of them in order to illustrate in a practical way the different aspects of the
architecture. The first one is focused on knowledge representation and verbal interaction: the human asks for help
to find and pack objects (Interactive Grounding I in Table 3). The second one (Cleaning the table) involves the
Shary execution controller and the HATP symbolic task planner. In this scenario, the human and the robot need to
cooperatively remove objects from a table. Robot behaviours and motions are fully planned and then executed.

4.1. Interactive Grounding
This first study is based on a “home move” backstory: two users are moving their belongings to a different home,

and need the help of a robot to pack. Jido, a single-arm mobile manipulator, is observing while they carry over
boxes (Figure 10), and answers questions concerning the location of specific objects. This study focuses on multi-
modal, interactive grounding only: the robot observes, builds and maintains knowledge about its human partners
perspectives and affordances but does not actually perform any physical action besides verbal interaction and simple
head movements.

Objects are perceived through 2D fiducial markers attached to them, and humans are tracked through motion
capture. The robot knowledge base is initialised with the Oro commonsense ontology. We next describe two situations
where we can follow the internal robot’s reasoning and the interaction with the user.

(a) Interactive grounding in a cluttered environment. (b) Disambiguation through pointing.

Figure 10: A scenario involving multi-modal, interactive grounding: the humans can refer to invisible or ambiguous objects that the robots anchor
to physical objects through multi-modal interactions with the user.

Implicit disambiguation through visual perspective taking. User A enters the room while carrying a large box (Fig-
ure 10(a)). He approaches the table and asks Jido to hand him over a video tape: “Jido, can you give me the video
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tape”. The Dialogs module processes this sentence, and queries the ontology to identify the object the human is
referring to: find(?obj type VideoTape).

Two video tapes are visible to the robot: one on the table, and another one inside the cardboard box. The knowl-
edge base returns both: ?obj = [BLACK_TAPE, WHITE_TAPE].

However, only one is visible to User A (the one on the table). Although there is an ambiguity from the robot’s
perspective, the human referred to the video tape using the definite quantifier the: this is interpreted by the natural
language processor as the human referring to a known object, i.e. the one visible in the human’s knowledge model.7

Explicit disambiguation through verbal interaction and gestures. In the second situation, User B enters the room
without knowing where User A had moved the video tapes (Figure 10(b)). He first asks Jido: “What’s in the box?”.
The robot first needs to ground the word “box”. Similar to the previous situation, two boxes are visible: find(?obj
type Box)⇒ ?obj = [CARDBOARD_BOX, TOOLBOX]

However both are visible to the human and the previous ambiguity resolution procedure can not be applied. The
robot generates a question (using the Discrimination algorithm, Section 3.1.1) and asks User B which box he is refer-
ring to by verbalizing the following question: “Which box, the toolbox or the cardboard box?” User B could answer
the question, but he instead decides to point at it: “This box” (Figure 10(b)). Spark identifies the CARDBOARD_BOX as
being pointed at, as well as looked at, by the human and updates the ontology with this new information. The reasoner
applies a rule available in the common-sense ontology 〈pointsAt(?ag, ?obj) ∧ looksAt(?ag, ?obj) → focusesOn(?ag,
?obj)〉. The Dialogs module merges both sources of information, verbal (“this”) and deictic, by issuing a query to the
knowledge base that eventually lifts the ambiguity:

find(?obj type Box; USER_B focusesOn ?obj)
⇒ ?obj = [CARDBOARD_BOX]

Finally, Dialogs queries the ontology about the content of the box and the question can be answered: “Wall-E”
(the label of the object had been statically asserted in the ontology at start-up).

At this point User B wants to know where is the other tape: “And where is the other tape?”. Dialogs is able to
convert “the other tape” into a new query using the differentFrom OWL predicate:

〈?obj type VideoTape〉
〈?obj differentFrom WHITE_TAPE〉

⇒ ?obj = [BLACK_TAPE]

Since there is only one possible “other” videotape, no specific disambiguation is required. The referent is uniquely
identified and Dialogs can then query for its location: find(BLACK_TAPE isAt ?loc). The robot finally verbalises
the result 〈BLACK_TAPE isOn table, BLACK_TAPE isNextTo TOOLBOX〉 into “The other tape is on the table and next to the
toolbox.”

4.2. Collaborative Task Planning

This second study demonstrates a richer decision-making process where the Oro server is used in conjunction
with the HATP symbolic task planner and the Shary execution controller to produce and execute a shared plan. The
task consists in cooperatively cleaning a table by moving objects into their target bins (Figure 11).

Figure 12 walks through a simplified version of the whole task. It depicts a run with a single video tape on a table.
The video tape is reachable by the robot only, while the bin (where the objects are supposed to be eventually moved
to) is reachable by the human only: the robot needs to come up with a shared plan that involves a joint action.

The goal is first received by the execution controller (after processing of the user request by the Dialogs module,
not shown on the figure). At t1 on Figure 12, the video tape is computed by the robot as being reachable by the robot
only (columns Perception and Knowledge), and the execution controller invokes the task planner, which produces a
joint plan (column Plan) to move the tape so that the human can pick it and drop it into the bin.

7Other heuristics are available to the Dialogs module: for instance, if a tape had been recently mentioned in the dialogue, this instance would
have been selected instead as the referent.
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Figure 11: The face-to-face setup of the Clean the Table study. The physical situation, the Spark model, and the current step of the plan are visible
on the picture.

The first task (TAKE(GREY_TAPE, TABLE)) is instantiated by checking that the task pre-conditions hold (in partic-
ular, 〈GREY_TAPE isOn TABLE〉 must be true), and calling the 3D motion planner (column Actions, left). The motion
planner returns two elementary actions (PICK_GOTO followed by TAKE_TO_FREE) that the controller executes (by
first reaching for the object, grasping it and bringing it back to a free position). The robot’s perception monitors the
evolution of the scene until the task’s post-conditions are verified (at t2, by satisfying the statement 〈ROBOT hasInHand
TAPE〉), and the next task is then started (placing the tape so that it is reachable to the human).

At t3, the video tape is now reachable to the human, and the next tasks (taking the tape and placing it in the bin)
have to be performed by the human: the robot instructs the user to do so (verbal interaction not represented on the
figure) and monitors the actions of the human to detect when the tasks’ post-conditions are satisfied (column Actions,
right). When these post-conditions are fulfilled, the goal is considered to be achieved.

This example illustrates how the symbolic facts are produced by the situation assessment module Spark, and, in
parallel, used by the execution controller to assess the overall progress of the plan.

5. Discussion: When Artificial Intelligence Enables Human-Robot Interaction

The previous sections provide a perspective on a complete deliberative architecture for social robots, including its
implementation, supported by experimental deployments. This section synthesises what we see as the main challenges
that human-robot interaction brings to Artificial Intelligence. We first discuss how embodied cognition is an essential
challenge in human-robot interaction; we rephrase then the requirements of joint actions in terms of five questions;
we discuss the importance of building and maintaining a multi-level model of the human; and we finally reflect on
the importance of explicit knowledge management in robotic architectures that deal with human-level semantics and
state in that respect the current limits of our logic framework.

5.1. Embodied Cognition

Robotics is traditionally regarded as the prototypical instance of embodied artificial intelligence, and this dimen-
sion is especially prevalent in human-robot interaction, where the robot has to share and collaborate in a joint physical
environment. This leads to a tight coupling between the symbolic and the geometric realms: while AI at its origins was
mostly concerned with symbolic models, it has been since recognised that not only the mind is not a purely abstract
system, disconnected from the physical world, but even more, cognition fundamentally relies on its relation to the
physical world (so-called embodied cognition). Varela [103] is one of the main discoverer of these mechanisms, and
coined the concept of enactivism as the theoretical framework that studies the links between cognition, embodiment
and actions. This has since been thoroughly studied in robotics and artificial intelligence (Pfeifer and Bongard [104]
is one of the reference).
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Figure 12: Timeline of the Cleaning the table study, presented here in a simplified version: a single object, TAPE, must be removed from the table
and dropped in the bin BIN. The light arrows sketch the global execution flow.
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The challenge of symbol grounding is also tightly linked to this issue. It corresponds to the identification or
creation, and then, maintenance of a link between the symbol (the syntactic form of knowledge that the computer
manipulates) and its semantics (its meaning, anchored in the world). The relation between the symbol, the referent
of the symbol, and mediating minds is classically referred as the semantic triangle and has been extensively studied
in linguistics. The issue of grounding is well known in cognitive science and is summarised by Harnad [11] by this
question: “how the semantic interpretation of a formal symbol system can be made intrinsic to the system?”. This
issue has a major practical importance in robotics: for a robot to be both endowed with a symbolic representational
and reasoning system, and able to act in the physical world, it must ground its knowledge.

As we have seen, grounding is implemented at different levels in our architecture. The main source of grounded
symbolic knowledge is the situation assessment module, Spark. It builds symbolic facts from spatial reasoning, and
also relies on (limited) temporal reasoning to track the world state and build explanations to interpret unexpected
perceptions (like an object that suddenly disappears). Because Spark also tracks humans, which enables perspective-
aware spatial reasoning, it can produce as well grounded symbolic knowledge for the agents it interacts with. This is
a typical embodied cognitive skill.

Grounding also occurs during verbal and non-verbal communication. The Dialogs module grounds new concepts
introduced by the speaker by asking questions until it can attach the new concept to concepts already present in the
knowledge pool (if one asks the robot “bring me a margarita”, the robot may initially asks “what is a margarita?”.
The user would answer “a cocktail” and the robot would continue the grounding – “what is a cocktail?” – until it
anchors the new concept to ones it already knows like Drink). Embodied interactions (like gestures) are also taken
into account at this level: we have presented how pointing, for instance, is used by the robot to ground “this” or
“that” to the pointed artifact.

Note that, because only objects marked with 2D fiducial markers are currently recognised (typically, about ten of
them are simultaneously used in a given experiment), our grounding mechanisms have only been exercised in small-
sized closed world. This simplifies the task, and we can not claim that our approach provides a generic grounding
capability. Context, cultural background, “naive physics” knowledge, emotional state of the human are some of the
numerous determinants beyond the perception of geometric entities. They would need to be accounted for when
grounding human-robot interaction.

5.2. The W-questions of Joint Action
Our context, where a robot has to achieve a task together with humans, raises another set of specific issues to be

tackled by the robot’s decisional components. We summarise them as the “W-questions”: What, Who, When, Where
and How?

What to do next, at different levels of abstractions and while taking into account not only the current state but also
the long term goals, is the basic question for an intelligent robot. It is made more complex here by having to deal with
the partially observable physical and mental state of the human partner, and by the extended set of possible actions.

Who should act now is of key importance and also needs to be decided upon by the robot. It is sometimes expected
as an intelligent behaviour for the robot to wait and let its human partner act instead. Correct management of turn-
taking leads to various decisional challenges.

When to perform a given action is made more complex by the presence of humans. The robot has to take into
account her needs, her rhythms and pace, and her mental state. While performing its share of the task, the robot has
to produce signals directed towards the human and to respond to signals produced back at the proper pace to ensure
collaboration.

Where to perform an action plays an important role as well: the choice is not trivial and might need elaborated
decision. The robot is expected to take into account effort sharing, visibility of its action by the human, disturbance
or discomfort induced by its action.

How to perform an action, finally, needs to be reflected upon by the robot: several options to perform an action
or to achieve a goal are often available, and selecting one is a non-trivial decision problem. Cost-based planners
augmented with social rules are one possible approach: they search for plans that satisfy an acceptable cost in terms
of acceptability or legibility as well.

These five questions should not be considered independently from each other and often require, on the contrary, to
be dealt with in a single decision step. The human-aware task and motion planners which we have built are instances
of systems which have been designed to deal with such intricate decision issues.
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They are in fact considered in each of the components, at different levels of abstraction (from the abstract shared
plan level to the action refinement and execution level). At every interaction step, the choice of the next action, of
who has to act (the human, the robot or both of them) and when to perform it is made by Shary with the help of
HATP, based on perspective-taking and situation assessment (Spark and Oro), as well as on the estimation of the
human mental state (Shary with the help of Oro). The actual realization of the action is eventually supported by
a full set of on-line planning functions provided by Mhp that computes not only trajectories but also the pertinent
placements and postures based not only on geometric information but also estimation of the human current mental
state and preferences (Oro).

5.3. Putting the Humans into Equations

The correlate of these five W-questions is the issue the human models: taking appropriate decisions with and in
presence of humans requires appropriate models of the human: what the human can do, would like to do, knows, could
infer, etc.

While the task of describing all the (dynamic) human models that are useful to robots is immense (if doable at
all), we claim that it is possible to devise and use such models in limited, but still interesting and useful, contexts
such as collaborative human-robot objects manipulation, fetch-and-carry and associated activities in home or work
environments.

In our architecture, perspective taking, for instance, is tightly connected to the symbolic knowledge models, and
since our knowledge base allows for storage of one knowledge model per agent, we have been able to endow the
robot with a simple theory of mind (as explained in section 3.1.2): we explicitly model what the robot knows about its
partners in a symbolic way. This knowledge is then re-used in different places, to correctly interpret what the human
says, or to plan tasks that are actually doable for the human.

The cognitive model that the robot builds for the agents it interacts with remains today simple and mostly focused
on geometric features and affordances (who sees what? what are our relative positions? what is reachable to whom?).
Extending this knowledge with more subtle perceptions (emotional state for instance) remains to be explored beyond
simple examples like the processing of explicit verbal statements like “I’m tired!” (Section 3.5.2).

Motion and action execution also requires human models, and the one we use embeds human preferences and
physical constraints that need to be accounted for when synthesising robot motion or producing robot plans. This in-
cludes proxemics (human-robot distance) and associated issues (visibility) but also legibility and acceptability criteria
expressed in terms of social rules that the produced plans should satisfy.

5.4. Explicit Knowledge for Social Robotics

As thoroughly presented in this article, we have built the decisional capabilities of our robots around this idea of
explicit knowledge manipulation.

Explicit knowledge in our architecture. The components that we have presented so far build a knowledge-oriented
architecture: knowledge is explicitly stored in one central and consistent repository of facts, accessible to all mod-
ules. It relies on a strict formalism (OWL statements), with a well defined vocabulary (stated in the common-sense
ontology). These first two points lead to a loosely-coupled architecture where modules can be removed or replaced by
other ones as long as they share the same semantics: modules are defined by the knowledge they produce or consume.

Also, we adopt a symbolic, hybrid (reactive and planning-based), event-driven approach to robot control. By
managing events at the same level as the reasoner, we take full advantage of the inference abilities of Oro to trigger
events whose true conditions can be (possibly indirectly) inferred using human-level semantics.

And finally, this architecture allows for the combination of different knowledge sources in a uniform model,
bringing mutual benefits to components. For instance, the dialogue processing module can run without any situation
assessment, but its disambiguation routines can transparently benefit from it when available (since richer symbolic
descriptions of objects are then available).

We want to underline the shift of focus brought by this approach during the design and integration phases of robots:
components of our deliberative layer are defined and bound together by the knowledge they produce and consume.
Human-robot interaction, because it supposes operations at human level and in environments with complex semantics,
acts here as a motivational force.
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Limits of disambiguation at semantic level. Interaction with humans implies the ability to deal with semantics: se-
mantics of verbal interaction, semantics of gestures, etc. As a consequence, it also implies to deal with semantic
disambiguation.

We have studied a prototypical example of semantic disambiguation in [17] with the children’s “spygame”: two
players are facing each other with a set of random objects in-between, one player mentally choose one object, and
the other player has to guess the object by asking closed questions like Is your object small or large? Based on the
knowledge it has acquired, the robot is able to minimise the number of questions required to find the object.

When playing this kind of game, however, the issue arises that the robot has no way to select which knowledge
about the object is relevant in the interaction context. For instance, the knowledge base may store facts like 〈OBJ1 type
ActiveConcept〉 (which internally means that this concept was mentioned in a discussion in the last few seconds): this
information is not a relevant property of OBJ1 when trying to disambiguate concepts with humans. This distinction
between internal knowledge (meaningful to the system only) and common knowledge (whose meaning is understood
by all the agents) has not been properly dealt with in our architecture.

Besides, even knowledge that belongs to the common knowledge may not be appropriate in a given interaction
context. For instance, the system may compute that at a given instant the human is looking at the object: 〈HUMAN
looksAt OBJ1〉. This property makes sense to both parties, but in the context of the spygame, we would like to mainly
use immanent properties, not volatile like a gaze. More research is required to identify relevant interaction contexts
and knowledge classes attached to them.

6. Conclusion

6.1. A Deliberative Architecture for Social Robots
We have presented in this paper an instance of a complete deliberative architecture designed for social robots.

While most of its sub-components have been independently presented in other publications, we offer here for the first
time a perspective on the model of integration of these components into a coherent and consistent system for social
human-robot interaction. We have first exposed our underlying knowledge model based on Description Logics [28]
and some of the resulting reasoning capabilities pertaining to disambiguation [17] and mental modelling [45] that are
shown to effectively scaffold interaction using human-level semantics and cognitive skills. We have then presented our
approach to symbol grounding, build on an amodal situation assessment environment [61] that supports perspective
taking [64, 67]. We combine it further with a situated natural language processor [74] to provide complete multi-modal
interactive communication. The paper also covers our symbolic social task planner [75, 76, 77]: it generates predictive
plans of the human actions that enable the system to plan for joint human-robot tasks. It can also make use of social
heuristics to optimise plans for social acceptability. We briefly mention our human-aware motion and manipulation
planner [91, 105, 92, 97, 93, 95], and finally present two execution controller, the PRS-based Shary [83, 89, 2] and
the event-driven pyRobots [85].

The integration of these components in a consistent, working and observable system builds upon the particular
design of the interfaces between the cognitive components: the information streams use high-level semantics, repre-
sented as first-order logic statements. In that sense, our deliberative architecture is similar to projects like cram [32],
KeJia [35] or PEIS Ecology [106, 39], with however a stronger emphasise on the specificities of the interaction with
humans. Importantly, we distinguish ourselves from research on cognitive architectures: cognitive architectures are
usually understood as an artificial yet principled model of (human) cognition. While some have been deployed on
autonomous robots, like HAMMER [107] or ACT-R/E [22], most are primarily concerned with the modeling of hu-
man cognition and are less focused on the effective deployment on socially interactive robots. In that sense, our
contribution in terms of architecture is a practical one: our integration model enables to consistently combine a large
set of technically independent yet cognitively interdependent cognitive processes. We bridge them through explicit,
human-level semantics, and we show that this results in a fully implemented system, effectively deployed on several
platforms and in several real interaction scenarios.

This work introduces several new contributions related to the representation and the management of humans in an
autonomous robotic system. Specifically, we mentioned in the introduction the following four points:

• our system achieves multi-modal and interactive grounding in complex real environments involving one or
several humans and a robot;
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• it supports a distributed computation of symbolic knowledge for situated dialogue, thanks to the combination
of perspective taking, affordances computation and logical inference;

• it provides generic mechanisms for the robot to reason about the mental state of its human partners;

• and, by reusing the computed affordances and inference, it generates, monitors and takes part to human-robot
shared plans;

While several contributions in the literature provide insights and contributions on one aspect or another (references
are in the corresponding subsections), we are not aware of a fully implemented architecture that effectively combines
in a coherent manner all these points. The novelty and relevance of this contribution to HRI is further underlined by
the range of multi-disciplinary collaborations and studies that have been made possible by our architecture [15, 16,
17, 18, 19, 20].

6.2. The Next Steps

The design choices and the results presented here are still preliminary. While the general scheme we propose
might be difficult to implement in a general sense, we believe that it is a reasonable challenge to implement it in the
case of a personal robot assistant essentially devoted interactive manipulation tasks and associated activities.

One direction that we would like to further investigate is how to account for situations where divergent beliefs
appear between the human and the robot. Some preliminary results have been presented in [45, 108] where we
consider divergent beliefs about the state of the world, and in [13] where the robot is able to deal with divergent
beliefs related to the state of the task.

There is also extensive work to be done in order to refine the notion of “good shared plan” and “good/acceptable
robot behaviour” in this context. There are large avenues for learning and adaptation in this context.

Another direction to head to deals with context representation. Contexts are currently often limited to the current
spatial and temporal situation. Some of our models offer the possibility to jump in the past or to switch to another
agent’s perspective, but in our current approach, selecting a context essentially consists in retrieving a set of beliefs
corresponding to a situation, and temporarily replacing the current beliefs by those other ones. This misses the fact that
at a given moment, not one but many contexts co-exist at different scales. We do not want to retrieve one monolithic
set of beliefs, but instead carefully craft a context from several atomic contexts. Techniques for representation of
overlapping “pools” of knowledge largely remain to be developed, as well as efficient algorithms to retrieve (or
discard) such context-related pools of knowledge. This is a challenge not only for robotics, but more generally for
artificial intelligence. The ability to explicitly manage contexts and context switches would endow the robot with
a cognitive capability similar to what is known as context-dependent memory in cognitive psychology. This is also
related to Tulving’s autonoetic consciousness [109]: the ability to reflect upon its own past or future experiences.
Much remain to be done to this regard, starting with a formal analysis of what are the relevant contexts for our robots.

Human-Robot Interaction is and will remain a challenging field for Artificial Intelligence. We hope that this
contribution helps with clarifying these challenges and making them concrete decisional problems.
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