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Multiview Boosting by Controlling the Diversity and the Accuracy of View-specific Voters

In this paper we propose a boosting based multiview learning algorithm, referred as PB-MVBoost, which iteratively learns i) weights over view-specific voters capturing view-specific information, and ii) weights over views by optimizing a PAC-Bayes multiview C-Bound that takes into account the accuracy of view-specific classifiers and the diversity between the views. We derive a generalization bound for this strategy following the PAC-Bayes theory which is a suitable tool to deal with models expressed as weighted combination over a set of voters. Different experiments on three publicly available datasets show the efficiency of the proposed approach with respect to state-of-art models.
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. Intuitively, this means that the voters disagree on some data points. This notion of disagreement (or agreement) is sometimes called diversity between

Introduction

With the tremendous generation of data, there are more and more situations where observations are described by more than one view. This is for example the case with multilingual documents that convey the same information in different languages or images that are naturally described according to different set of features (for example SIFT, HOG, CNN, etc). In this paper, we study the related machine learning problem that consists in finding an efficient classification model from different information sources that describe the observations. This topic, called multiview (or multimodal) learning [START_REF] Pradeep | Multimodal fusion for multimedia analysis: a survey[END_REF], [START_REF] Sun | A survey of multi-view machine learning[END_REF], [START_REF] Baltrušaitis | Multimodal machine learning: A survey and taxonomy[END_REF]], has been expanding over the past decade, spurred by the seminal work of [START_REF] Blum | Combining Labeled and Unlabeled Data with Co-Training[END_REF] on co-training (with only two views). The aim is to learn a classifier which performs better than classifiers trained over each view separately (called here view-specific classifier). Usually, this is done by directly concatenating the representations (early fusion) or by combining the predictions of view-specific classifiers (late fusion) [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]. In this work, we stand in the latter situation. Concretely, we study a two-level multiview learning strategy based on the PAC-Bayesian theory (introduced by [START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF] for monoview learning). This theory provides Probably Approximately Correct (PAC) generalization guarantees for models expressed as a weighted combination over a set of functions/voters (i.e., for a weighted majority vote). In this framework, given a prior distribution over a set of functions, called voters, H and a learning sample, one aims at learning a posterior distribution over H leading to a well-performing majority vote; each voter from H is weighted by its probability to appear according to the posterior distribution. Note that, PAC-Bayesian studies have not only been conducted to characterize the error of such weighted majority votes [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF], [START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF], [START_REF] Langford | PAC-Bayes & margins[END_REF], [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], but have also been used to derive theoretically grounded learning algorithms (such as for supervised learning [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF], [START_REF] Parrado-Hernández | PAC-bayes bounds with data dependent priors[END_REF], [START_REF] Alquier | On the properties of variational approximations of Gibbs posteriors[END_REF], [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF], [START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF] or transfer learning [START_REF] Germain | A new PAC-Bayesian perspective on domain adaptation[END_REF]). To tackle multiview learning in a PAC-Bayesian fashion, we propose to define a two-level hierarchy of prior and posterior distributions over the views: i) for each view v, we consider a prior P v and a posterior Q v distributions over view-specific voters to capture view-specific information and ii) a hyper-prior π v and a hyper-posterior ρ v distributions over the set of views to capture the accuracy of view-specific classifiers and diversity Figure 1: Illustration of the multiview distributions hierarchy with 3 views. For all views v ∈ {1, 2, 3}, we have a set of voters H v = {h v 1 , . . . , h v nv } on which we consider prior P v view-specific distribution (in blue), and we consider a hyper-prior π distribution (in green) over the set of 3 views. The objective is to learn a posterior Q v (in red) view-specific distributions and a hyper-posterior ρ distribution (in orange) leading to a good model. The length of a rectangle represents the weight (or probability) assigned to a voter or a view.

between the views (see Figure 1). Following this distributions' hierarchy, we define a multiview majority vote classifier where the view-specific classifiers are weighted according to posterior and hyper-posterior distributions. By doing so, we extend the classical PAC-Bayesian theory to multiview learning with more than two views and derive a PAC-Bayesian generalization bound for our multiview majority vote classifier.

From a practical point of view, we design an algorithm based on the idea of boosting [START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF], [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF], [START_REF] Schapire | A brief introduction to boosting[END_REF][START_REF] Schapire | The Boosting Approach to Machine Learning: An Overview[END_REF], an ensemble method well known to be able to learn well-performing majority vote. Our boosting-based multiview learning algorithm, called PB-MVBoost, deals with the two-level hierarchical learning strategy. PB-MVBoost is then an ensemble method that outputs a multiview classifier expressed as a weighted combination of view-specific voters. It is important to notice that controlling the diversity between the view-specific classifiers or the views is a key element in multiview learning [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], [START_REF] Chapelle | Semi-Supervised Learning[END_REF], [START_REF] Ludmila | Combining Pattern Classifiers: Methods and Algorithms[END_REF], [START_REF] Maillard | Complexity versus agreement for many views[END_REF], [START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF]. Therefore, to learn the weights over the views, we minimize an upper-bound on the error of the majority vote, called the multiview C-bound [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], allowing us to control a trade-off between accuracy and diversity. Concretely, at each iteration of our multiview algorithm, we learn i) weights over view-specific voters based on their ability to deal with examples on the corresponding view (capturing view-specific information), and ii) weights over views by minimizing the multiview C-bound. To show the potential of our algorithm, we empirically evaluate our approach on MNIST 1 , MNIST 2 and Reuters RCV1/RCV2 collectionsLecun et al. [1998], [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF]. We observe that our algorithm PB-MVBoost, empirically minimizes the multiview C-Bound over iterations, and leads to good performances even when the classes are unbalanced. We compare PB-MVBoost with a previously developed multiview algorithm, denoted by Fusion Cq all [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], which first learns the view-specific voters at the base level of the hierarchy, and then, combines the predictions of view-specific voters using a PAC-Bayesian algorithm CqBoost [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF]. From the experimental results, it came out that PB-MVBoost is more stable across different datasets and computationally faster than Fusion Cq all . In the next section, we discuss some related works. In Section 3, we present the PAC-Bayesian multiview learning framework [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF]. In Section 4, we derive our multiview learning algorithm PB-MVBoost. Before concluding in Section 6, we experiment our algorithm in Section 5.

classifiers [START_REF] José | Diversity techniques improve the performance of the best imbalance learning ensembles[END_REF], [START_REF] Brown | good" and "bad" diversity in majority vote ensembles[END_REF], [START_REF] Ludmila | Combining Pattern Classifiers: Methods and Algorithms[END_REF]. Even if there is no consensus on the definition of "diversity", controlling it while keeping good accuracy is at the heart of a majority of ensemble methods: indeed if all the voters agree on all the points then there is no interest to combine them, only one will be sufficient. Similarly, when we combine multiple views (or representations), it is known that controlling diversity between the views plays a vital role for learning the final majority vote [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], [START_REF] Chapelle | Semi-Supervised Learning[END_REF], [START_REF] Maillard | Complexity versus agreement for many views[END_REF]. Most of the existing ensemble-based multiview learning algorithms try to exploit either view consistency (agreement between views) [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF], [START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF], [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF] or diversity between views [START_REF] Xu | An algorithm on multi-view adaboost[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], [START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF][START_REF] Peng | Multiview boosting with information propagation for classification[END_REF] in different manners. [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF] proposed a boosting based multiview learning algorithm for two views, called 2-Boost. At each iteration, the algorithm learns the weights over the view-specific voters by maintaining a single distribution over the learning examples. Conversely, [START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF] proposed Mumbo that maintains separate distributions for each view. For each view, the algorithm reduces the weights associated with the examples hard to classify, and increases the weights of those examples in the other views. This trick allows a communication between the views with the objective to maintain view consistency. Compared to our approach, we follow a two-level learning strategy where we learn (hyper-)posterior distributions/weights over view-specific voters and views. In order to take into account accuracy and diversity between the views, we optimize the multiview C-Bound (an upper-bound over the risk of multiview majority vote learned, see e.g. [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], [START_REF] Roy | A column generation bound minimization approach with PAC-Bayesian generalization guarantees[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF]). [START_REF] Xu | An algorithm on multi-view adaboost[END_REF] proposed EMV-AdaBoost, an embedded multiview Adaboost algorithm, restricted to two views. At each iteration, an example contributes to the error if it is misclassified by any of the view-specific voters and the diversity between the views is captured by weighting the error by the agreement between the views. [START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF][START_REF] Peng | Multiview boosting with information propagation for classification[END_REF] proposed variants of Boost.SH (boosting with SHared weight distribution) which controls the diversity for more than two views. Similarly than our approach, they maintain a single global distribution over the learning examples for all the views. To control the diversity between the views, at each iteration they update the distribution over the views by casting the algorithm in two ways: i) a multiarmed bandit framework (rBoost.SH) and ii) an expert strategy framework (eBoost.SH) consisting of set of strategies (distribution over views) for weighing views. At the end, their multiview majority vote is a combination of T weighted base voters, where T is the number of iterations for boosting. Whereas, our multiview majority vote is a weighted combination of the view-specific voters over all the weighted views.

Furthermore, our approach encompasses the one of [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] and [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF]. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] proposed a Rademacher analysis for expectation of individual risks of each view-specific classifier (for more than two views). [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF] derived a weighted majority voting Adaboost algorithm which learns weights over view-specific voters at each iteration of the algorithm. Both of these approaches maintain a uniform distribution over the views whereas our algorithm learns the weights over the views such that they capture diversity between the views. Moreover, it is important to note that [START_REF] Sun | PAC-Bayes analysis of multi-view learning[END_REF] proposed a PAC-Bayesian analysis for multiview learning over the concatenation of views but limited to two views and to a particular kind of voters: linear classifiers. This has allowed them to derive a SVM-like learning algorithm but dedicated to multiview with exactly two views. In our work, we are interested in learning from more than two views and without any restrictions on the classifier type. Contrary to them, we followed a two-level distributions' hierarchy where we learn weights over view-specific classifiers and weights over views.

3 The Multiview PAC-Bayesian Framework

Notations and Setting

In this work, we tackle multiview binary classification tasks where the observations are described with V ≥ 2 different representation spaces, i.e., views. Let V be the set of these V views. Formally, we focus on tasks for which the input space is

X = X 1 × • • • × X V , where ∀v ∈ V, X v ⊆ R dv is a d v -dimensional
input space, and the binary output space is Y = {-1, +1}. We assume that D is a fixed but unknown distribution over X × Y. We stand in the PAC-Bayesian supervised learning setting where an observation x = (x 1 , x 2 , . . . , x V ) ∈ X is given with its label y ∈ Y, and is independently and identically drawn (i.i.d.) from D. A learning algorithm is then provided with a training sample S of n examples i.i.d. from D: S = {(x i , y i )} n i=1 ∼ (D) n , where (D) n stands for the distribution of a n-sample. For each view v ∈ V, we consider a view-specific set H v of voters h : X v → Y, and a prior distribution P v on H v . Given a hyper-prior distribution π over the views V, and a multiview learning sample S, our PAC-Bayesian learner objective is twofold: i) finding a posterior distribution Q v over H v for all views v ∈ V, and ii) finding a hyper-posterior distribution ρ on the set of the views V. This defines a hierarchy of distributions illustrated on Figure 1. The learned distributions express a multiview weighted majority vote 1 defined as

B ρ (x) = sign E v∼ρ E h∼Qv h(x v ) .
(1) Thus, the learner aims at constructing the posterior and hyper-posterior distributions that minimize the true risk R D (B ρ ) of the multiview weighted majority vote

R D (B ρ ) = E (x,y)∼D 1 [Bρ(x) =y] ,
where 1 [π] = 1 if the predicate π is true and 0 otherwise. The above risk of the deterministic weighted majority vote is closely related to the Gibbs risk R D (G ρ ) defined as the expectation of the individual risks of each voter that appears in the majority vote. More formally, in our multiview setting, we have

R D (G ρ ) = E (x,y)∼D E v∼ρ E h∼Qv 1 [h(x v ) =y] ,
and its empirical counterpart is

R S (G ρ ) = 1 n n i=1 E v∼ρ E h∼Qv 1 [h(x v i ) =yi] .
In fact, if B ρ misclassifies x ∈ X , then at least half of the view-specific voters from all the views (according to hyper-posterior and posterior distributions) makes an error on x. Then, it is well known [START_REF] Shawe | PAC-Bayes & margins[END_REF],

McAllester [2003], Germain et al. [2015] that R D (B ρ ) is upper-bounded by twice R D (G ρ ): R D (B ρ ) ≤ 2R D (G ρ ).
In consequence, a generalization bound for R D (G ρ ) gives rise to a generalization bound for R D (B ρ ).

There exist tighter relations [START_REF] Langford | PAC-Bayes & margins[END_REF], [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], [START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier[END_REF], such as the C-Bound [START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier[END_REF], [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF] which captures a trade-off between the Gibbs risk R D (G ρ ) and the disagreement between pairs of voters. This latter can be seen as a measure of diversity among the voters involved in the majority vote [START_REF] Roy | From pac-bayes bounds to quadratic programs for majority votes[END_REF], [START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF], that is a key element to control from a multiview point of view [START_REF] Pradeep | Multimodal fusion for multimedia analysis: a survey[END_REF], [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], [START_REF] Ludmila | Combining Pattern Classifiers: Methods and Algorithms[END_REF], [START_REF] Maillard | Complexity versus agreement for many views[END_REF]. The C-Bound can be extended to our multiview setting as below.

Lemma 1 (Multiview C-Bound) Let V ≥ 2 be the number of views. For all posterior

{Q v } V v=1 distri- butions over {H v } V v=1 and hyper-posterior ρ distribution over views V, if R D (G ρ ) < 1 2 , then we have R D (B ρ ) ≤ 1 - 1 -2R D (G ρ ) 2 1 -2d D (ρ) (2) ≤ 1 - 1 -2 E v∼ρ R D (G Qv ) 2 1 -2 E v∼ρ d D (Q v ) , (3) 
where d D (ρ) is the expected disagreement between pairs of voters defined as

d D (ρ) = E x∼D X E v∼ρ E v ∼ρ E h∼Qv E h ∼Q v 1 [h(x v ) =h (x v )] ,
and R D (G Qv ) and d D (Q v ) are respectively the true view-specific Gibbs risk and the expected disagreement defined as

R D (G Qv ) = E (x,y)∼D E h∼Qv 1 [h(x v ) =y] , d D (Q v ) = E x∼D X E h∼Qv E h ∼Qv 1 [h(x v ) =h (x v )]
.

1 In the PAC-Bayesian literature, the weighted majority vote is sometimes called the Bayes classifier.

Proof. Similarly than done for the classical C-Bound [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], [START_REF] Lacasse | PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier[END_REF], Equation ( 2) follows from the Cantelli-Chebyshev's inequality (we provide the proof in B). Equation ( 3) is obtained by rewriting R D (G ρ ) as the ρ-average of the risk associated to each view, and lower-bounding d D (ρ) by the ρ-average of the disagreement associated to each view. First we notice that in the binary setting where y ∈ {-1, 1} and h :

X → {-1, 1}, we have 1 [h(x v ) =y] = 1 2 (1 -y h(x v )), and R D (G ρ ) = E (x,y)∼D E v∼ρ E h∼Qv 1 [h(x v ) =y] = 1 2 1 -E (x,y)∼D E v∼ρ E h∼Qv y h(x v ) = E v∼ρ R D (G Qv ) .
Moreover, we have

d D (ρ) = E x∼D X E v∼ρ E v ∼ρ E h∼Qv E h ∼Q v 1 [h(x v ) =h (x v )] = 1 2 1 -E x∼D X E v∼ρ E v ∼ρ E h∼Qv E h∼Q v h(x v ) × h (x v ) = 1 2 1 -E x∼D X E v∼ρ E h∼Qv h(x v ) 2 .
From Jensen's inequality (Theorem 4, in Appendix) it comes

d D (ρ) ≥ 1 2 1 -E x∼D X E v∼ρ E h∼Qv h(x v ) 2 = E v∼ρ 1 2 1 -E x∼D X E h∼Qv h(x v ) 2 = E v∼ρ d D (Q v ) .
By replacing R D (G ρ ) and d D (ρ) in Equation ( 2), we obtain

1 - 1 -2R D (G ρ ) 2 1 -2d D (ρ) ≤ 1 - 1 -2 E v∼ρ R D (G Qv ) 2 1 -2 E v∼ρ d D (Q v ) .
Equation (2) suggests that a good trade-off between the Gibbs risk and the disagreement between pairs of voters will lead to a well-performing majority vote. Equation (3) controls the diversity among the views (important for multiview learning [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], [START_REF] Chapelle | Semi-Supervised Learning[END_REF], [START_REF] Maillard | Complexity versus agreement for many views[END_REF]) thanks to the disagreement's expectation over the views

E v∼ρ d D (Q v ).

The General Multiview PAC-Bayesian Theorem

In this section, we give a general multiview PAC-Bayesian theorem [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF] that takes the form of a generalization bound for the Gibbs risk in the context of a two-level hierarchy of distributions. A key step in PAC-Bayesian proofs is the use of a change of measure inequality [START_REF] Mcallester | PAC-Bayesian stochastic model selection[END_REF], based on the Donsker-Varadhan inequality [START_REF] Monroe | Asymptotic evaluation of certain markov process expectations for large time, i[END_REF]. Lemma 2 below extends this tool to our multiview setting.

Lemma 2 For any set of priors {P

v } V v=1 over {H v } V v=1 and any set of posteriors {Q v } V v=1 over {H v } V v=1
, for any hyper-prior distribution π on views V and hyper-posterior distribution ρ on V, and for any measurable function φ :

H v → R, we have E v∼ρ E h∼Qv φ(h) ≤ E v∼ρ KL(Q v P v ) + KL(ρ π) + ln E v∼π E h∼Pv e φ(h) .

Proof. Deferred to C

Based on Lemma 2, the following theorem gives a generalization bound for multiview learning. Note that, as done by [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF] we rely on a general convex function D : [0, 1] × [0, 1] → R, which measures the "deviation" between the empirical and the true Gibbs risk.

Theorem 1 Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 over {H v } V v=1 , for any hyper-prior distributions π over V, for any convex function D : [0, 1] × [0, 1] → R, for any δ ∈ (0, 1], with a probability at least 1 -δ over the random choice of S ∼ (D) n , for all posterior {Q v } V v=1 over {H v } V v=1 and hyper-posterior ρ over V distributions, we have:

D (R S (G ρ ), R D (G ρ )) ≤ 1 m E v∼ρ KL(Q v P v ) + KL(ρ π) + ln 1 δ E S∼(D) n E v∼π E h∼Pv e nD(R S (h),R D (h)) . Proof. First, note that E v∼π E h∼Pv e nD(R S (h),R D (h)
) is a non-negative random variable. Using Markov's inequality, with δ ∈ (0, 1], and a probability at least 1 -δ over the random choice of the multiview learning sample S ∼ (D) n , we have

E v∼π E h∼Pv e n D(R S (h),R D (h)) ≤ 1 δ E S∼(D) n E v∼π E h∼Pv e nD(R S (h),R D (h)) .
By taking the logarithm on both sides, with a probability at least 1 -δ over S ∼ (D) n , we have ln

E v∼π E h∼Pv e n D(R S (h),R D (h)) ≤ ln 1 δ E S∼(D) n E v∼π E h∼Pv e nD(R S (h),R D (h)) (4) 
We now apply Lemma 2 on the left-hand side of Inequality (4) with φ(h) = n D(R S (h), R D (h)). Therefore, for any Q v on H v for all views v ∈ V, and for any ρ on views V, with a probability at least 1 -δ over S ∼ (D) n , we have ln

E v∼π E h∼Pv e n D(R S (h),R D (h)) ≥ n E v∼ρ E h∼Qv D(R S (h), R D (h)) -E v∼ρ KL(Q v P v ) -KL(ρ π) ≥ n D E v∼ρ E h∼Qv R S (h), E v∼ρ E h∼Qv R D (h) -E v∼ρ KL(Q v P v ) -KL(ρ π),
where the last inequality is obtained by applying Jensen's inequality on the convex function D. By rearranging the terms, we have

D E v∼ρ E h∼Qv R S (h), E v∼ρ E h∼Qv R D (h) ≤ 1 m E v∼ρ KL(Q v P v ) + KL(ρ π) + ln 1 δ E S∼(D) n E v∼π E h∼Pv e n D(R S (h),R D (h)) .
Finally, the theorem statement is obtained by rewriting

E v∼ρ E h∼Qv R S (h) = R S (G ρ ), (5) 
E v∼ρ E h∼Qv R D (h) = R D (G ρ ) . (6) 
Compared to the classical single-view PAC-Bayesian Bound of [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], the main difference relies on the introduction of the view-specific prior and posterior distributions, which mainly leads to an additional term E v∼ρ KL(Q v P v ) expressed as the expectation of the view-specific Kullback-Leibler divergence term over the views V according to the hyper-posterior distribution ρ.

Theorem 1 provides tools to derive PAC-Bayesian generalization bounds for a multiview supervised learning setting. Indeed, by making use of the same trick as [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], by choosing a suitable convex function D and upper-bounding

E S∼(D) n E v∼π E h∼Pv e n D(R S (h),R D (h))
, we obtain an instantiation of Theorem 1. In the next section, we give an example of this kind of deviation through the approach of [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF], that is one of the three classical PAC-Bayesian Theorems [START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF], [START_REF] Catoni | PAC-Bayesian supervised classification: the thermodynamics of statistical learning[END_REF], [START_REF] Seeger | PAC-Bayesian generalisation error bounds for gaussian process classification[END_REF], [START_REF] Langford | Tutorial on practical prediction theory for classification[END_REF].

An Example of Instantiation of the Multiview PAC-Bayesian Theorem

To obtain the following theorem which is a generalization bound with the Catoni [2007]'s point of view, we put D as D(a, b) = F(b) -C a where F is a convex function F and C > 0 is a real number [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF][START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF].

Corollary 1 Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 on {H} V v=1 , for any hyper-prior distributions π over V, for any δ ∈ (0, 1], with a probability at least 1 -δ over the random choice of S ∼ (D) n for all posterior {Q v } V v=1 and hyper-posterior ρ distributions, we have:

R D (G ρ ) ≤ 1 1-e -C 1 -exp -C R S (G ρ ) + 1 n E v∼ρ KL(Q v P v ) + KL(ρ π) + ln 1 δ .
Proof. Deferred to D.

This bound has the advantage of expressing a trade-off between the empirical Gibbs risk and the Kullback-Leibler divergences.

A Generalization Bound for the C-Bound

From a practical standpoint, as pointed out before, controlling the multiview C-Bound of Equation ( 3) can be very useful for tackling multiview learning. The next theorem is a generalization bound that justify the empirical minimization of the multiview C-bound (we use in our algorithm PB-MVBoost derived in Section 4).

Theorem 2 Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior distributions {P v } V v=1 , for any hyper-prior distributions π over views V, and for any convex function D : [0, 1] × [0, 1] → R, with a probability at least 1 -δ over the random choice of S ∼ (D) n for all posterior {Q v } v v=1 and hyper-posterior ρ distributions, we have:

R D (B ρ ) ≤ 1 - 1 -2 E v∼ρ sup r δ/2 Qv,S 2 1 -2 E v∼ρ inf d δ/2 Qv,S
, where

r δ/2 Qv,S = r : kl(R S (Q v ) r) ≤ 1 n KL(Q v P v ) + ln 4 √ m δ and r ≤ 1 2 , ( 7 
)
and d δ/2 Qv,S = d : kl(d S Qv d) ≤ 1 n 2. KL(Q v P v ) + ln 4 √ m δ . (8) 
Proof. Similarly to Equations ( 23) and ( 24 

The PB-MVBoost algorithm

In this section we exploit our two-level hierarchical strategy (see Figure 1) in order to learn a well-performing weighted combination of view-specific voters (or views) as in Equation (1). Therefore, we propose to follow a well-known approach to learn weighted combination of voters, that is boosting. Indeed, boosting aims at combining a set of weak voters 2 to construct a good majority vote. Typically, boosting algorithms repeatedly learn a "weak" voter (using a learning algorithm) with different probability distribution over the learning sample S. Finally, it combines all the weak voters in order to have one single strong classifier Algorithm 1 PB-MVBoost Input: Training set S = (x i , y i ), . . . , (x n , y n ), where x i = (x 1 , x 2 , . . . , x V ) and y i ∈ {-1, 1}.

For each view v ∈ V, a view-specific hypothesis set H v . Number of iterations T .

1: for x i ∈ S do 2:

D 1 (x i ) ← 1 n 3: ∀v ∈ V ρ 1 v ← 1 V 4: for t = 1, . . . , T do 5: ∀v ∈ V, h t v ← argmin h∈Hv E (xi,yi)∼Dt 1 [h(x v i ) =yi] 6: Compute error: ∀v ∈ V, t v ← E (xi,yi)∼Dt 1 [h t v (x v i ) =yi] 7:
Compute voter weights (taking into account view specific information):

∀v ∈ V, Q t v ← 1 2 ln 1 -t v t v 8:
Optimize the multiview C-Bound to learn weights over the views

ρ t ← argmax ρ 1 -2 V v=1 ρ v r t v 2 1 -2 V v=1 ρ v d t v such that V v=1 ρ v = 1, ρ v ≥ 0 ∀v ∈ {1, . . . , V } where ∀v ∈ V, r t v ← E (xi,yi)∼Dt E h∼Hv 1 [h(x v i ) =yi] ∀v ∈ V, d t v ← E (xi,yi)∼Dt E h,h ∼Hv 1 [h(x v i ) =h (x v i )]
9:

for x i ∈ S do 10:

D t+1 (x i ) ← Dt(xi) exp -yi V v=1 ρ t v Q t v h t v (x v i ) n j=1 Dt(xj ) exp -yj V v=1 ρ t v Q t v h t v (x v j )
11: Return: For each view v ∈ V, weights over view-specific voters and weights over views, i.e., ρ T which performs better than the individual weak voters. Recall that in multiview learning it is crucial to take into account the interactions between voters and views [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], [START_REF] Chapelle | Semi-Supervised Learning[END_REF], [START_REF] Maillard | Complexity versus agreement for many views[END_REF]. We adapt this principle to our setting for combining a set of view-specific weak voters while taking into account the accuracy and diversity between them. We develop a multiview learning algorithm PB-MVBoost (see Algorithm 1), which allows to iteratively learn the set of view-specific classifiers that the algorithm will combine.

Concretely, for a given training set S = {(x i , y i ), . . . , (x n , y n )} ∈ (X × {-1, +1}) n of size n, our algorithm PB-MVBoost maintains a distribution over the examples which is initialized as uniform. Then at each iteration, V view-specific weak classifiers are learned according to the current distribution D t (Step 5), and their corresponding errors t v are estimated (Step 6). Similarly to the Adaboost algorithm [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF], the weights of each view-specific classifier (Q t v ) 1≤v≤V are then computed with respect to these errors as

∀v ∈ V, Q t v ← 1 2 ln 1 -t v t v .
To learn the weights (ρ v ) 1≤v≤V over the views, we optimize the multiview C-Bound, given by Equation (3) of Lemma 1 (Step 8 of algorithm), which in our case writes as a constraint maximization problem:

max ρ 1 -2 V v=1 ρ v r t v 2 1 -2 V v=1 ρ v d t v , s.t. V v=1 ρ v = 1, ρ v ≥ 0 ∀v ∈ {1, ..., V } .
where r v is the view-specific Gibbs risk, and d v the expected disagreement over all view-specific voters defined as follows.

r t v = E (xi,yi)∼Dt E h∼Hv 1 [h(x v i ) =yi] , (9) 
d t v = E (xi,yi)∼Dt E h,h ∼Hv 1 [h(x v i ) =h (x v i )] . (10) 
Intuitively, the multiview C-Bound tries to diversify the view-specific voters and views (Equation ( 10)) while controlling the classification error of the view-specific classifiers (Equation ( 9)). This allows us to control the accuracy and the diversity between the views which is an important ingredient in multiview learning [START_REF] Xu | An algorithm on multi-view adaboost[END_REF], [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], [START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF][START_REF] Peng | Multiview boosting with information propagation for classification[END_REF], [START_REF] Morvant | Majority vote of diverse classifiers for late fusion[END_REF].

In Section 5, we empirically show that our algorithm minimizes the multiview C-Bound over the iterations of the algorithm (this is theoretically justified by the generalization bound of Theorem 2). Finally, we update the distribution over training examples x i (Step 9), by following the Adaboost algorithm and in a way that the weights of misclassified (resp. well classified) examples by the final weighted majority classifier increase (resp. decrease).

D t+1 (x i ) ← D t (x i ) exp -y i V v=1 ρ t v Q t v h t v (x v i ) n j=1 D t (x j ) exp -y j V v=1 ρ t v Q t v h t v (x v j )
.

Intuitively, this forces the view-specific classifiers to be consistent with each other, which is important for multiview learning [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF], [START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF], [START_REF] Xiao | Multi-view adaboost for multilingual subjectivity analysis[END_REF]. Finally, after T iterations of the algorithm, we learn the weights over the view-specific voters and weights over the views leading to a well-performing weighted multiview majority vote defined as

B ρ (x) = sign V v=1 ρ T v T t=1 Q t v h t v (x v ) .

A note on the Complexity of PB-MVBoost

The complexity of learning a decision tree classifier is O(d nlog(n)), where d is the depth of the decision tree. We learn the weights over the views by optimizing Equation (3) (Step 8 of our algorithm) using SLSQP method which has time complexity of O(V 3 ). Therefore, the overall complexity is O T V 3 + V d v n.log(n) . Note that it is easy to parallelize our algorithm: by using V different machines, we can learn the view-specific classifiers and weights over them (Steps 4 to 7). 

Experimental Results

In this section, we present experiments to show the potential of our algorithm PB-MVBoost on the following datasets.

Datasets

MNIST

MNIST is a publicly available dataset consisting of 70, 000 images of handwritten digits distributed over ten classes [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. For our experiments, we generated 2 four-view datasets3 where each view is a vector of R 14×14 . Similarly than done by [START_REF] Chen | Multi-view generative adversarial networks[END_REF], the first dataset (MNIST 1 ) is generated by considering 4 quarters of image as 4 views. For the second dataset (MNIST 2 ), we consider 4 overlapping views around the centre of images: this dataset brings redundancy between the views. These two datasets allow us to check if our algorithm is able to capture redundancy between the views. We reserve 10, 000 of images as test samples and remaining as training samples.

Multilingual, Multiview Text categorization

This dataset is a multilingual text classification data extracted from Reuters RCV1/RCV2 corpus4 . It consists of more than 110, 000 documents written in five different languages (English, French, German, Italian and Spanish) distributed over six classes. We see different languages as different views of the data. We reserve 30% of documents as test samples and remaining as training data.

Experimental Protocol

While the datasets are multiclass, we transformed them as binary tasks by considering one-vs-all classification problems: for each class we learn a binary classifier by considering all the learning samples from that class as positive examples and the others as negative examples. We consider different sizes of learning sample S (150, 200, 250, 300, 500, 800, 1000) that are chosen randomly from the training data. Moreover, all the results are averaged over 20 random runs of the experiments. Since the classes are unbalanced, we report the accuracy along with F1-measure for the methods and all the scores are averaged over all the one-vs-all classification problems. We consider two multiview learning algorithms based on our two-step hierarchical strategy, and compare the PB-MVBoost5 algorithm described in Section 4, with a previously developed multiview learning algorithm [START_REF] Goyal | PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach[END_REF], based on classifier late fusion approach [START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF], and referred to as Fusion all Cq . Concretely, at the first level, this algorithm trains different view-specific linear SVM models with different hyperparameter C values (12 values between 10 -8 and 10 3 ). And, at the second level, it learns a weighted combination over the predictions of view-specific voters using PAC-Bayesian algorithm CqBoostRoy et al. [2016] with a RBF kernel. Note that, algorithm CqBoost tends to minimize the PAC-Bayesian C-Bound [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF] controlling the trade-off between accuracy and disagreement among voters. The hyperparameter γ of the RBF kernel is chosen over a set of 9 values between 10 -6 and 10 2 ; and hyperparameter µ is chosen over a set of 8 values between 10 -8 and 10 -1 . To study the potential of our algorithms (Fusion all Cq and PB-MVBoost), we considered following 7 baseline approaches: • Mono: We learn a view-specific model for each view using a decision tree classifier and report the results of the best performing view.

• Concat: We learn one model using a decision tree classifier by concatenating features of all the views.

• Fusion dt : This is a late fusion approach where we first learn the view-specific classifiers using 60% of learning samples. Then, we learn a final multiview weighted model over the predictions of the view-specific classifiers. For this approach, we used decision tree classifiers at both levels of learning.

• MV-MV: We compute a multiview uniform majority vote (similar to approach followed by [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF]) over all the view-specific classifiers' outputs in order to make final prediction. We learn view-specific classifiers using decision tree classifiers.

• rBoost.SH: This is the multiview learning algorithm proposed by [START_REF] Peng | Shareboost: Boosting for multi-view learning with performance guarantees[END_REF][START_REF] Peng | Multiview boosting with information propagation for classification[END_REF] where a single global distribution is maintained over the learning sample for all the views and the distribution over views are updated using multiarmed bandit framework. At each iteration, rBoost.SH selects a view according to the current distribution and learns the corresponding view-specific voter. For tuning the parameters, we followed the same experimental setting as [START_REF] Peng | Multiview boosting with information propagation for classification[END_REF].

• MV-AdaBoost: This is a majority vote classifier over the view-specific voters trained using Adaboost algorithm. Here, our objective is to see the effect of maintaining separate distributions for all the views.

• MVBoost: This is a variant of our algorithm PB-MVBoost but without learning weights over views by optimizing multiview C-Bound. Here, our objective is to see the effect of learning weights over views on multiview learning.

For all boosting based approaches (rBoost.SH, MV-AdaBoost, MVBoost and PB-MVBoost), we learn the view-specific voters using a decision tree classifier with depth 2 and 4 as a weak classifier for MNIST, and Reuters RCV1/RCV2 datasets respectively. For all these approaches, we kept T = 100 as the number of iterations. For optimization of multiview C-Bound, we used Sequential Least SQuares Programming (SLSQP) implementation provided by SciPy 6 Jones et al. [2001-] and the decision trees implementation from scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF].

Results

Firstly, we report the comparison of our algorithms Fusion all Cq and PB-MVBoost (for m = 500) with all the considered baseline methods in Table 1. Secondly, Figure 2, illustrates the evolution of the performances according to the size of the learning sample. From the table, proposed two-step learning algorithm Fusion all Cq is significantly better than the baseline approaches for Reuters dataset. Whereas, our boosting based algorithm PB-MVBoost is significantly better than all the baseline approaches for all the datasets. This shows that considering a two-level hierarchical strategy in a PAC-Bayesian manner is an effective way to handle multiview learning.

In Figure 3, we compare proposed algorithms Fusion all Cq and PB-MVBoost in terms of accuracy, F 1 -score and time complexity for m = 500 examples. For MNIST datasets, PB-MVBoost is significantly better than Fusion all Cq . For Reuters dataset, Fusion all Cq performs better than PB-MVBoost but computation time for Fusion all Cq is much higher than that of PB-MVBoost. Moreover, in Figure 2, we can see that the performance (in terms of F 1 -score) for Fusion all Cq is worse than PB-MVBoost when we have less training examples (n = 150 and 200). This shows the proposed boosting based one-step algorithm PB-MVBoost is more stable and more effective for multiview learning.

From Table 1 and Figure 2, we can observe that MV-AdaBoost (where we have different distributions for each view over the learning sample) provides better results compared to other baselines in terms of accuracy but not in terms of F1-measure. On the other hand, MVBoost (where we have single global Finally, we plot behaviour of our algorithm PB-MVBoost over T = 100 iterations on Figure 4 for all the datasets. We plot accuracy and F1-measure of learned models on training and test data along with empirical multiview C-Bound on training data at each iteration of our algorithm. Over the iterations, the F1-measure on the test data keeps on increasing for all the datasets even if F1-measure and accuracy on the training data reach the maximal value. This confirms that our algorithm handles unbalanced data well. Moreover, the empirical multiview C-Bound (which controls the trade-off between accuracy and diversity between views) keeps on decreasing over the iterations. This validates that by combining the PAC-Bayesian framework with the boosting one, we can empirically ensure the view specific information and diversity between the views for multiview learning. 

Conclusion

In this paper, we provide a PAC-Bayesian analysis for a two-level hierarchical multiview learning approach with more than two views, when the model takes the form of a weighted majority vote over a set of functions/voters. We consider a hierarchy of weights modelled by distributions where for each view we aim at learning i) posterior Q v distributions over the view-specific voters capturing the view-specific information and ii) hyper-posterior ρ v distributions over the set of the views. Based on this strategy, we derived a general multiview PAC-Bayesian theorem that can be specialized to any convex function to compare the empirical and true risks of the stochastic multiview Gibbs classifier. We propose a boosting-based learning algorithm, called as PB-MVBoost. At each iteration of the algorithm, we learn the weights over the view-specific voters and the weights over the views by optimizing an upper-bound over the risk of the majority vote (the multiview C-Bound) that has the advantage of controlling a trade-off between accuracy and the diversity between the views. The empirical evaluation shows that PB-MVBoost leads to good performances and confirms that our two-level PAC-Bayesian strategy is indeed a nice way to tackle multiview learning. Moreover, we compare the effect of maintaining separate distributions over the learning sample for each view; single global distribution over views; and single global distribution along with learning weights over views on results of multiview learning. We show that by maintaining a single global distribution over the learning sample for all the views and learning the weights over the views is an effective way to deal with multiview learning. In this way, we are able to capture the view-specific information and control the diversity between the views. Finally, we compare PB-MVBoost with a two-step learning algorithm Fusion all Cq which is based on PAC-Bayesian theory. We show that PB-MVBoost is more stable and computationally faster than Fusion all Cq . For future work, we would like to specialize our PAC-Bayesian generalization bounds to linear classifiers [START_REF] Germain | PAC-Bayesian learning of linear classifiers[END_REF] which will clearly open the door to derive theoretically founded multiview learning algorithms. We would also like to extend our algorithm to semi-supervised multiview learning where one has access to an additional unlabeled data during training. One possible way is to learn a view-specific voter using pseudo-labels (for unlabeled data) generated from the voters trained from other views (as done for example in [START_REF] Xu | Co-labeling for multi-view weakly labeled learning[END_REF]). Another possible direction is to make use of unlabeled data while computing view-specific disagreement for optimizing multiview C-Bound. This clearly opens the door to derive theoretically founded algorithms for semi-supervised multiview learning using PAC-Bayesian theory. We would like to extend our algorithm to transfer learning setting where training and test data are drawn from different distributions. An interesting direction would be to bind the data distribution to the different views of the data, as in some recent zero-shot learning approaches [START_REF] Socher | Zero-shot learning through cross-modal transfer[END_REF]. Moreover, we would like to extend our work to the case of missing views or incomplete views e.g. [START_REF] Amini | Learning from Multiple Partially Observed Views -an Application to Multilingual Text Categorization[END_REF] and [START_REF] Xu | Multi-view learning with incomplete views[END_REF]. One possible solution is to learn the view-specific voters using available view-specific training examples and adapt the distribution over the learning sample accordingly. (11)

and,

µ 2 (M D ρ ) = E (x,y)∼D M ρ (x, y) 2 = E x∼D X y 2 E v∼ρ E h∼Qv h(x v ) 2 = E x∼D X E v∼ρ E h∼Qv h(x v ) 2 . ( 12 
)
According to this definition, the risk of the multiview weighted majority vote can be rewritten as follows:

R D (B ρ ) = P (x,y)∼D M ρ (x, y) ≤ 0 .

Moreover, the risk of the multiview Gibbs classifier can be expressed thanks to the first statistical moment of the margin. Note that in the binary setting where y ∈ {-1, 1} and h : X → {-1, 1}, we have 1 [h(x v ) =y] = 1 2 (1 -y h(x v )), and therefore

R D (G ρ ) = E (x,y)∼D E v∼ρ E h∼Qv 1 [h(x v ) =y] = 1 2 1 -E (x,y)∼D E v∼ρ E h∼Qv y h(x v ) (13) = 1 2 (1 -µ 1 (M D ρ )) .
Similarly, the expected disagreement can be expressed thanks to the second statistical moment of the margin by

d D (ρ) = E x∼D X E v∼ρ E v ∼ρ E h∼Qv E h ∼Q v 1 [h(x v ) =h (x v )] Technical Report V 2 = 1 2 1 -E x∼D X E v∼ρ E v ∼ρ E h∼Qv E h∼Q v h(x v ) × h (x v ) = 1 2 1 -E x∼D X E v∼ρ E h∼Qv h(x v ) × E v ∼ρ E h ∼Q v h (x v ) = 1 2 1 -E x∼D X E v∼ρ E h∼Qv h(x v ) 2 (14) = 1 2 (1 -µ 2 (M D ρ )) .
From above, we can easily deduce that 0 ≤ d D (ρ) ≤ 1/2 as 0 ≤ µ 2 (M D ρ ) ≤ 1. Therefore, the variance of the margin can be written as:

Var(M D ρ ) = Var (x,y)∼D (M ρ (x, y)) = µ 2 (M D ρ ) -(µ 1 (M D ρ )) 2 . ( 15 
)
The proof of the C-bound 

µ 2 (M D ρ ) -µ 1 (M D ρ ) 2 + µ 1 (M D ρ ) 2 = Var(M D ρ ) µ 2 (M D ρ ) = µ 2 (M D ρ ) -µ 1 (M D ρ ) 2 µ 2 (M D ρ ) = 1 - µ 1 (M D ρ ) 2 µ 2 (M D ρ ) = 1 - 1 -2 R D (G ρ ) 2 1 -2 d D (ρ)
C Proof of Lemma 2

We have h) .

E v∼ρ E h∼Qv φ(h) = E v∼ρ E h∼Qv ln e φ(h) = E v∼ρ E h∼Qv ln Q v (h) P v (h) P v (h) Q v (h) e φ(h) = E v∼ρ E h∼Qv ln Q v (h) P v (h) + E h∼Qv ln P v (h) Q v (h) e φ(
According to the Kullback-Leibler definition, we have h) .

E v∼ρ E h∼Qv φ(h) = E v∼ρ KL(Q v P v ) + E h∼Qv ln P v (h) Q v (h) e φ(
By applying Jensen's inequality (Theorem 4, in Appendix) on the concave function ln, we have h) .

E v∼ρ E h∼Qv φ(h) ≤ E v∼ρ KL(Q v P v ) + ln E h∼Pv e φ(h) = E v∼ρ KL(Q v P v ) + E v∼ρ ln ρ(v) π(v) π(v) ρ(v) E h∼Pv e φ(h) = E v∼ρ KL(Q v P v ) + KL(ρ π) + E v∼ρ ln π(v) ρ(v) E h∼Pv e φ(
Finally, we apply again the Jensen inequality (Theorem 4) on ln to obtain the lemma. 

  ) of[START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF], we define the sets r (Equation (8)) for our setting. Finally, the bound is obtained (from Equation (3) of Lemma 1) by replacing the view-specific Gibbs risk R D (G Qv ) by its upper bound sup r δ/2 Qv,S and expected disagreement d D (Q v ) by its lower bound inf d

Figure 2 :

 2 Figure 2: Evolution of accuracy and F 1 -measure with respect to the number of labeled examples in the initial labeled training sets on MNIST 1 , MNIST 2 and Reuters datasets.

Figure 3 :

 3 Figure 3: Comparison between Fusion all Cq and PB-MVBoost in terms Accuracy (a), F1-Measure (b) and Time Complexity (c) for n = 500

Figure 4 :

 4 Figure 4: Plots for classification error and F1-measure on training and test data; and empirical multiview C-Bound on training data over the iterations for all datasets with n = 500.

Proof.

  By making use of one-sided Chebyshev inequality (Theorem 5 of A), with X = -M ρ (x, y), µ = E (x,y)∼D (M ρ (x, y)) and a = E (x,y)∼D M ρ (x, y), we have R D (B ρ ) = P (x,y)∼D M ρ (x, y)

D.

  A Catoni-Like Theorem-Proof of Corollary 1The result comes from Theorem 1 by taking D(a, b) = F(b) -Ca, for a convex F and C > 0, and by upper-boundingE S∼(D) n E v∼π E h∼Pv e nD(R S (h),R D (h)). We consider R S (h) as a random variable following a binomial distribution of n trials with a probability of success R(h). We have:(h) k (1-R D (h)) n-k e -Ck = E S∼(D) n E v∼π E h∼Pv e nF (R D (h)) R D (h) e -C +(1-R D (h)) nThe corollary is obtained with F(p) = ln 1 (1-p[1-e -C ]) .

Table 1 :

 1 Mono .9034 ± .001 ↓ .5353 ± .006 ↓ .9164 ± .001 ↓ .5987 ± .007 ↓ .8420 ± .002 ↓ .5051 ± .007 ↓ Concat .9224 ± .002 ↓ .6168 ± .011 ↓ .9214 ± .002 ↓ .6142 ± .013 ↓ .8431 ± .004 ↓ .5088 ± .012 ↓ Fusion dt .9320 ± .001 ↓ .5451 ± .019 ↓ .9366 ± .001 ↓ .5937 ± .020 ↓ .8587 ± .003 ↓ .4128 ± .017 ↓ MV-MV .9402 ± .001 ↓ .6321 ± .009 ↓ .9450 ± .001 ↓ .6849 ± .008 ↓ .8780 ± .002 ↓ .5443 ± .012 ↓ rBoost.SH .9256 ± .001 ↓ .5315 ± .009 ↓ .9545 ± .0007 .7258 ± .005 ↓ Test classification accuracy and F 1 -score of different approaches averaged over all the classes and over 20 random sets of n = 500 labeled examples per training set. Along each column, the best result is in bold, and second one in italic. ↓ indicates that a result is statistically significantly worse than the best result, according to a Wilcoxon rank sum test with p < 0.02.

	Strategy	MNIST 1 Accuracy	F 1	MNIST 2 Accuracy	F 1	Reuters Accuracy	F 1
								.8853 ± .002	.5718 ± .011 ↓
	MV-AdaBoost	.9514 ± .001	.6510 ± .012 ↓	.9641 ± .0009 .7776 ± .007 ↓	.8942 ± .006	.5581 ± .013 ↓
	MVBoost	.9494 ± .003 ↓ .7733 ± .009 ↓	.9555 ± .002	.7910 ± .006 ↓	.8627 ± .007 ↓	.5789 ± .012 ↓
	Fusion all Cq	.9418 ± .002 ↓ .6120 ± .040 ↓	.9548 ± .003 ↓ .7217 ± .041 ↓	.9001 ± .003 .6279 ± .019
	PB-MVBoost .9661 ± .0009 .8066 ± .005	.9674 ± .0009 .8166 ± .006	.8953 ± .002	.5960 ± .015 ↓

In boosting, the performance of a weak classifier is only slightly better than random guessing.

MNIST 1 and MNIST 2 datasets are available at https://github.com/goyalanil/Multiview_Dataset_MNIST

Reuters RCV1/RCV2 corpus is available at https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+ Multilingual,+Multiview+Text+Categorization+Test+collection

Code for PB-MVBoost is available at https://github.com/goyalanil/PB-MVBoost

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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Appendix

A Mathematical Tools

Theorem 3 (Markov's ineq.) For any random variable X s.t. E(|X|) = µ, for any a > 0, we have

Theorem 4 (Jensen's ineq.) For any random variable X, for any concave function g, we have g

Theorem 5 (Cantelli-Chebyshev ineq.) For any random variable X s.t. E(X) = µ and Var(X) = σ 2 , and for any a > 0, we have

B Proof of C-Bound for Multiview Learning (Lemma 1)

In this section, we present the proof of Lemma 1, inspired by the proof provided by [START_REF] Germain | Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm[END_REF]. Firstly, we need to define the margin of the multiview weighted majority vote B ρ and its first and second statistical moments.

Definition 1 Let M ρ is a random variable that outputs the margin of the multiview weighted majority vote on the example (x, y) drawn from distribution D, given by:

The first and second statistical moments of the margin are respectively given by µ 1 (M D ρ ) = E (x,y)∼D