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Abstract

In this paper we propose a boosting based multiview learning algorithm, referred

as PB-MVBoost, which iteratively learns i) weights over view-specific voters

capturing view-specific information, and ii) weights over views by optimizing a

PAC-Bayes multiview C-Bound that takes into account the accuracy of view-

specific classifiers and the diversity between the views. We derive a generalization

bound for this strategy following the PAC-Bayes theory which is a suitable tool

to deal with models expressed as weighted combination over a set of voters.

Different experiments on three publicly available datasets show the efficiency of

the proposed approach with respect to state-of-art models.

Keywords: Multiview Learning, PAC-Bayes, Boosting

1. Introduction

With the tremendous generation of data, there are more and more situations

where observations are described by more than one view. This is for example the

case with multilingual documents that convey the same information in different

languages or images that are naturally described according to different set of5

features (for example SIFT, HOG, CNN, etc). In this paper, we study the related

machine learning problem that consists in finding an efficient classification model

from different information sources that describe the observations. This topic,

called multiview (or multimodal) learning [1, 2, 3], has been expanding over
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1. INTRODUCTION

the past decade, spurred by the seminal work of Blum and Mitchell on co-10

training [4] (with only two views). The aim is to learn a classifier which performs

better than classifiers trained over each view separately (called here view-specific

classifier). Usually, this is done by directly concatenating the representations

(early fusion) or by combining the predictions of view-specific classifiers (late

fusion) [5]. In this work, we stand in the latter situation. Concretely, we15

study a two-level multiview learning strategy based on the PAC-Bayesian theory

(introduced by McAllester [6] for monoview learning). This theory provides

Probably Approximately Correct (PAC) generalization guarantees for models

expressed as a weighted combination over a set of functions/voters (i.e., for a

weighted majority vote). In this framework, given a prior distribution over a set of20

functions, called voters, H and a learning sample, one aims at learning a posterior

distribution over H leading to a well-performing majority vote; each voter from

H is weighted by its probability to appear according to the posterior distribution.

Note that, PAC-Bayesian studies have not only been conducted to characterize

the error of such weighted majority votes [7, 8, 9, 10, 11], but have also been25

used to derive theoretically grounded learning algorithms (such as for supervised

learning [10, 12, 13, 14, 15] or transfer learning [16]). To tackle multiview learning

in a PAC-Bayesian fashion, we propose to define a two-level hierarchy of prior and

posterior distributions over the views: i) for each view v, we consider a prior Pv

and a posterior Qv distributions over view-specific voters to capture view-specific30

information and ii) a hyper-prior πv and a hyper-posterior ρv distributions over

the set of views to capture the accuracy of view-specific classifiers and diversity

between the views (see Figure 1). Following this distributions’ hierarchy, we

define a multiview majority vote classifier where the view-specific classifiers are

weighted according to posterior and hyper-posterior distributions. By doing35

so, we extend the classical PAC-Bayesian theory to multiview learning with

more than two views and derive a PAC-Bayesian generalization bound for our

multiview majority vote classifier.

From a practical point of view, we design an algorithm based on the idea

of boosting [17, 18, 19, 20], an ensemble method well known to be able to40
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1. INTRODUCTION

Figure 1: Illustration of the multiview distributions hierarchy with 3 views. For all views

v ∈ {1, 2, 3}, we have a set of voters Hv = {hv1 , . . . , hvnv} on which we consider prior Pv

view-specific distribution (in blue), and we consider a hyper-prior π distribution (in green) over

the set of 3 views. The objective is to learn a posterior Qv (in red) view-specific distributions

and a hyper-posterior ρ distribution (in orange) leading to a good model. The length of a

rectangle represents the weight (or probability) assigned to a voter or a view.

learn well-performing majority vote. Our boosting-based multiview learning

algorithm, called PB-MVBoost, deals with the two-level hierarchical learning

strategy. PB-MVBoost is then an ensemble method that outputs a multiview

classifier expressed as a weighted combination of view-specific voters. It is

important to notice that controlling the diversity between the view-specific45

classifiers or the views is a key element in multiview learning [21, 22, 23, 24, 25, 15].

Therefore, to learn the weights over the views, we minimize an upper-bound on

the error of the majority vote, called the multiview C-bound [11, 14, 22], allowing

us to control a trade-off between accuracy and diversity. Concretely, at each

iteration of our multiview algorithm, we learn i) weights over view-specific voters50

based on their ability to deal with examples on the corresponding view (capturing

view-specific information), and ii) weights over views by minimizing the multiview

C-bound. To show the potential of our algorithm, we empirically evaluate our

approach on MNIST1, MNIST2 and Reuters RCV1/RCV2 collections[26, 21]. We

observe that our algorithm PB-MVBoost, empirically minimizes the multiview55
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2. RELATED WORK

C-Bound over iterations, and leads to good performances even when the classes

are unbalanced. We compare PB-MVBoost with a previously developed multiview

algorithm, denoted by Fusion
Cq
all [22], which first learns the view-specific voters at

the base level of the hierarchy, and then, combines the predictions of view-specific

voters using a PAC-Bayesian algorithm CqBoost [14]. From the experimental60

results, it came out that PB-MVBoost is more stable across different datasets and

computationally faster than Fusion
Cq
all.

In the next section, we discuss some related works. In Section 3, we present

the PAC-Bayesian multiview learning framework [22]. In Section 4, we derive

our multiview learning algorithm PB-MVBoost. Before concluding in Section 6,65

we experiment our algorithm in Section 5.

2. Related Work

Learning a weighted majority vote is closely related to ensemble methods [27,

28]. In the ensemble methods literature, it is well known that we desire to

combine voters that make errors on different data points [24]. Intuitively, this70

means that the voters disagree on some data points. This notion of disagreement

(or agreement) is sometimes called diversity between classifiers [29, 30, 24]. Even

if there is no consensus on the definition of “diversity”, controlling it while

keeping good accuracy is at the heart of a majority of ensemble methods: indeed

if all the voters agree on all the points then there is no interest to combine75

them, only one will be sufficient. Similarly, when we combine multiple views

(or representations), it is known that controlling diversity between the views

plays a vital role for learning the final majority vote [21, 22, 23, 25]. Most of

the existing ensemble-based multiview learning algorithms try to exploit either

view consistency (agreement between views) [31, 32, 33] or diversity between80

views [34, 22, 35, 36] in different manners. Janodet et al. [31] proposed a

boosting based multiview learning algorithm for two views, called 2-Boost. At

each iteration, the algorithm learns the weights over the view-specific voters by

maintaining a single distribution over the learning examples. Conversely, Koço et
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2. RELATED WORK

al. [32] proposed Mumbo that maintains separate distributions for each view. For85

each view, the algorithm reduces the weights associated with the examples hard

to classify, and increases the weights of those examples in the other views. This

trick allows a communication between the views with the objective to maintain

view consistency. Compared to our approach, we follow a two-level learning

strategy where we learn (hyper-)posterior distributions/weights over view-specific90

voters and views. In order to take into account accuracy and diversity between

the views, we optimize the multiview C-Bound (an upper-bound over the risk of

multiview majority vote learned, see e.g. [11, 14, 22]).

Xu and Sun [34] proposed EMV-AdaBoost, an embedded multiview Adaboost

algorithm, restricted to two views. At each iteration, an example contributes to95

the error if it is misclassified by any of the view-specific voters and the diversity

between the views is captured by weighting the error by the agreement between

the views. Peng et al. [35, 36] proposed variants of Boost.SH (boosting with

SHared weight distribution) which controls the diversity for more than two views.

Similarly than our approach, they maintain a single global distribution over the100

learning examples for all the views. To control the diversity between the views, at

each iteration they update the distribution over the views by casting the algorithm

in two ways: i) a multiarmed bandit framework (rBoost.SH) and ii) an expert

strategy framework (eBoost.SH) consisting of set of strategies (distribution

over views) for weighing views. At the end, their multiview majority vote is a105

combination of T weighted base voters, where T is the number of iterations for

boosting. Whereas, our multiview majority vote is a weighted combination of

the view-specific voters over all the weighted views.

Furthermore, our approach encompasses the one of Amini et al. [21] and Xiao

and Guo [33]. Amini et al. [21] proposed a Rademacher analysis for expectation110

of individual risks of each view-specific classifier (for more than two views). Xiao

and Guo [33] derived a weighted majority voting Adaboost algorithm which

learns weights over view-specific voters at each iteration of the algorithm. Both

of these approaches maintain a uniform distribution over the views whereas our

algorithm learns the weights over the views such that they capture diversity115
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3. MULTIVIEW PB FRAMEWORK

between the views. Moreover, it is important to note that Sun et al. [37] proposed

a PAC-Bayesian analysis for multiview learning over the concatenation of views

but limited to two views and to a particular kind of voters: linear classifiers.

This has allowed them to derive a SVM-like learning algorithm but dedicated

to multiview with exactly two views. In our work, we are interested in learning120

from more than two views and without any restrictions on the classifier type.

Contrary to them, we followed a two-level distributions’ hierarchy where we

learn weights over view-specific classifiers and weights over views.

3. The Multiview PAC-Bayesian Framework

3.1. Notations and Setting125

In this work, we tackle multiview binary classification tasks where the ob-

servations are described with V ≥ 2 different representation spaces, i.e., views.

Let V be the set of these V views. Formally, we focus on tasks for which the

input space is X = X1 × · · · × XV , where ∀v ∈ V, Xv ⊆ Rdv is a dv-dimensional

input space, and the binary output space is Y = {−1,+1}. We assume that D

is a fixed but unknown distribution over X × Y . We stand in the PAC-Bayesian

supervised learning setting where an observation x = (x1, x2, . . . , xV ) ∈ X is

given with its label y ∈ Y, and is independently and identically drawn (i.i.d.)

from D. A learning algorithm is then provided with a training sample S of n

examples i.i.d. from D: S = {(xi, yi)}ni=1 ∼ (D)n, where (D)n stands for the

distribution of a n-sample. For each view v ∈ V, we consider a view-specific

set Hv of voters h : Xv → Y, and a prior distribution Pv on Hv. Given a

hyper-prior distribution π over the views V , and a multiview learning sample S,

our PAC-Bayesian learner objective is twofold: i) finding a posterior distribution

Qv over Hv for all views v ∈ V, and ii) finding a hyper-posterior distribution ρ

on the set of the views V . This defines a hierarchy of distributions illustrated on

Figure 1. The learned distributions express a multiview weighted majority vote1

1In the PAC-Bayesian literature, the weighted majority vote is sometimes called the Bayes

classifier.
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3. MULTIVIEW PB FRAMEWORK

defined as

Bρ(x) = sign

[
E
v∼ρ

E
h∼Qv

h(xv)

]
. (1)

Thus, the learner aims at constructing the posterior and hyper-posterior distri-

butions that minimize the true risk RD(Bρ) of the multiview weighted majority

vote

RD(Bρ) = E
(x,y)∼D

1[Bρ(x) 6=y],

where 1[π] = 1 if the predicate π is true and 0 otherwise. The above risk of the

deterministic weighted majority vote is closely related to the Gibbs risk RD(Gρ)

defined as the expectation of the individual risks of each voter that appears in

the majority vote. More formally, in our multiview setting, we have

RD(Gρ) = E
(x,y)∼D

E
v∼ρ

E
h∼Qv

1[h(xv) 6=y],

and its empirical counterpart is

RS(Gρ) =
1

n

n∑
i=1

E
v∼ρ

E
h∼Qv

1[h(xvi )6=yi].

In fact, if Bρ misclassifies x ∈ X , then at least half of the view-specific voters from

all the views (according to hyper-posterior and posterior distributions) makes an

error on x. Then, it is well known [38, 39, 11] that RD(Bρ) is upper-bounded

by twice RD(Gρ):

RD(Bρ) ≤ 2RD(Gρ).

In consequence, a generalization bound for RD(Gρ) gives rise to a generalization

bound for RD(Bρ).

There exist tighter relations [9, 11, 40], such as the C-Bound [40, 11] which

captures a trade-off between the Gibbs risk RD(Gρ) and the disagreement

between pairs of voters. This latter can be seen as a measure of diversity among130

the voters involved in the majority vote [41, 15], that is a key element to control

from a multiview point of view [1, 21, 22, 24, 25]. The C-Bound can be extended

to our multiview setting as below.
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3. MULTIVIEW PB FRAMEWORK

Lemma 1 (Multiview C-Bound). Let V ≥ 2 be the number of views. For all

posterior {Qv}Vv=1 distributions over {Hv}Vv=1 and hyper-posterior ρ distribution135

over views V, if RD(Gρ) <
1
2 , then we have

RD(Bρ) ≤ 1−
(
1− 2RD(Gρ)

)2
1− 2dD(ρ)

(2)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

, (3)

where dD(ρ) is the expected disagreement between pairs of voters defined as

dD(ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv) 6=h′(xv′ )],

and RD(GQv ) and dD(Qv) are respectively the true view-specific Gibbs risk and

the expected disagreement defined as

RD(GQv ) = E
(x,y)∼D

E
h∼Qv

1[h(xv) 6=y] ,

dD(Qv) = E
x∼DX

E
h∼Qv

E
h′∼Qv

1[h(xv)6=h′(xv)].

Proof. Similarly than done for the classical C-Bound [11, 40], Equation (2)

follows from the Cantelli-Chebyshev’s inequality (we provide the proof in Ap-

pendix B).

Equation (3) is obtained by rewriting RD(Gρ) as the ρ-average of the risk

associated to each view, and lower-bounding dD(ρ) by the ρ-average of the

disagreement associated to each view. First we notice that in the binary setting

where y ∈ {−1, 1} and h : X → {−1, 1}, we have 1[h(xv) 6=y] = 1
2 (1 − y h(xv)),

and

RD(Gρ) = E
(x,y)∼D

E
v∼ρ

E
h∼Qv

1[h(xv)6=y]

=
1

2

(
1− E

(x,y)∼D
E
v∼ρ

E
h∼Qv

y h(xv)

)
= E

v∼ρ
RD(GQv ) .

Moreover, we have

dD(ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv) 6=h′(xv′ )]

8



3. MULTIVIEW PB FRAMEWORK

=
1

2

(
1− E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h∼Qv′

h(xv)× h′(xv
′
)

)
=

1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)

]2)
.

From Jensen’s inequality (Theorem 4, in Appendix) it comes

dD(ρ) ≥ 1

2

(
1− E

x∼DX
E
v∼ρ

[
E

h∼Qv
h(xv)

]2)
= E

v∼ρ

[
1

2

(
1− E

x∼DX

[
E

h∼Qv
h(xv)

]2)]
= E

v∼ρ
dD(Qv) .

By replacing RD(Gρ) and dD(ρ) in Equation (2), we obtain

1−
(
1− 2RD(Gρ)

)2
1− 2dD(ρ)

≤ 1−

(
1− 2Ev∼ρRD(GQv )

)2
1− 2Ev∼ρ dD(Qv)

.

Equation (2) suggests that a good trade-off between the Gibbs risk and the

disagreement between pairs of voters will lead to a well-performing majority vote.

Equation (3) controls the diversity among the views (important for multiview140

learning [21, 22, 23, 25]) thanks to the disagreement’s expectation over the views

Ev∼ρ dD(Qv).

3.2. The General Multiview PAC-Bayesian Theorem

In this section, we give a general multiview PAC-Bayesian theorem [22] that

takes the form of a generalization bound for the Gibbs risk in the context of145

a two-level hierarchy of distributions. A key step in PAC-Bayesian proofs is

the use of a change of measure inequality [39], based on the Donsker-Varadhan

inequality [42]. Lemma 2 below extends this tool to our multiview setting.

Lemma 2. For any set of priors {Pv}Vv=1 over {Hv}Vv=1 and any set of posteriors

{Qv}Vv=1 over {Hv}Vv=1, for any hyper-prior distribution π on views V and hyper-

posterior distribution ρ on V, and for any measurable function φ : Hv → R, we

have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π) + ln

(
E
v∼π

E
h∼Pv

eφ(h)
)
.

9



3. MULTIVIEW PB FRAMEWORK

Proof. Deferred to Appendix C

Based on Lemma 2, the following theorem gives a generalization bound for150

multiview learning. Note that, as done by Germain et al. [10, 11] we rely on a

general convex function D : [0, 1]× [0, 1]→ R, which measures the “deviation”

between the empirical and the true Gibbs risk.

Theorem 1. Let V ≥ 2 be the number of views. For any distribution D on

X × Y, for any set of prior distributions {Pv}Vv=1 over {Hv}Vv=1, for any hyper-

prior distributions π over V, for any convex function D : [0, 1] × [0, 1] → R,

for any δ ∈ (0, 1], with a probability at least 1 − δ over the random choice of

S ∼ (D)n, for all posterior {Qv}Vv=1 over {Hv}Vv=1 and hyper-posterior ρ over

V distributions, we have:

D (RS(Gρ), RD(Gρ)) ≤
1

m

[
E
v∼ρ

KL(Qv‖Pv)

+ KL(ρ‖π) + ln

(
1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

)]
.

Proof. First, note that E
v∼π

E
h∼Pv

enD(RS(h),RD(h)) is a non-negative random

variable. Using Markov’s inequality, with δ ∈ (0, 1], and a probability at least

1 − δ over the random choice of the multiview learning sample S ∼ (D)n, we

have

E
v∼π

E
h∼Pv

enD(RS(h),RD(h)) ≤ 1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h)).

By taking the logarithm on both sides, with a probability at least 1 − δ over

S ∼ (D)n, we have

ln

[
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

]
≤ ln

[
1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

]
(4)

We now apply Lemma 2 on the left-hand side of Inequality (4) with φ(h) =

nD(RS(h), RD(h)). Therefore, for any Qv on Hv for all views v ∈ V, and for

any ρ on views V, with a probability at least 1− δ over S ∼ (D)n, we have

ln

[
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

]
≥ n E

v∼ρ
E

h∼Qv
D(RS(h), RD(h))− E

v∼ρ
KL(Qv‖Pv)−KL(ρ‖π)

10



3. MULTIVIEW PB FRAMEWORK

≥ nD

(
E
v∼ρ

E
h∼Qv

RS(h), E
v∼ρ

E
h∼Qv

RD(h)

)
− E
v∼ρ

KL(Qv‖Pv)−KL(ρ‖π),

where the last inequality is obtained by applying Jensen’s inequality on the

convex function D. By rearranging the terms, we have

D

(
E
v∼ρ

E
h∼Qv

RS(h), E
v∼ρ

E
h∼Qv

RD(h)

)
≤ 1

m

[
E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π)

+ ln

(
1

δ
E

S∼(D)n
E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

)]
.

Finally, the theorem statement is obtained by rewriting

E
v∼ρ

E
h∼Qv

RS(h) = RS(Gρ), (5)

E
v∼ρ

E
h∼Qv

RD(h) = RD(Gρ) . (6)

Compared to the classical single-view PAC-Bayesian Bound of Germain et155

al. [10, 11], the main difference relies on the introduction of the view-specific

prior and posterior distributions, which mainly leads to an additional term

Ev∼ρ KL(Qv‖Pv) expressed as the expectation of the view-specific Kullback-

Leibler divergence term over the views V according to the hyper-posterior

distribution ρ.160

Theorem 1 provides tools to derive PAC-Bayesian generalization bounds for

a multiview supervised learning setting. Indeed, by making use of the same

trick as Germain et al. [10, 11], by choosing a suitable convex function D and

upper-bounding E
S∼(D)n

E
v∼π

E
h∼Pv

enD(RS(h),RD(h)), we obtain an instantiation of

Theorem 1. In the next section, we give an example of this kind of deviation165

through the approach of Catoni [7], that is one of the three classical PAC-Bayesian

Theorems [6, 7, 8, 43].

3.3. An Example of Instantiation of the Multiview PAC-Bayesian Theorem

To obtain the following theorem which is a generalization bound with the

Catoni [7]’s point of view, we put D as D(a, b) = F(b)−C a where F is a convex170

function F and C > 0 is a real number [10, 11].

11



3. MULTIVIEW PB FRAMEWORK

Corollary 1. Let V ≥ 2 be the number of views. For any distribution D on

X ×Y, for any set of prior distributions {Pv}Vv=1 on {H}Vv=1, for any hyper-prior

distributions π over V, for any δ ∈ (0, 1], with a probability at least 1− δ over

the random choice of S ∼ (D)n for all posterior {Qv}Vv=1 and hyper-posterior ρ

distributions, we have:

RD(Gρ)

≤ 1

1−e−C

(
1−exp

[
−
(
C RS(Gρ) +

1

n

[
E
v∼ρ

KL(Qv‖Pv) + KL(ρ‖π) + ln 1
δ

])])
.

Proof. Deferred to Appendix D.

This bound has the advantage of expressing a trade-off between the empirical

Gibbs risk and the Kullback-Leibler divergences.

3.4. A Generalization Bound for the C-Bound175

From a practical standpoint, as pointed out before, controlling the multiview

C-Bound of Equation (3) can be very useful for tackling multiview learning. The

next theorem is a generalization bound that justify the empirical minimization

of the multiview C-bound (we use in our algorithm PB-MVBoost derived in

Section 4).180

Theorem 2. Let V ≥ 2 be the number of views. For any distribution D on X×Y,

for any set of prior distributions {Pv}Vv=1, for any hyper-prior distributions π

over views V, and for any convex function D : [0, 1]×[0, 1]→ R, with a probability

at least 1− δ over the random choice of S ∼ (D)n for all posterior {Qv}vv=1 and

hyper-posterior ρ distributions, we have:

RD(Bρ) ≤ 1−

(
1− 2 E

v∼ρ
sup

(
r
δ/2
Qv,S

))2

1− 2 E
v∼ρ

inf d
δ/2
Qv,S

,

where

r
δ/2
Qv,S =

{
r : kl(RS(Qv)‖r) ≤

1

n

[
KL(Qv‖Pv) + ln

4
√
m

δ

]
and r ≤ 1

2

}
, (7)

and d
δ/2
Qv,S =

{
d : kl(dSQv‖d) ≤ 1

n

[
2.KL(Qv‖Pv) + ln

4
√
m

δ

]}
. (8)

12
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Proof. Similarly to Equations (23) and (24) of [11], we define the sets r
δ/2
Qv,S

(Equation (7)) and d
δ/2
Qv,S (Equation (8)) for our setting. Finally, the bound is

obtained (from Equation (3) of Lemma 1) by replacing the view-specific Gibbs

risk RD(GQv ) by its upper bound sup r
δ/2
Qv,S and expected disagreement dD(Qv)

by its lower bound inf d
δ/2
Qv,S .185

4. The PB-MVBoost algorithm

In this section we exploit our two-level hierarchical strategy (see Figure 1) in

order to learn a well-performing weighted combination of view-specific voters (or

views) as in Equation (1). Therefore, we propose to follow a well-known approach

to learn weighted combination of voters, that is boosting. Indeed, boosting aims190

at combining a set of weak voters2 to construct a good majority vote. Typically,

boosting algorithms repeatedly learn a “weak” voter (using a learning algorithm)

with different probability distribution over the learning sample S. Finally, it

combines all the weak voters in order to have one single strong classifier which

performs better than the individual weak voters. Recall that in multiview195

learning it is crucial to take into account the interactions between voters and

views [21, 22, 23, 25]. We adapt this principle to our setting for combining a set

of view-specific weak voters while taking into account the accuracy and diversity

between them. We develop a multiview learning algorithm PB-MVBoost (see

Algorithm 1), which allows to iteratively learn the set of view-specific classifiers200

that the algorithm will combine.

Concretely, for a given training set S = {(xi, yi), . . . , (xn, yn)} ∈ (X ×

{−1,+1})n of size n, our algorithm PB-MVBoost maintains a distribution over

the examples which is initialized as uniform. Then at each iteration, V view-

specific weak classifiers are learned according to the current distribution Dt (Step205

5), and their corresponding errors εtv are estimated (Step 6).

2In boosting, the performance of a weak classifier is only slightly better than random

guessing.
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4. THE PB-MVBOOST ALGORITHM

Algorithm 1 PB-MVBoost

Input: Training set S = (xi, yi), . . . , (xn, yn), where xi = (x1, x2, . . . , xV ) and

yi ∈ {−1, 1}.

For each view v ∈ V, a view-specific hypothesis set Hv.

Number of iterations T .

1: for xi ∈ S do

2: D1(xi)← 1
n

3: ∀v ∈ V ρ1v ← 1
V

4: for t = 1, . . . , T do

5: ∀v ∈ V, htv ← argminh∈Hv E
(xi,yi)∼Dt

[
1[h(xvi )6=yi]

]
6: Compute error: ∀v ∈ V, εtv ← E

(xi,yi)∼Dt

[
1[htv(x

v
i )6=yi]

]
7: Compute voter weights (taking into account view specific information):

∀v ∈ V, Qtv ←
1

2

[
ln

(
1− εtv
εtv

)]
8: Optimize the multiview C-Bound to learn weights over the views

ρt ← argmaxρ

[
1− 2

∑V
v=1 ρvr

t
v

]2
1− 2

∑V
v=1 ρvd

t
v

such that

V∑
v=1

ρv = 1, ρv ≥ 0 ∀v ∈ {1, . . . , V }

where ∀v ∈ V, rtv ← E
(xi,yi)∼Dt

E
h∼Hv

[
1[h(xvi ) 6=yi]

]
∀v ∈ V, dtv ← E

(xi,yi)∼Dt
E

h,h′∼Hv

[
1[h(xvi ) 6=h′(xvi )]

]
9: for xi ∈ S do

10: Dt+1(xi)←
Dt(xi) exp

(
−yi

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
i )
)

∑n
j=1Dt(xj) exp

(
−yj

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
j )
)

11: Return: For each view v ∈ V, weights over view-specific voters and weights

over views, i.e., ρT

14



4. THE PB-MVBOOST ALGORITHM

Similarly to the Adaboost algorithm [18], the weights of each view-specific

classifier (Qtv)1≤v≤V are then computed with respect to these errors as

∀v ∈ V, Qtv ←
1

2

[
ln

(
1− εtv
εtv

)]
.

To learn the weights (ρv)1≤v≤V over the views, we optimize the multiview

C-Bound, given by Equation (3) of Lemma 1 (Step 8 of algorithm), which in our

case writes as a constraint maximization problem:

maxρ

[
1− 2

∑V
v=1 ρvr

t
v

]2
1− 2

∑V
v=1 ρvd

t
v

,

s.t.

V∑
v=1

ρv = 1, ρv ≥ 0 ∀v ∈ {1, ..., V } .

where rv is the view-specific Gibbs risk, and dv the expected disagreement over

all view-specific voters defined as follows.

rtv = E
(xi,yi)∼Dt

E
h∼Hv

1[h(xvi )6=yi], (9)

dtv = E
(xi,yi)∼Dt

E
h,h′∼Hv

1[h(xvi ) 6=h′(xvi )]. (10)

Intuitively, the multiview C-Bound tries to diversify the view-specific voters

and views (Equation (10)) while controlling the classification error of the view-

specific classifiers (Equation (9)). This allows us to control the accuracy and

the diversity between the views which is an important ingredient in multiview210

learning [34, 22, 35, 36, 15].

In Section 5, we empirically show that our algorithm minimizes the multiview

C-Bound over the iterations of the algorithm (this is theoretically justified by

the generalization bound of Theorem 2). Finally, we update the distribution

over training examples xi (Step 9), by following the Adaboost algorithm and in

a way that the weights of misclassified (resp. well classified) examples by the

final weighted majority classifier increase (resp. decrease).

Dt+1(xi)←
Dt(xi) exp

(
−yi

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
i )
)∑n

j=1Dt(xj) exp
(
−yj

∑V
v=1 ρ

t
vQ

t
vh
t
v(x

v
j )
) .
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5. EXPERIMENTAL RESULTS

Intuitively, this forces the view-specific classifiers to be consistent with each

other, which is important for multiview learning [31, 32, 33]. Finally, after T

iterations of the algorithm, we learn the weights over the view-specific voters and

weights over the views leading to a well-performing weighted multiview majority

vote defined as

Bρ(x) = sign

(
V∑
v=1

ρTv

T∑
t=1

Qtvh
t
v(x

v)

)
.

4.1. A note on the Complexity of PB-MVBoost

The complexity of learning a decision tree classifier is O(dnlog(n)), where

d is the depth of the decision tree. We learn the weights over the views

by optimizing Equation (3) (Step 8 of our algorithm) using SLSQP method215

which has time complexity of O(V 3). Therefore, the overall complexity is

O
(
T
(
V 3 + V dv n.log(n)

))
. Note that it is easy to parallelize our algorithm: by

using V different machines, we can learn the view-specific classifiers and weights

over them (Steps 4 to 7).

5. Experimental Results220

In this section, we present experiments to show the potential of our algorithm

PB-MVBoost on the following datasets.

5.1. Datasets

MNIST

MNIST is a publicly available dataset consisting of 70, 000 images of hand-225

written digits distributed over ten classes [26]. For our experiments, we generated

2 four-view datasets3 where each view is a vector of R14×14. Similarly than

done by Chen et al. [44], the first dataset (MNIST1) is generated by considering 4

quarters of image as 4 views. For the second dataset (MNIST2), we consider 4

3MNIST1 and MNIST2 datasets are available at https://github.com/goyalanil/Multiview_

Dataset_MNIST
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Strategy
MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Mono .9034± .001↓ .5353± .006↓ .9164± .001↓ .5987± .007↓ .8420± .002↓ .5051± .007↓

Concat .9224± .002↓ .6168± .011↓ .9214± .002↓ .6142± .013↓ .8431± .004↓ .5088± .012↓

Fusiondt .9320± .001↓ .5451± .019↓ .9366± .001↓ .5937± .020↓ .8587± .003↓ .4128± .017↓

MV-MV .9402± .001↓ .6321± .009↓ .9450± .001↓ .6849± .008↓ .8780± .002↓ .5443± .012↓

rBoost.SH .9256± .001↓ .5315± .009↓ .9545± .0007 .7258± .005↓ .8853± .002 .5718± .011↓

MV-AdaBoost .9514± .001 .6510± .012↓ .9641± .0009 .7776± .007↓ .8942± .006 .5581± .013↓

MVBoost .9494± .003↓ .7733± .009↓ .9555± .002 .7910± .006↓ .8627± .007↓ .5789± .012↓

FusionallCq .9418± .002↓ .6120± .040↓ .9548± .003↓ .7217± .041↓ .9001 ± .003 .6279 ± .019

PB-MVBoost .9661± .0009 .8066± .005 .9674± .0009 .8166± .006 .8953± .002 .5960± .015↓

Table 1: Test classification accuracy and F1-score of different approaches averaged over all

the classes and over 20 random sets of n = 500 labeled examples per training set. Along

each column, the best result is in bold, and second one in italic. ↓ indicates that a result is

statistically significantly worse than the best result, according to a Wilcoxon rank sum test

with p < 0.02.

overlapping views around the centre of images: this dataset brings redundancy230

between the views. These two datasets allow us to check if our algorithm is able

to capture redundancy between the views. We reserve 10, 000 of images as test

samples and remaining as training samples.

Multilingual, Multiview Text categorization

This dataset is a multilingual text classification data extracted from Reuters235

RCV1/RCV2 corpus4. It consists of more than 110, 000 documents written in five

different languages (English, French, German, Italian and Spanish) distributed

over six classes. We see different languages as different views of the data. We

reserve 30% of documents as test samples and remaining as training data.

5.2. Experimental Protocol240

While the datasets are multiclass, we transformed them as binary tasks by

considering one-vs-all classification problems: for each class we learn a binary

classifier by considering all the learning samples from that class as positive

4Reuters RCV1/RCV2 corpus is available at https://archive.ics.uci.edu/ml/datasets/

Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
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examples and the others as negative examples. We consider different sizes of

learning sample S (150, 200, 250, 300, 500, 800, 1000) that are chosen randomly245

from the training data. Moreover, all the results are averaged over 20 random

runs of the experiments. Since the classes are unbalanced, we report the accuracy

along with F1-measure for the methods and all the scores are averaged over all

the one-vs-all classification problems.

We consider two multiview learning algorithms based on our two-step hierar-250

chical strategy, and compare the PB-MVBoost5 algorithm described in Section 4,

with a previously developed multiview learning algorithm [22], based on classifier

late fusion approach [5], and referred to as FusionallCq . Concretely, at the first

level, this algorithm trains different view-specific linear SVM models with differ-

ent hyperparameter C values (12 values between 10−8 and 103). And, at the255

second level, it learns a weighted combination over the predictions of view-specific

voters using PAC-Bayesian algorithm CqBoost[14] with a RBF kernel. Note

that, algorithm CqBoost tends to minimize the PAC-Bayesian C-Bound [11]

controlling the trade-off between accuracy and disagreement among voters. The

hyperparameter γ of the RBF kernel is chosen over a set of 9 values between 10−6260

and 102; and hyperparameter µ is chosen over a set of 8 values between 10−8 and

10−1. To study the potential of our algorithms (FusionallCq and PB-MVBoost), we

considered following 7 baseline approaches:

• Mono: We learn a view-specific model for each view using a decision tree

classifier and report the results of the best performing view.265

• Concat: We learn one model using a decision tree classifier by concatenating

features of all the views.

• Fusiondt: This is a late fusion approach where we first learn the view-

specific classifiers using 60% of learning samples. Then, we learn a final

multiview weighted model over the predictions of the view-specific classifiers.270

For this approach, we used decision tree classifiers at both levels of learning.

5Code for PB-MVBoost is available at https://github.com/goyalanil/PB-MVBoost
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• MV-MV: We compute a multiview uniform majority vote (similar to approach

followed by Amini et al. [21]) over all the view-specific classifiers’ outputs

in order to make final prediction. We learn view-specific classifiers using

decision tree classifiers.275

• rBoost.SH: This is the multiview learning algorithm proposed by Peng et

al. [35, 36] where a single global distribution is maintained over the learning

sample for all the views and the distribution over views are updated using

multiarmed bandit framework. At each iteration, rBoost.SH selects a

view according to the current distribution and learns the corresponding280

view-specific voter. For tuning the parameters, we followed the same

experimental setting as Peng et al. [36].

• MV-AdaBoost: This is a majority vote classifier over the view-specific voters

trained using Adaboost algorithm. Here, our objective is to see the effect

of maintaining separate distributions for all the views.285

• MVBoost: This is a variant of our algorithm PB-MVBoost but without

learning weights over views by optimizing multiview C-Bound. Here, our

objective is to see the effect of learning weights over views on multiview

learning.

For all boosting based approaches (rBoost.SH, MV-AdaBoost, MVBoost and290

PB-MVBoost), we learn the view-specific voters using a decision tree classifier

with depth 2 and 4 as a weak classifier for MNIST, and Reuters RCV1/RCV2

datasets respectively. For all these approaches, we kept T = 100 as the number

of iterations. For optimization of multiview C-Bound, we used Sequential Least

SQuares Programming (SLSQP) implementation provided by SciPy6 [45] and295

the decision trees implementation from scikit-learn [46].
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 2: Evolution of accuracy and F1-measure with respect to the number of labeled examples

in the initial labeled training sets on MNIST1, MNIST2 and Reuters datasets.
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5.3. Results

Firstly, we report the comparison of our algorithms FusionallCq and PB-MVBoost

(for m = 500) with all the considered baseline methods in Table 1. Secondly,

Figure 2, illustrates the evolution of the performances according to the size of the300

learning sample. From the table, proposed two-step learning algorithm FusionallCq

is significantly better than the baseline approaches for Reuters dataset. Whereas,

our boosting based algorithm PB-MVBoost is significantly better than all the

baseline approaches for all the datasets. This shows that considering a two-level

hierarchical strategy in a PAC-Bayesian manner is an effective way to handle305

multiview learning.

In Figure 3, we compare proposed algorithms FusionallCq and PB-MVBoost in

terms of accuracy, F1-score and time complexity for m = 500 examples. For

MNIST datasets, PB-MVBoost is significantly better than FusionallCq . For Reuters

dataset, FusionallCq performs better than PB-MVBoost but computation time for310

FusionallCq is much higher than that of PB-MVBoost. Moreover, in Figure 2, we

can see that the performance (in terms of F1-score) for FusionallCq is worse than

PB-MVBoost when we have less training examples (n = 150 and 200). This shows

the proposed boosting based one-step algorithm PB-MVBoost is more stable and

more effective for multiview learning.315

From Table 1 and Figure 2, we can observe that MV-AdaBoost (where we

have different distributions for each view over the learning sample) provides

better results compared to other baselines in terms of accuracy but not in

terms of F1-measure. On the other hand, MVBoost (where we have single global

distribution over the learning sample but without learning weights over views)320

is better compared to other baselines in terms of F1-measure. Moreover, the

performances of MVBoost first increases with an increase of the quantity of the

training examples, then decreases. Whereas our algorithm PB-MVBoost provides

the best results in terms of both accuracy and F1-measure, and leads to a

monotonic increase of the performances with respect to the addition of labeled325

6https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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Figure 3: Comparison between FusionallCq and PB-MVBoost in terms Accuracy (a), F1-Measure

(b) and Time Complexity (c) for n = 500

examples. This confirms that by maintaining a single global distribution over the

views and learning the weights over the views using a PAC-Bayesian framework,

we are able to take advantage of different representations (or views) of the data.

Finally, we plot behaviour of our algorithm PB-MVBoost over T = 100

iterations on Figure 4 for all the datasets. We plot accuracy and F1-measure330

of learned models on training and test data along with empirical multiview

C-Bound on training data at each iteration of our algorithm. Over the iterations,

the F1-measure on the test data keeps on increasing for all the datasets even

if F1-measure and accuracy on the training data reach the maximal value.

This confirms that our algorithm handles unbalanced data well. Moreover, the335

empirical multiview C-Bound (which controls the trade-off between accuracy and

diversity between views) keeps on decreasing over the iterations. This validates

that by combining the PAC-Bayesian framework with the boosting one, we can

empirically ensure the view specific information and diversity between the views

for multiview learning.340
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(a) MNIST1

(b) MNIST2

(c) Reuters

Figure 4: Plots for classification error and F1-measure on training and test data; and empirical

multiview C-Bound on training data over the iterations for all datasets with n = 500.

23



6. CONCLUSION

6. Conclusion

In this paper, we provide a PAC-Bayesian analysis for a two-level hierarchical

multiview learning approach with more than two views, when the model takes

the form of a weighted majority vote over a set of functions/voters. We consider

a hierarchy of weights modelled by distributions where for each view we aim345

at learning i) posterior Qv distributions over the view-specific voters capturing

the view-specific information and ii) hyper-posterior ρv distributions over the

set of the views. Based on this strategy, we derived a general multiview PAC-

Bayesian theorem that can be specialized to any convex function to compare

the empirical and true risks of the stochastic multiview Gibbs classifier. We350

propose a boosting-based learning algorithm, called as PB-MVBoost. At each

iteration of the algorithm, we learn the weights over the view-specific voters and

the weights over the views by optimizing an upper-bound over the risk of the

majority vote (the multiview C-Bound) that has the advantage of controlling a

trade-off between accuracy and the diversity between the views. The empirical355

evaluation shows that PB-MVBoost leads to good performances and confirms that

our two-level PAC-Bayesian strategy is indeed a nice way to tackle multiview

learning. Moreover, we compare the effect of maintaining separate distributions

over the learning sample for each view; single global distribution over views; and

single global distribution along with learning weights over views on results of360

multiview learning. We show that by maintaining a single global distribution

over the learning sample for all the views and learning the weights over the

views is an effective way to deal with multiview learning. In this way, we are

able to capture the view-specific information and control the diversity between

the views. Finally, we compare PB-MVBoost with a two-step learning algorithm365

FusionallCq which is based on PAC-Bayesian theory. We show that PB-MVBoost

is more stable and computationally faster than FusionallCq .

For future work, we would like to specialize our PAC-Bayesian generalization

bounds to linear classifiers [10] which will clearly open the door to derive

theoretically founded multiview learning algorithms. We would also like to370
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extend our algorithm to semi-supervised multiview learning where one has access

to an additional unlabeled data during training. One possible way is to learn

a view-specific voter using pseudo-labels (for unlabeled data) generated from

the voters trained from other views (as done for example in [47]). Another

possible direction is to make use of unlabeled data while computing view-375

specific disagreement for optimizing multiview C-Bound. This clearly opens the

door to derive theoretically founded algorithms for semi-supervised multiview

learning using PAC-Bayesian theory. We would like to extend our algorithm to

transfer learning setting where training and test data are drawn from different

distributions. An interesting direction would be to bind the data distribution to380

the different views of the data, as in some recent zero-shot learning approaches

[48]. Moreover, we would like to extend our work to the case of missing views or

incomplete views e.g. Amini et al. [21] and Xu et al. [49]. One possible solution

is to learn the view-specific voters using available view-specific training examples

and adapt the distribution over the learning sample accordingly.385
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Appendix

Appendix A. Mathematical Tools390

Theorem 3 (Markov’s ineq.). For any random variable X s.t. E(|X|) =µ,

for any a>0, we have P(|X| ≥ a) ≤ µ

a
.

Theorem 4 (Jensen’s ineq.). For any random variable X, for any concave

function g, we have g(E[X]) ≥ E[g(X)].

Theorem 5 (Cantelli-Chebyshev ineq.). For any random variable X s.t.395

E(X)=µ and Var(X) = σ2, and for any a>0, we have P(X − µ ≥ a) ≤ σ2

σ2+a2 .
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Appendix B. Proof of C-Bound for Multiview Learning (Lemma 1)

In this section, we present the proof of Lemma 1, inspired by the proof

provided by Germain et al. [11]. Firstly, we need to define the margin of the

multiview weighted majority vote Bρ and its first and second statistical moments.400

Definition 1. Let Mρ is a random variable that outputs the margin of the

multiview weighted majority vote on the example (x, y) drawn from distribution

D, given by

Mρ(x, y) = E
v∼ρ

E
h∼Qv

y h(xv) .

The first and second statistical moments of the margin are respectively given by

µ1(MDρ ) = E
(x,y)∼D

Mρ(x, y) , (B.1)

and

µ2(MDρ ) = E
(x,y)∼D

[
Mρ(x, y)

]2
= E

x∼DX
y2
[
E
v∼ρ

E
h∼Qv

h(xv)
]2

= E
x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)
]2
. (B.2)

According to this definition, the risk of the multiview weighted majority vote

can be rewritten as follows:

RD(Bρ) = P
(x,y)∼D

(
Mρ(x, y) ≤ 0

)
.

Moreover, the risk of the multiview Gibbs classifier can be expressed thanks

to the first statistical moment of the margin. Note that in the binary setting

where y ∈ {−1, 1} and h : X → {−1, 1}, we have 1[h(xv) 6=y] = 1
2 (1 − y h(xv)),

and therefore

RD(Gρ) = E
(x,y)∼D

E
v∼ρ

E
h∼Qv

1[h(xv)6=y]

=
1

2

(
1− E

(x,y)∼D
E
v∼ρ

E
h∼Qv

y h(xv)

)
(B.3)

=
1

2
(1− µ1(MDρ )) .
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Similarly, the expected disagreement can be expressed thanks to the second

statistical moment of the margin by

dD(ρ) = E
x∼DX

E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h′∼Qv′

1[h(xv)6=h′(xv′ )]

=
1

2

(
1− E

x∼DX
E
v∼ρ

E
v′∼ρ

E
h∼Qv

E
h∼Qv′

h(xv)× h′(xv
′
)

)
=

1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)
]
×
[

E
v′∼ρ

E
h′∼Qv′

h′(xv
′
)
])

=
1

2

(
1− E

x∼DX

[
E
v∼ρ

E
h∼Qv

h(xv)

]2)
(B.4)

=
1

2
(1− µ2(MDρ )) .

From above, we can easily deduce that 0 ≤ dD(ρ) ≤ 1/2 as 0 ≤ µ2(MDρ ) ≤ 1.

Therefore, the variance of the margin can be written as

Var(MDρ ) = Var
(x,y)∼D

(Mρ(x, y))

= µ2(MDρ )− (µ1(MDρ ))2.

(B.5)

The proof of the C-bound

Proof. By making use of one-sided Chebyshev inequality (Theorem 5 of Ap-

pendix A), withX = −Mρ(x, y), µ = E
(x,y)∼D

(Mρ(x, y)) and a = E
(x,y)∼D

Mρ(x, y),

we have

RD(Bρ) = P
(x,y)∼D

(
Mρ(x, y) ≤ 0

)
= P

(x,y)∼D

(
−Mρ(x, y) + E

(x,y)∼D
Mρ(x, y) ≥ E

(x,y)∼D
Mρ(x, y)

)

≤
Var

(x,y)∼D
(Mρ(x, y))

Var
(x,y)∼D

(Mρ(x, y)) +

(
E

(x,y)∼D
Mρ(x, y)

)2

=
Var(MDρ )

µ2(MDρ )−
(
µ1(MDρ )

)2

+

(
µ1(MDρ )

)2

=
Var(MDρ )

µ2(MDρ )
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=

µ2(MDρ )−
(
µ1(MDρ )

)2

µ2(MDρ )

= 1−

(
µ1(MDρ )

)2

µ2(MDρ )

= 1−

(
1− 2RD(Gρ)

)2

1− 2 dD(ρ)
.

Appendix C. Proof of Lemma 2

We have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

E
h∼Qv

ln eφ(h)

= E
v∼ρ

E
h∼Qv

ln

(
Qv(h)

Pv(h)

Pv(h)

Qv(h)
eφ(h)

)
= E

v∼ρ

[
E

h∼Qv
ln

(
Qv(h)

Pv(h)

)
+ E
h∼Qv

ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

According to the Kullback-Leibler definition, we have

E
v∼ρ

E
h∼Qv

φ(h) = E
v∼ρ

[
KL(Qv‖Pv) + E

h∼Qv
ln

(
Pv(h)

Qv(h)
eφ(h)

)]
.

By applying Jensen’s inequality (Theorem 4, in Appendix) on the concave

function ln, we have

E
v∼ρ

E
h∼Qv

φ(h) ≤ E
v∼ρ

[
KL(Qv‖Pv) + ln

(
E

h∼Pv
eφ(h)

)]
= E

v∼ρ
KL(Qv‖Pv) + E

v∼ρ
ln

(
ρ(v)

π(v)

π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
= E

v∼ρ
KL(Qv‖Pv) + KL(ρ‖π) + E

v∼ρ
ln

(
π(v)

ρ(v)
E

h∼Pv
eφ(h)

)
.

Finally, we apply again the Jensen inequality (Theorem 4) on ln to obtain the

lemma.405
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Appendix D. A Catoni-Like Theorem—Proof of Corollary 1

The result comes from Theorem 1 by taking D(a, b) = F(b)−Ca, for a

convex F and C > 0, and by upper-bounding E
S∼(D)n

E
v∼π

E
h∼Pv

enD(RS(h),RD(h)).

We consider RS(h) as a random variable following a binomial distribution of n

trials with a probability of success R(h). We have

E
S∼(D)n

E
v∼π

E
h∼Pv

enD(RS(h),RD(h))

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h)−C nRS(h))

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h))
n∑
k=0

Pr
S∼(D)n

(
RS(h)=

k

n

)
e−Ck

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h))
n∑
k=0

(
n

k

)
RD(h)k(1−RD(h))n−ke−Ck

= E
S∼(D)n

E
v∼π

E
h∼Pv

enF(RD(h))
(
RD(h) e−C + (1−RD(h))

)n
.

The corollary is obtained with F(p)=ln 1
(1−p[1−e−C ])

.
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