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Abstract

Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the
acquisition of important functions in tumors, providing a selective growth advantage,
allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to
identify these driver genes, both for the fundamental understanding of cancer and to
help finding new therapeutic targets or biomarkers. Although the most frequently
mutated driver genes have been identified, it is believed that many more remain to be
discovered, particularly for driver genes specific to some cancer types.

In this paper, we propose a new computational method called LOTUS to predict
new driver genes. LOTUS is a machine-learning based approach which allows to
integrate various types of data in a versatile manner, including information about gene
mutations and protein-protein interactions. In addition, LOTUS can predict cancer
driver genes in a pan-cancer setting as well as for specific cancer types, using a
multitask learning strategy to share information across cancer types.

We empirically show that LOTUS outperforms four other state-of-the-art driver gene
prediction methods, both in terms of intrinsic consistency and prediction accuracy, and
provide predictions of new cancer genes across many cancer types.

Author summary

Cancer development is driven by mutations and dysfunction of important, so-called 1

cancer driver genes, that could be targeted by specific therapies. While a number of 2

such cancer genes have already been identified, it is believed that many more remain to 3

be discovered. To help prioritize experimental investigations of candidate genes, several 4

computational methods have been proposed to rank promising candidates based on 5

their mutations in large cohorts of cancer cases, or on their interactions with known 6

driver genes in biological networks. We propose LOTUS, a new computational approach 7

to identify genes with high oncogenic potential. LOTUS implements a machine learning 8
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approach to learn an oncogenic potential score from known driver genes, and brings two 9

novelties compared to existing methods. First, it allows to easily combine heterogeneous 10

sources of information into the scoring function, which we illustrate by learning a 11

scoring function from both known mutations in large cancer cohorts and interactions in 12

biological networks. Second, using a multitask learning strategy, it can predict different 13

driver genes for different cancer types, while sharing information between them to 14

improve the prediction for every type. We provide experimental results showing that 15

LOTUS significantly outperforms several state-of-the-art cancer gene prediction 16

software. 17

Introduction 18

In our current understanding of cancer, tumors appear when some cells acquire 19

functionalities that give them a selective growth advantage, allowing uncontrolled 20

proliferation and avoiding apoptosis [1, 2]. These malignant characteristics arise from 21

various genomic alterations including point mutations, gene copy number variants 22

(CNVs), translocations, inversions, deletions, or aberrant gene fusions. Many studies 23

have shown that these alterations are not uniformly distributed across the genome [3, 4], 24

and target specific genes associated with a limited number of important cellular 25

functions such as genome maintenance, cell survival, and cell fate [5]. Among these 26

so-called driver genes, two classes have been distinguished in the literature: tumor 27

suppressors genes (TSGs) and oncogenes (OGs) [6, Chapter 15]. TSGs, such as 28

TP53 [7], participate in defense mechanisms against cancer and their inactivation by a 29

genomic alteration can increase the selective growth advantage of the cell. On the 30

contrary, alterations affecting OGs, such as KRAS [8] or ERBB2 [9], can be responsible 31

for the acquisition of new properties that provide some selective growth advantage or 32

the ability to spread to remote organs. Identifying driver genes is important not only 33

from a basic biology point of view to decipher cancer mechanisms, but also to identify 34

new therapeutic strategies and develop precision medicine approaches targeting 35

specifically mutated driver genes. For example, Trastuzumab [10] is a drug given 36

against breast cancer that targets the protein precisely encoded by ERBB2, which has 37

dramatically improved the prognosis of patients whose tumors overexpress that OG. 38

Decades of research in cancer genomics have allowed to identify several hundreds of 39

such cancer genes. Regularly updated databases such as the Cancer Gene Census 40

(CGC) [11], provide catalogues of genes likely to be causally implicated in cancer, with 41

various levels of experimental validations. Many cancer genes have been identified 42

recently by systematic analysis of somatic mutations in cancer genomes, as provided by 43

large-scale collaborative efforts to sequence tumors such as The Cancer Genome Atlas 44

(TCGA) [12] or the International Cancer Genome Consortium (ICGC) [13]. Indeed, 45

cancer genes tend to be more mutated than non-cancer genes, providing a simple 46

guiding principle to identify them. In particular, the COSMIC database [14] is the 47

world’s largest and most comprehensive resource of somatic mutations in coding regions. 48

It is now likely that the most frequently mutated genes have been identified [15]. 49

However, the total number of driver genes is still a debate, and many driver genes less 50

frequently mutated, with low penetrance, or specific to a given type of cancer are still to 51

be discovered. 52

The first methods to identify driver genes from catalogues of somatic mutations 53

simply compared genes based on somatic mutation frequencies, which was proved to be 54

far too basic [16]. Indeed, mutations do not appear uniformly on the genome: some 55

regions of the genome may be more affected by errors because they are more often 56

transcribed, so that some studies actually overestimated the number of driver genes 57

because they were expecting lower mutation rates than in reality. Mathematically, they 58
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were formulating driver prediction as a hypothesis testing problem with an inadequate 59

null hypothesis [17]. Several attempts have been made to adequately calibrate the null 60

hypothesis, like [16] or [18], where it is assumed that mutations result from a mixture of 61

several mutational processes related to different causes. 62

A variety of bioinformatics methods have then been developed to complete the list of 63

pan-cancer or cancer specific driver genes. Globally, they fall into three main categories. 64

First, a variety of “Mutation Frequency” methods such as MuSiC [19] or 65

ActiveDriver [20] identify driver genes based on the assumption that they display 66

mutation frequencies higher than those of a background mutation model expected for 67

passenger mutations. However, this background rate may differ between cell types, 68

genome positions or patients. In order to avoid such potential bias, some methods like 69

MutSigCV [21] derive a patient-specific background mutation model, and may take into 70

account various criteria such as cancer type, position in the genome, or clinical data. 71

Second, ”Functional impact” methods such as OncodriveFM [22] assume that driver 72

genes have higher frequency of mutations expected to impact the protein function 73

(usually missense mutations) than that observed in passenger genes. Third, 74

”Pathway-based” methods consider cancer as a disease in which mutated genes occupy 75

key roles in cancer-related biological pathways, leading to critical functional 76

perturbations at the level of networks. For example, DriverNet [23] identifies driver 77

genes based on their effect in the transcription networks. Although these methods tend 78

to successfully identify the most frequently mutated genes, their overall prediction 79

overlap is modest. Since they rely on complementary statistical strategies, one could 80

recommend to use them in combination, as CompositeDriver allows to do [24]. The 81

results of some of these tools are available at the Driver DB database [25]. 82

Some methods integrate information on mutation frequency and functional impact of 83

mutations, or other types of data such as genome position, copy number variations 84

(CNVs) or gene expression. The underlying idea is that combining data should improve 85

the prediction performance over tools that use a single type of information. For example, 86

TUSON [26] or DOTS-Finder [27] combine mutation frequencies and functional impact 87

of mutations to identify OGs and TSGs. Also in this category, the 20/20+ method [28] 88

encodes genes with features based on their frequency and mutation types, in addition to 89

other biological information such as gene expression level in difference cancer cell 90

lines [29] or replication time. Then, 20/20+ predicts driver genes with a random forest 91

algorithm, which constitutes the first attempt to use a machine learning method in this 92

field. In [28], the authors benchmark 8 driver gene prediction methods based on several 93

criteria including the fraction of predicted genes in CGC, the number of predicted driver 94

genes and the consistency. Three methods proved to perform similarly on all criteria, 95

and better than the five others: TUSON, MutSigCV, and 20/20+, validating the 96

relevance of combining heterogeneous information to predict cancer genes. 97

In the present paper, we propose a new method for cancer driver gene prediction 98

called Learning Oncogenes and TUmor Suppressors (LOTUS). Like 20/20+, LOTUS is 99

a machine learning-based method, meaning that it starts from a list of known driver 100

genes in order to “learn” the specificities of such genes and to identify new ones. In 101

addition, LOTUS presents two unique characteristics with respect to previous work in 102

this field. First, it combines three types of features likely to contain relevant 103

information to predict cancer genes (mutation frequency, functional impact, and 104

pathway-based informations). This integration of heterogeneous information is carried 105

out in a unified mathematical and computational framework thanks to the use of kernel 106

methods [30], and allows in principle to integrate other sources of data if available, such 107

as transcriptomic or epigenomic information. More precisely, in our implementation, we 108

predict cancer driver genes based not only on gene mutations features like “Mutation 109

Frequency” and “Functional Impact” methods do, but also on known protein-protein 110
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interaction (PPI) network like ”Pathway-based” methods do. Indeed, the use of PPI 111

information is particularly relevant since it has been reported that proteins encoded by 112

driver genes are more likely to be involved in protein complexes and share higher 113

“betweenness” than a typical protein [26]. Moreover, it has been successfully used by 114

HotNet2 [31] to detect gene pathways enriched in driver genes. Second, LOTUS can 115

predict cancer genes in a pan-cancer setting, as well as for specific cancer types, using a 116

multitask learning strategy [32]. Although many efforts are devoted to identify 117

cancer-specific genes based on experimental approaches, in in-silico approaches, the 118

pan-cancer setting has been adopted by most available prediction methods, since more 119

data are available to train models when gathering all cancer types. Prediction of drivers 120

for specific cancer types has been less explored so far, because the number of known 121

driver genes for a given cancer is often too small to build a reliable prediction model, 122

and because the amount of data such as somatic mutations to train the model is smaller 123

than in the pan-cancer setting. However, the search for cancer specific driver genes is 124

relevant, because cancer is a very heterogeneous disease: different tumorigenic processes 125

seem to be at work in different tissue types, and consequently, each cancer type 126

probably has its own list of driver genes [15]. LOTUS implements a multitask algorithm 127

that predicts new driver genes for a given cancer type based on its known driver genes, 128

while also taking into account the driver genes known for other types of cancer 129

according to their similarities with the considered type of cancer. Such approaches are 130

of particular interest when the learning data are scarce in each individual tasks: they 131

increase the amount of data available for each task and thus perform statistically better. 132

To our knowledge, while a similar approach was used to predict disease genes across 133

general human diseases [33], this is the first time a multitask machine learning 134

algorithm is used for the prediction of cancer driver genes. 135

We compare LOTUS to four state-of-the art cancer prediction methods. We show 136

that LOTUS outperforms the state-of-the-art in its ability to identify novel cancer 137

genes, and clarify the benefits of heterogeneous data integration and of the multitask 138

learning strategy to predict cancer type-specific driver genes. Finally, we provide 139

predictions of new cancer genes according to LOTUS, as well as supporting evidence 140

that those predictions are likely to contain new cancer genes. 141

Results 142

LOTUS, a new method for pan-cancer and cancer specific 143

driver gene prediction 144

We propose LOTUS, a new method that predicts cancer driver genes. LOTUS is a 145

machine learning-based method that estimates a scoring function to rank candidate 146

genes by decreasing probability for them to be OGs or TSGs, given a training set of 147

known OGs and TSGs. The score of a candidate gene is a weighted sum of similarities 148

between the candidate gene and the known driver genes, where the weights are 149

optimized by a one-class support vector machine (OC-SVM) algorithm. The similarities 150

between genes are calculated based on gene features that are derived from the analysis 151

of somatic mutation patterns in the genes (see Materials ans Methods section for a 152

description of these features), or from the relative positions of genes in a PPI network, 153

or from both; the mathematical framework of kernel methods allows to simply combine 154

heterogeneous data about genes (i.e., patterns of somatic mutations and PPI 155

information) in a single model. 156

Another salient feature of LOTUS is its ability to work in a pan-cancer setting, as 157

well as to predict driver genes specific to individual cancer types. In the later case, we 158

use a multitask learning strategy to jointly learn scoring functions for all cancer types 159
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by sharing information about known driver genes in different cancer types. We test 160

both a default multitask learning strategy, that shares information uniformly across all 161

cancer types, and a new strategy that shares information across cancer types according 162

to their degree of similarity. More details about the mathematical formulation and 163

algorithms implemented in LOTUS are provided in the Material and Methods section. 164

In the following, we assess the performance of LOTUS first in the pan-cancer regime, 165

i.e. in the single task setting, and compare it to four state-of-the-art methods (TUSON, 166

MutSigCV, 20/20+ and DiffMut), and second in the cancer type specific regime, where 167

we illustrate the importance of the multitask learning strategies. 168

Cross-validation performance for pan-cancer driver gene 169

prediction 170

We first study the pan-cancer regime, where cancer is considered as a single disease, and 171

where we search for driver genes involved in at least one type of cancer. Several 172

computational methods have been proposed to solve this problem in the past, and we 173

compare LOTUS with four well-known state-of-the-art methods [28]: MutSigCV [21], 174

which is a frequency-based method, TUSON [26], 20/20+ [28], which combines 175

frequency and functional information, and DiffMut [34], which takes the mutation 176

patterns of genes into account. 177

Among these five methods, we can distinguish on the one side, the unsupervised 178

methods MutSigCV and DiffMut that score candidate genes independently of any 179

training set of known drivers, and the supervised methods LOTUS, TUSON and 20/20+ 180

that make predictions based on a training set of known driver genes. 181

In addition, all methods use gene descriptors that are calculated based on a 182

mutation databases, and therefore, changing the mutation database will change the 183

prediction performance. 184

In order to make fair comparison between LOTUS and the other four methods, we 185

performed several experiments in which LOTUS is trained with the training set of the 186

TUSON (respectively 20/20+) paper when compared to TUSON (respectively 20/20+). 187

In addition, in all experiments, the gene features calculated for LOTUS were based on 188

the same mutation databases as those used by the other methods in their respective 189

papers. 190

Therefore, for a fair comparison between LOTUS and TUSON, we use the mutation 191

database available on the website of the authors along with their training sets of OGs 192

and TSGs provided in [26]. We evaluate the performance of LOTUS on this dataset by 193

5-fold cross-validation (CV) repeated twice (see Methods). For TUSON, we use the 194

prediction results available in [26] and evaluate the consistency errors (CE) as the mean 195

number of non-driver genes that are ranked before known driver genes of the TUSON 196

train sets. 197

For a fair comparison between LOTUS and 20/20+, we use the mutation database of 198

20/20+ and the training sets of OGs and TSGs provided by the authors on their 199

website [28]. We evaluate the performance of LOTUS as above. However we note that 200

the 20/20+ score itself is obtained by a bootstrap procedure similar to our 201

cross-validation approach [28]. 202

For a fair comparison between LOTUS and MutSigCV, we use the example mutation 203

database available only for lung squamous cell tumours. Since MutSigCV does not use a 204

train set of driver genes, we trained LOTUS with known OGs and TSGs available in 205

CGCv86 for lung squamous cell tumours. MutSigCV provides a ranked list of genes 206

that does not distinguish TSG and OG. Therefore, the consistency error (CE) is 207

obtained by averaging the numbers of non-driver genes ranked before each driver genes 208

in the train sets used for LOTUS. 209
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Finally, for a fair comparison between LOTUS and DiffMut, we use the 20/20+ 210

mutation dataset for both methods. LOTUS is trained with the 20/20+ training sets of 211

OGs and TSGs. We run DiffMut using the latest version of the algorithm, and we 212

compute the CE related to the 20/20+ training sets of OGs and TSGs. 213

The CE for OGs and TSGs are presented in Table 1 for TUSON, in Table 2 for 214

20/20+ and DiffMut, and in Table 3 for MutSigCV. When analyzing these results, one 215

should keep in mind that the total number of cancer driver genes is still a subject of 216

debate, but it is expected to be much lower than the size of the test set (which depends 217

on the method but is of the order of 18, 000), and it should rather be in the range of a 218

few hundreds. Therefore, consistency errors above a few thousand can be considered as 219

poor performance results. 220

These results show that LOTUS strongly outperforms all other algorithms in term of 221

CE, for both TSG and OG predictions. More precisly, for OG predictions, TUSON is 222

about three times better than MutSigCV, three times better than TUSON, twice better 223

than 20/20+ and five times better than DiffMut, in terms of CE. For TSG predictions, 224

the reduction in CE with LOTUS is two-fold, five-fold, two-fold and five-fold compared 225

to MutSigCV, TUSON, 20/20+ and DiffMut, respectively. Note that the performance is 226

overall much better in the two first experiments, which are also easier because they 227

provide larger mutational data. 228

It is interesting to note that, for all methods except in the MutSigCV experiment, 229

the performances obtained for OG do not reach those obtained for TSG, suggesting that 230

OG prediction is a more difficult problem than TSG prediction. This reflects the 231

fundamental difference between TSG mutations and OG mutations: the first lead to 232

loss-of-function and can pile up, while the second are gain-of-function mutations and 233

have a much more subtle nature. In addition, gain-of-function can also be due to 234

overexpression of the OG, which can arise from other mechanisms than gene mutation. 235

One way to improve the OG prediction performance may be to include descriptors 236

better suited to them, such as copy number. Moreover, as mutations affecting OGs are 237

not all likely to provide them with new functionalities, many mutations on OGs present 238

in the database and used here might not bear information on OGs. Therefore, relevant 239

information on OGs is scarce, which makes OG prediction more difficult. In addition, 240

the data themselves might also contribute to difference in performance between TSG 241

and OG prediction. For example, in the case of the TUSON train set, although the 242

TSG and OG train sets both contain 50 genes, the mutation matrix that we used to 243

build the gene features contains 13, 525 mutations affecting TSGs and 7, 717 mutations 244

affecting OGs. Therefore, the data are richer for TSG, which might contribute to the 245

difference in prediction performance. 246

The benefits of combining mutations and PPI informations 247

LOTUS, 20/20+, MutSigCV, DiffMut and TUSON differ not only by the algorithm 248

they implement, but also by the type of data they use to make predictions: in 249

particular, TUSON and 20/20+ use only mutational data while LOTUS uses PPI 250

information in addition to mutational data. To highlight the contributions of the 251

algorithm and of the PPI information to the performance of LOTUS, we ran LOTUS 252

with Kgenes = Kmutation, or Kgenes = KPPI , i.e., with only mutation information, or 253

only PPI information. 254

The good results of the PPI kernel could be due to the fact that driver genes are
important nodes in the PPI network because they are already well studied in the
literature. In order to rule out this possibility, we also run LOTUS with the kernel
Kdegree defined by: (

Kdegree

)
i,j

= didj ,
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where di is the degree of i in the PPI network, i.e., its number of neighbors in the 255

network. 256

The results are presented in Table 4 and Table 5 respectively for OG and TSG. The 257

last column of these Tables recalls the performance obtained when mutation and PPI 258

information are both used (values reported from Table 1, Table 2 and Table 3). 259

These results show that, both for OG and TSG, using both mutation and PPI 260

information dramatically improves the prediction performance over using only one of 261

them. This underlines the fact that mutation and PPI bear complementary information 262

that are both useful for the prediction tasks. The performances obtained with only PPI 263

information are similar for OG and TSG, which seems to indicate that this information 264

contributes similarly to both prediction tasks. On the contrary, the performances 265

obtained using only mutation information are much better for TSG than for OG. This is 266

consistent with the above comment that mutation information is more abundant in the 267

database and more relevant in nature for TSG than for OG. It is also consistent with 268

the fact that using Kmutation alone outperforms using KPPI alone for TSGs, while the 269

opposite is observed for OGs. Finally, we see that the degree kernel has in almost all 270

cases worse performance than the PPI kernel, which confirms that the number of 271

neighbors alone contains less relevant information in relation with the driver prediction 272

problem than the KPPI kernel does. 273

Furthermore, we examined the first predictions (excluding already known driver 274

genes) of LOTUS with the 20/20 datasets, when both the mutation and the PPI kernels 275

are used. Among the first 50 TSGs (described by the number of frameshift, LOF and 276

splice mutations), 26 have less than 3 mutations of each kind, 4 predicted TSGs even 277

having no mutation at all. This demonstrates that LOTUS predictions strongly benefit 278

from the PPI information, and that some of these genes would have never been detected 279

using mutation data only. 280

Performance on CGCv86 prediction in the pan-cancer regime 281

We now evaluate the generalization properties of the different methods on new unseen 282

data as external test set. This could mitigate the potential bias in the evaluation of the 283

performance of TUSON, DiffMut and 20/20+ based on cross-validation experiments, as 284

in the previous paragraph. We now evaluate the performance of the different methods 285

when predicting supposedly ”difficult” new cancer genes (an independent test set), 286

which have only been added recently in CGCv86. We train on the one hand LOTUS 287

and TUSON with the TUSON mutation database and driver gene train sets, and on the 288

other hand LOTUS, DiffMut and 20/20+ with the 20/20 mutation database and driver 289

gene train sets. Then, we make predictions on the remaining genes in COSMIC, and 290

count how many driver genes in CGCv86 appear among the 20, 50 and 100 first 291

predictions. Note that the driver genes from the train sets were excluded from the 292

predictions. The results are shown in Tables 6-9 and are illustrated by corresponding 293

ROC curves, see Figures 1 and 2. 294

First, we observe that TUSON outperforms LOTUS in almost all these experiments. 295

Second, LOTUS outperforms DiffMut in all experiments. Third, LOTUS is better than 296

20/20+ for TSG detection, and the contrary holds for OGs. Generally speaking, the 297

first predictions of TUSON and 20/20+ are more reliable than LOTUS’s, but, as shown 298

in Fig 1 and 2, but LOTUS outperforms all the methods when all genes are considered, 299

and not only the first 20 to 100 genes. 300

The good performance of TUSON and 20/20+ for the top ranked genes compared to 301

those of LOTUS could be explained by the fact that, all genes in CGCv86 so far have 302

been reported through analysis of mutation data (cf. CGC web page: ’The Cancer Gene 303

Census (CGC) is an ongoing effort to catalogue those genes which contain mutations 304

that have been causally implicated in cancer’). This interpretation would also explain 305
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why LOTUS hardly agrees with the other methods when comparing the top ranked 306

genes. Indeed, for the 20 top predictions of LOTUS (excluding training sets), the 307

intersection with TUSON consists only in two TSGs and one OG, the intersection with 308

DiffMut consist of one TSG and two OGs, and the intersection with 20/20+ consists in 309

four TSGs and one OG. Since LOTUS is the only method, among those considered here, 310

that uses PPI information in addition to mutation data, this could explain less overlap 311

between its predictions and those of the other methods, and a lower overlap with CGC 312

for the top ranked genes, since no PPI information was used either to establish the 313

CGC database. 314

Analysis of new driver genes predicted by LOTUS 315

We tested the ability of LOTUS to make new driver gene predictions. We trained 316

LOTUS with the CGCv86 train set, made predictions over the complete COSMIC 317

database (19,320 genes including the training sets). The complete results are given in 318

Supplementary Table 3. Complete analysis of the predicted OGs and TSGs rankings is 319

out of the scope of this paper. However, we considered the 22/21 best ranked TSGs and 320

OGs, and made bibliographic search in order to look for independent information that 321

could validate these predictions. 322

For most of the 22 best ranked predicted OGs, abundant literature reports 323

implication in various cancers. Some genes were known to promote cancer or be 324

therapeutic targets or biomarkers for some cancer types. It is not possible to make a 325

full review of literature for each of these genes, but we cite below some of the most 326

relevant papers. 327

Twelve out of the 22 best ranked genes are involved in transcription regulation at 328

various levels, a mechanism that is invariably perturbed in cancer. 329

Among them, four genes act through chromatic remodeling (PYGO1, PYGO2, 330

EP300, DOT1L). PYGO1 and PYGO2 are co-activators of the Wnt signaling pathway 331

and they increase target genes transcription [35]. In particular, PYGO1 is involved in 332

colorectal cancer [36], while PYGO2 was shown to be a tumor promoter in mice [37]. 333

EP300 is an histone acetyltransferase, and defects in this gene’s function by mutations 334

or alterations in expression contributes to cancer phenotype [38]. DOT1L is an histone 335

methyltransferase, and it is a known therapeutic target [39]. 336

Six genes are transcription factors or repressors (MSEI1, MSEI2, MSEI3, TFEC, 337

NKX2-2, ZIK1). MSEI1, MSEI2, and MSEI3 are involved in the etiology, progression 338

and metastatic evolution of some cancer types such as prostate cancer [40], or 339

leukemia [41,42]. TFEC belongs to the microphthalmia family (MiT/TFE) of leucine 340

zipper transcription factors, and the latest research on proteins of this family decipher 341

their mechanisms in cancer development [43]. NKX2-2 is homeobox containing 342

transcription factor. While its close homologue NKX2-1 is a known oncogene absent 343

from the CGCv86 database [44], NKX2-2 was identified to be a critical target gene in 344

Ewing’s sarcoma development [45]. Aberrant methylation of the promoter of gene ZIK1 345

is observed in colon cancer [46] and in intestinal metaplasia [47]. This gene belongs to 346

the ZNF family that has not been studies into sufficient detail because of its complexity, 347

but recent studies establish them as new oncologic biomarkers or therapeutic 348

targets [48]. 349

DROSHA and ELF1 participate to transcription regulation via microRNA 350

regulation and as elongation factor, respectively. Alteration in microRNAs expression is 351

a frequent finding in human cancers. DROSHA is involved in the miRNA depletion 352

observed in lung cancer, and alterations in this gene was shown to have a remarkable 353

impact in lung cancer [36]. ELF1 directly plays a role in the mechanism of eIF6 release 354

that is corrupted in inherited and sporadic leukemias [49]. 355
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Besides these twelve transcription-related genes, eight other best ranked OGs are 356

known to be related to cancer by various mechanisms. Among them, FGF6 and FGF5 357

are members of the fibroblast growth factors (FGF) that are well known players 358

contributing to tumor progression [50]. MOB3B (or MOB1) is a pivotal kinase player in 359

the Hippo tumor suppressor pathway, and mutations in this gene is associated to 360

prostate cancer susceptibility and agressive tumors [51]. GALTLN11 is a member of the 361

GALNT family of enzymes that catalyse O-linked glycosylation, a family proteins that 362

strongly promotes liver tumor growth after a shift from the endoplasmic reticulum to 363

the Golgi [52]. FBXW7 is a member of the F-box protein family involved in 364

phosphorylation-dependent ubiquitination, and mutations in this gene are detected in 365

ovarian and breast cancer cell lines [53]. 366

Although not exhaustive, these findings indicate that the best ranked oncogenes 367

predicted by LOTUS are realistic OG for some cancer types. 368

Among the 21 best ranks tumor suppressors, APOM is actually a known TSG for 369

hepatocellular carcinoma [54]. 370

Five of the 21 best ranked TSGs are genes coding for proteins involved in DNA 371

repair, a role closely related to genome maintenance and cancer [55,56]. These genes are 372

EXO1 [57], ERCC1 [58], GTF2H1 [59], and MDC1 [60], and DGCR8 [61]. Besides their 373

DNA repair functions, many studies related to these genes are available in the literature 374

(in addition to those cited here), underlying their protective role in various types of 375

cancers, which provides additional clues for them to be confident TSG candidates. In 376

addition to these five genes, the transcription factor ZNF521 was shown to regulate the 377

expression of the BRCA1, a well known TSG involved in DNA repair. 378

Three genes are involved in immune system response to cancer cells by similar 379

mechanisms, PDCD1, KLRG1, and MUC16. PDCD1 (or PD-1, for Programmed Cell 380

Death 1) is expressed in T-cell lymphocytes that contribute to kill cancer cells. Cancer 381

cells can escape from T lymphocytes attack by over expression of the PD-L1 protein, 382

which binds to PD-1 and consequently induce tolerance from T lymphocytes [61]. 383

Therefore, PD-1 can be viewed as a TSG, since mutations in this gene might prevent 384

binding of cancer cells PD-L1 proteins. Similarly, KLRG1 gene encode a natural killer 385

(NK) cell lectin-like receptor that drives lysis of tumor cells by NK cells, and epigenetic 386

repression of KLRG1 expression favors breast cancer tumorigenesis and cell survival [62]. 387

MUC16 encode for a protein from the mucin family. Mucins are O-glycosylated proteins 388

forming a protective mucous barrier. They can bind to various receptors of immune 389

cells including NK cells. Aberrant over-expression and glycosylation of mucins 390

(including MUC16) in various malignancies facilitate oncogenic events to escape from 391

the immune response [63]. 392

For six other genes of various functions, we found recent publications indicating that 393

they could potentially act as TSGs (SPTA1, GALNT5, PIWIL1, PIWIL4, SNX5, 394

ADAM6). SPTA1 encodes a protein that links the plasma membrane to the actin 395

cytoskeleton and functions in the determination of cell shape, arrangement of 396

transmembrane proteins, and organization of organelles. Mutations in this gene was 397

found to play a role in glioblastoma [64]. A non-coding RNA directed against GALNT5 398

is overexpressed in gastric cancer, inhibiting the translation of its target gene, and the 399

level of expression of this non-coding RNA is correlated with cancer progression and 400

metastasis [65]. These results are consistent with a TSG role of GALNT5 in gastric 401

cancer. PIWIL1 and PWIL4 genes encode for proteins that play important roles in stem 402

cell self-renewal, RNA silencing and translational regulation, and recent papers 403

illustrate that they could be epigenetic TSG genes. Aberrant methylation of the 404

promoter region of PIWIL1 plays a role in the development of lung adenocarcinoma [66], 405

while decreased expression levels of PIWIL1 and PIWIL4 is associated with worse 406

survival in renal cell carcinoma patients [67]. SNX5 is involved in intracellular 407
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trafficking, and loss or decreased expression of this gene promotes thyroid cancer 408

progression [68]. A long coding RNA that silences ADAM6 was found to be 409

overexpressed in lung adenocarcinoma, which is consistent with a potential TSG role for 410

ADAM6 in this tumor type [69]. 411

Interestingly, for three best ranked predicted TSGs, bibliographic search provided 412

clues that they indeed play a role in cancer, but that they would rather behave as OG. 413

These genes are CENPU [70], FXYD2 [71], ANXA9 [72]. In fact, the literature provides 414

other examples of genes able to switch from oncogenes to tumor suppressor genes, 415

depending on the context [73], which could be the case for these genes. In most cases, 416

the cited papers (and others) observe that over-expression of these genes are observed in 417

various types of cancers. One assumption could be that variations of their levels of 418

expression might lead to switch between TSG and OG roles. 419

Taken together, these results show that, among the top TSG and OG ranked by 420

LOTUS, many genes are indeed involved in cancer, and that LOTUS predictions 421

correspond to relevant genes that are reliable candidates as cancer driver genes, at least 422

for some tumor types. 423

Identification of cancer-specific driver genes with multitask 424

LOTUS 425

In this section, we do not consider cancer as a single disease, but as a variety of diseases 426

with different histological types that can affect various organs. Indeed, an important 427

question in cancer research is to identify driver genes for each type of cancer. One way 428

to solve this problem is to use a prediction method that is trained only with driver 429

genes known for the considered cancer. Such single-task methods may however display 430

poor performance because the number of known drivers per cancer is often too small to 431

derive a reliable model. Indeed, scarce training data lead to a potential loss of statistical 432

power as compared to the problem of identification of pan-cancer driver genes where 433

data available for all cancers are used. 434

In this context, we investigate two multitask versions of LOTUS, where we predict 435

driver genes for a given cancer based on the drivers known for this cancer but also on all 436

driver genes known for other cancer types. For a given cancer type, this may improve 437

driver genes prediction by limiting the loss of statistical power compared to the 438

aforementioned single-task approach. 439

For that purpose, we derive a list of 30 cancer diseases from the 20/20 mutation 440

dataset as explained in Methods. This complete list is available in Supplementary 441

Table 1. As expected, many cancer types have only few known cancer genes (Figure 3). 442

Since we want to evaluate the performance of LOTUS in a cross-validation scheme, 443

we only consider diseases with more than 4 known driver genes in order to be able to 444

run a 2-fold CV scheme. This leads us to keep 27 cancer types for TSG prediction and 445

27 for OG prediction. Note however that, for each cancer type, prediction are made 446

while sharing all the driver genes known for the 30 diseases, according to their 447

similarities with these cancer types. 448

The 2-fold CV consistency error of LOTUS for the 27 considered cancer types is 449

presented in Tables 10 (for TSG) and 11 (for OG). We compare four variants of LOTUS, 450

as explained in Methods: (1) single-task LOTUS treats each disease in turn 451

independently from the others using only the mutation data related to the considered 452

disease to calculate gene features, and only the driver genes known for this disease are 453

used to train the algorithm; (2) Aggregation LOTUS is also a single-task version of 454

LOTUS, but gene features are calculated using the complete mutation database of gene 455

mutations in all cancers. In addition, for each disease, the train set consists of known 456

drivers for all the other cancers and have of the drivers known for the considered disease. 457
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Then the prediction performance are calculated for the other half of known drivers for 458

this disease, which constitute the test set in the 2-fold cross validation scheme. 459

Therefore, Aggregation LOTUS is a single-task algorithm that uses much richer 460

information than the basic Single-task LOTUS; (3 and 4) Two multitask versions of 461

LOTUS use either a standard multitask strategy that does not take into account the 462

relative similarities between diseases (Multitask LOTUS), or a more refined multitask 463

strategy where driver gene information is shared between cancer types according to 464

their similarity based on biological information (Multitask LOTUS2). Finally, we 465

compare these performances with those of DiffMut, as a single-task method using only 466

the mutation data related to the considered disease, as for single-task LOTUS. 467

For most diseases (25/27 for TSG, 27/27 for OG), single-task LOTUS and DiffMut 468

lead to the worst CE, confirming the difficulty to treat each cancer type individually, 469

due to the small number of known driver genes and to the smaller mutation database 470

available for each cancer type type. Interestingly, Aggregation LOTUS often leads to a 471

strong improvement in performance. This shows that different cancer types often share 472

some common mechanisms and driver genes, and therefore, simply using all the 473

available information as in a pan-cancer paradigm improves the performance of driver 474

gene prediction for each disease. However, in many cases, the multitask LOTUS and 475

LOTUS2 algorithms lead to an additional improvement over Aggregation LOTUS, 476

LOTUS2 leading in general to the best results (in 17 types out of 27 for TSG prediction, 477

and in 17 types out of 27 for OG prediction) . On average, the decrease in CE between 478

Aggregate LOTUS and LOTUS2 is of 20% for OG and 18% for TSG. The improvement 479

in performance observed between Aggregate LOTUS and LOTUS2 shows that, besides 480

some driver mechanisms common to many cancers, each cancer presents some specific 481

driver mechanisms that can only be captured by prediction methods able to integrate 482

some biological knowledge about the different diseases. The above results show that 483

multitask algorithms allowing to share information between cancers according to their 484

biological similarities such as LOTUS2, rather than on more naive rules, better capture 485

these specific driver genes. They also show that the kernel Kdiseases = Kdescriptors built 486

on disease descriptors contains some relevant biological information to compare diseases. 487

To measure how different the predictions of LOTUS2 are for each cancer type, we 488

compared the first 50 predictions for each type. Aggregating all predictions for TSGs 489

(respectively OGs) results in 210 genes (respectively 224 genes), which shows that 490

various cancer types share some drivers, but that the prediction lists are different. 491

Indeed, some drivers with high penetrance (such as TP53) are expected to be found in 492

most cancer types, whereas other drivers are more specific to given organs or cell types, 493

in particular since all genes are not expressed in all cell types. 494

In addition, multitask algorithms based on task descriptors (here, disease 495

descriptors) appear to be promising in order to include prior knowledge about diseases 496

and share information according to biological features characterizing the diseases. 497

Finally, note that we did not try to run TUSON, MutSigCV or 20/20+ to search for 498

cancer specific driver genes in the single-task setting (they cannot be run in the 499

multi-task setting). Indeed, according to the results of pan-cancer studies in the 500

single-task setting, they do not perform as well as single-task LOTUS. Considering that 501

single-task LOTUS and DiffMut were far from reaching the performance of multi-task 502

LOTUS for prediction of cancer specific driver genes, TUSON, MutSigCV or 20/20+ 503

are not expected to reach these performance either. 504

Discussion 505

Our work demonstrates that LOTUS outperforms several state-of-the-art methods on 506

all tested situations for driver gene prediction. This improvement results from various 507
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aspects of the LOTUS algorithm. First, LOTUS allows to include the PPI network 508

information as independent prior biological knowledge. In the single-task setting, we 509

proved that this information has significance for the prediction of cancer driver genes. 510

Because LOTUS is based on kernel methods, it is well suited to integrate other data 511

from multiple sources such as protein expression data, information from chip-seq, HiC 512

or methylation data, or new features for mutation timing as designed in [74]. Further 513

development could involve the definition of other gene kernels based on such type of 514

data, and combine them with our current gene kernel, in order to evaluate their 515

relevance in driver gene prediction. 516

We also showed how LOTUS can serve as a multitask method. It relies on a disease 517

kernel that controls how driver gene information is shared between diseases. 518

Interestingly, we showed that building a kernel based on independent biological prior 519

knowledge about disease similarity leads on average to the best prediction performance 520

with respect to single-task algorithms, and also with respect to a more generic and naive 521

multitask learning strategy that does not incorporate knowledge about the cancer types. 522

Again, the kernel approach leaves space for integration of other types and possibly more 523

complex biological sources of information about diseases. Our multitask approach thus 524

allows to make prediction for cancer types with very few known driver genes, which 525

would be less reliable with the single-task methods. We considered here only diseases 526

with at least 4 known driver genes, in order to perform cross-validation studies, which 527

was necessary to evaluate the methods. However, it is important to note that in real-case 528

studies, at the extreme, both versions of multitask LOTUS could make driver gene 529

prediction for the 30 cancer types, including those for which no driver gene is known. 530

LOTUS is a machine learning algorithm based on one-class SVM. In fact, the most 531

classical problem in machine learning is binary classification, where the task is to 532

classify observations into two classes (positives and negatives), based on training sets P 533

of known positives and N of known negatives. Driver gene detection can be seen as 534

binary classification of TSGs vs. neutral genes, and of OGs vs. neutral genes. However, 535

although the P set is composed of known driver genes, it is not straightforward to build 536

the N set because we cannot claim that some genes cannot be drivers. Thus, driver 537

gene detection should rather be seen as binary classification problem with only one 538

training set P of known positives. This problem is classically called PU learning (for 539

Positive-Unknown), as opposed to PN learning (for Positive-Negative). 540

The classical way to solve PU learning problems is to choose a set N of negatives 541

among the unlabeled data and apply a PN learning method. For example, one can 542

consider all unknown items as negatives (some of which may be reclassified afterwards 543

as positives), or randomly choose bootstrapped sets of negatives among the unknown, 544

like in [33]. Both methods assume that a minority of the unlabeled items are in fact 545

positives, which is expected for driver genes. 546

The one-class SVM algorithm [75] can also be used as a PU learning method, in 547

which a virtual item is chosen as the training set of negatives. We preferred this 548

approach because in preliminary studies, we found that it had slightly better 549

performances than PU learning methods and was also faster. 550

For LOTUS, as for all machine learning algorithm, the set of known driver genes is 551

critical: if this set is poorly chosen (i.e., if some genes were wrongly reported as driver 552

genes, or more likely, if the reported genes are not the best driver genes), the best 553

algorithm might not minimize the consistency error CE. To circumvent this problem, 554

we propose two new approaches for future developments: one could build a multi-step 555

algorithm that iteratively removes some genes from the positive set and labels them as 556

unknown, and relabel as positives some of the best ranked unknown genes. We believe 557

that such an algorithm would make the set of positives converge to a more relevant list. 558

Alternatively, one could assign (finite) scores to the known driver genes before 559
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performing classification and increment these scores at each step. 560

Materials and methods 561

Pan-cancer LOTUS 562

LOTUS is a new machine learning-based method to predict new cancer driver genes, 563

given a list of know ones. In the simplest, pan-cancer setting, we consider a list of N 564

known driver genes {g1, . . . , gN}, and the goal of LOTUS is to learn from them a 565

scoring function f(g), for any other gene g, that predicts how likely it is that g is also a 566

cancer gene. Since TSGs and OGs have different characteristics, we treat them 567

separately and build two scoring functions fTSG and fOG that are trained from lists of 568

know TSGs and OGs, respectively. 569

LOTUS learns the scoring function f(g) with a one-class support vector machine 570

(OC-SVM) algorithm [75], a classical method for novelty detection and density level set 571

estimation [76]. The scoring function f(g) learned by a OC-SVM given a training set 572

{g1, . . . , gN} of known cancer genes takes the form: 573

f(g) =

N∑
i=1

αiK(gi, g) , (1)

where α1, . . . , αN are weights optimized during the training of OC-SVM [75], and 574

K(g, g′) is a so-called kernel function that quantifies the similarity between any two 575

genes g and g′. In other words, the score of a new gene g is a weighted combination of 576

its similarities with the known driver genes. 577

The kernel K encodes the similarity among genes. Mathematically, the only 578

constraint that K must fulfill is that it should be a symmetric positive definite 579

function [30]. This leaves a lot of freedom to create specific kernels encoding prior 580

knowledge about relevant information to predict driver genes. In addition, one can 581

easily combine heterogeneous information in a single kernel by, e.g., summing two 582

kernels based on different sources of data. In this work, we restrict ourselves to the 583

following basic kernels, and leave for future work a more exhaustive search of 584

optimization of kernels for cancer gene prediction. 585

• Mutation kernel. Given a large data set of somatic mutations in cohorts of cancer
patients, we characterize each gene g by a vector Φmutation(g) ∈ R3 encoding 3
features. For OG prediction the three features are the number of damaging
missense mutations (defined as in [26] as mutations with a Polyphen2 score larger
than 0.447), the total number of missense mutations, and the entropy of the
spatial distribution of the missense mutations on each gene. For TSG prediction,
the features are the number of frameshift mutations, the number of LOF
mutations (defined as the nonsense and frameshift mutations), and the number of
splice site mutations. These features were calculated as proposed by [26]. We
chose them because they were found to best discriminate OGs and TSGs by the
TUSON algorithm [26] and were also all found among the most important features
selected by the random forest algorithm used by the 20/20+ method [28]. Given
two genes g and g′ represented by their 3-dimensional vectors Φ(g) and Φ(g′), we
then define the mutation kernel as the inner product between these vectors:

Kmutation(g, g′) = Φmutation(g)>Φmutation(g′) .

Notice that using Kmutation as a kernel in OC-SVM produces a scoring function 586

(1) which is simply a linear combination of the three features used to define the 587

vector Φmutation. 588
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• PPI kernel. Given an undirected graph with genes as vertices, such as a PPI 589

network, we define a PPI kernel KPPI as a graph kernel over the network [77,78]. 590

More precisely, we used a diffusion kernel of the form KPPI = expM (−L), where 591

L = I −D−1/2AD−1/2 is the normalized Laplacian of the graph and expM is the 592

matrix exponential function. Here I is the identity matrix, A stands for the 593

adjacency matrix of the graph (Ai,j = 1 if vertices i and j are connected, 0 594

otherwise) and D for the diagonal matrix of degrees (Dii =
∑n

j=1Aij). Intuitively, 595

two genes are similar according to KPPI when they are close and well connected 596

through several routes to each other on the PPI network, hence learning a 597

OC-SVM with KPPI allows to diffuse the information about cancer genes over the 598

network. 599

• Integrated kernel. In order to train a model that incorporates informations about
both mutational features and PPI, we create an integrated gene kernel by simply
averaging the mutation and PPI kernels:

Kgene(g, g
′) = (Kmutation(g, g′) +KPPI(g, g′)) /2 .

While more complex kernel combination strategies such as multiple kernel learning 600

could be considered, we restrict ourselves to this simple kernel addition scheme to 601

illustrate the potential of our approach for heterogeneous data integration. 602

Multitask LOTUS for cancer type-specific predictions 603

The pan-cancer LOTUS approach can also be used for cancer-specific predictions, by 604

restricting the training set of known cancer driver genes to those genes known to be 605

driver in a particular cancer type. However, for many cancer types, only few driver 606

genes have been validated, creating a challenging situation for machine learning-based 607

methods like LOTUS that rely on a training set of known driver genes to learn a scoring 608

function. Since cancer driver genes of different cancer types are likely to have similar 609

features, we propose instead to learn jointly cancer type-specific scoring functions by 610

sharing information about known driver genes across cancer types, using the framework 611

of multitask learning [32,33]. Instead of starting from a list of known driver genes, we 612

now start from a list of known (cancer gene, cancer type) pairs of the form 613

{(g1, d1), . . . , (gN , dN )}, where a sample (gi, di) means that gene gi is a known cancer 614

gene in disease di. Note that a given gene (and a given cancer type) may of course 615

appear in several such pairs. 616

The extension of OC-SVM to the multitask setting is straightforwardly obtained by
creating a kernel for (gene, disease) pairs of the form:

Kpair ((g, d), (g′, d′)) = Kgene(g, g
′)×Kdisease(d, d

′) ,

where Kgene is a kernel between genes such as that used in pan-cancer LOTUS and 617

Kdisease is a kernel between cancer types described below. We then simply run the 618

OC-SVM algorithm using Kpair as kernel and {(g1, d1), . . . , (gN , dN )} as training set, in 619

order to learn a cancer type-specific scoring function of the form f(g, d) that estimates 620

the probability that g is a cancer gene for cancer type d. 621

The choice of the disease kernel Kdisease influences how information is shared across 622

cancer types. One extreme situation is to take the uniform kernel Kuniform(d, d′) = 1 623

for any d, d′. In that case, no distinction is made between diseases, and all known 624

cancer driver genes are pooled together, recovering the pan-cancer setting (with the 625

slight difference that genes may be counted several times in the training set if they 626

appear in several diseases). Another extreme situation is to take the Dirac kernel 627

KDirac(d, d
′) = 1 if d = d′, 0 otherwise. In that case, no information is shared across 628
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cancer types, and the joint model over (gene, disease) pairs is equivalent to learning 629

independently a model for each disease, as in the single-task approach. 630

In order to leverage the benefits of multitask learning and learn disease-specific 631

models by sharing information across diseases, we consider instead the following two 632

disease kernels: 633

• First, we consider the standard multitask learning kernel:

Kmultitask(d, d′) = (Kuniform(d, d′) +KDirac(d, d
′)) /2 ,

which makes a compromise between the two extreme uniform and Dirac 634

kernels [32]. Intuitively, for a given cancer type, prediction of driver genes is made 635

by assigning twice more weight to the data available for this cancer than to the 636

data available for all other cancer types. 637

• Second, we test a more elaborate multitask version where we implement the idea
that a given cancer might share various degrees of biological similarities with
other cancers. Therefore, known driver genes for other cancers should be shared
with those of the considered cancer based on this similarity. Hence, we create a
specific disease kernel Kcancer(d, d′) to capture how similar two cancer types are.
To create Kcancer, we first represent each cancer type as a 43-dimensional binary
vector as follows. The first 12 bits correspond to a list of cancer type
characteristics used in COSMIC to describe tumors: adenocarcinoma, adenoma,
blastoma, carcinoma, glioma, leukemia, lymphoma, medulloblastoma, melanoma,
myeloma, rhabdomyosarcoma, sarcoma. The last 31 components correspond to
localization characteristics also used in COSMIC to describe tumors: adrenal
glands, astrocytes, B-cell, bladder, bone, breast, cervix, central nervous system,
colon, ducts, endometrium, eye, head and neck, heart, kidney, liver, lung,
lymphocytes, mucosa, muscle, nerve, oesophagus, ovary, pancreas, prostate,
salivary glands, skin, soft tissue, squamous cell, stomach, T-cell, thyroid. A
disease might be assigned one or several types and be associated to one or several
locations. For example, Melanoma is associated with a single type (”melanoma”)
and four localizations (”skin”, ”mucosa”, ”eye” and ”head and neck”), so that
Melanoma is described by a vector with five 1’s and thirty-eight 0’s. For each
disease, we construct the list of binary features by documenting every disease in
the literature. The corresponding vectors encoding the considered disease are
given in Supplementary Table S2. Finally, if Ψ(d) ∈ R43 denotes the binary vector
representation of disease d, we create the disease kernel as a simple inner product
between these vectors, combined with the standard multitask kernel, i.e.:

Kcancer(d, d′) =
(
Ψ(d)>Ψ(d′) +Kuniform(d, d′) +KDirac(d, d

′)
)
/3 .

Data 638

When comparing LOTUS to TUSON, we use a dataset of somatic mutations collected 639

from COSMIC [14], TCGA (http://cancergenome.nih.gov/) and [18], that was used 640

in [26]. This dataset contains a total of 1, 195, 223 mutations across 8, 207 patients 641

affecting 18, 843 genes. 642

When comparing LOTUS to DiffMut and 20/20+, we use a dataset of somatic 643

mutations borrowed from [28]. This dataset contains a total of 729, 205 mutations 644

across 7, 916 patients affecting 19, 320 genes. 645

When comparing LOTUS to MutSigCV, we use an example dataset available on 646

GenePattern. This dataset contains a total of 137, 343 mutations across 177 patients of 647

lung squamous cell carcinoma affecting 16, 885 genes. 648
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We obtained the PPI network from the HPRD database release 9 from April 13, 649

2010 [79]. It contains 39, 239 interactions among 7, 931 proteins. As for known 650

pan-cancer driver genes, we consider three lists in our experiments: (i) the TUSON 651

train set, proposed in [26], consists of two high confidence lists of 50 OGs and 50 TSGs 652

extracted from CGC (release v71) based on several criteria, in particular excluding 653

driver genes reported through translocations; (ii) the 20/20 train set, proposed in [28] to 654

train the 20/20+ method, contains 53 OGs and 60 TSGs; finally, (iii) the CGCv86 train 655

set consists of two broader lists that we extracted from CGC release v86 of the 656

COSMIC database: we consider as OGs the genes annotated as ”oncogene”, ”oncogene, 657

TSG”, ”oncogene, fusion”, ”oncogene, TSG, fusion”, and as TSGs the genes annotated 658

as ”TSG”, ”oncogene, TSG”, ”TSG, fusion”, ”oncogene, TSG, fusion”. For cancer 659

type-specific lists of driver genes, we only consider the CGCv86 train sets. We 660

distinguished 30 diseases based on the available annotations describing patients in the 661

mutation matrix, only merging ”Kidney Chromophobe”, ”Kidney Papillary Cell 662

Carcinoma” and ”Kidney Clear Cell Carcinoma” into ”Kidney Cancer”, ”DLBCL” and 663

”Lymphoma B-Cell” into ”Lymphoma B-Cell” and neglecting the unspecific ”CARC”. 664

The names of these diseases and their numbers of associated TSGs and OGs can be 665

found in Supplementary Table 1. For each of the resulting diseases, 0 to 56 TSGs/OGs 666

were known in CGCv86. We considered only diseases with at least 4 known TSGs or 667

OGs available, in order to have enough learning data points to perform a two-fold 668

cross-validation scheme, which led us to consider 27 diseases for TSG prediction and 27 669

for OG prediction. 670

Experimental protocol 671

To assess the performance of a driver gene prediction method on a given gold standard
of known driver genes, we score all genes in the COSMIC database and measure how
well the known driver genes are ranked. For that purpose, we plot the receiver operating
characteristic (ROC) curve, considering all known drivers as positive examples and all
other genes in COSMIC as negative ones, and define the consistency error (CE) as

CE = #N × (1−AUC),

where #N is the number of negative genes, and AUC denotes the area under the ROC 672

curve. In other words, CE measures the mean number of ”non-driver” genes that the 673

prediction method ranks higher than known driver genes. Hence, a perfect prediction 674

method should have CE = 0, while a random predictor should have a CE near #N/2. 675

To estimate the performance of a machine learning-based prediction method that 676

estimates a scoring function from a training set of known driver genes, we use k-fold 677

cross-validation (CV) for each given gold standard set of known driver genes. In k-fold 678

CV, the gold standard set is randomly split into k subsets of roughly equal sizes. Each 679

subset is removed from the gold standard in turn, the prediction method is trained on 680

the remaining k− 1 subsets, and its CE is estimated considering the subset left apart as 681

positive examples, and all other genes of COSMIC not in the gold standard set as 682

negative examples. A mean ROC curve and mean CE is then computed from the k 683

resulting ROC curves. This computation is repeated several times to consider several 684

possibly different partitions of the gold standard set. 685

Tuning of parameters 686

Each version of LOTUS depends on a unique parameter, the regularization parameter C 687

of the OC-SVM algorithm. Each time a LOTUS model is trained, its C parameter is 688

optimized by 5-fold CV on the training set, by picking the value in a grid of candidate 689

values {2−5/2, 2−4/2, . . . , 25/2} that minimizes the mean CE over the folds. 690
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Other driver prediction methods 691

We compare the performance of LOTUS to four other state-of-the-art methods: 692

MutSigCV [21], which is a frequency-based method, TUSON [26] and 20/20+ [28] that 693

combine frequency and functional information, and DiffMut that analyses mutation 694

profiles on genes. 695

MutSigCV searches driver genes among significantly mutated genes which adjusts for 696

known covariates of mutation rates. The method estimates a background mutation rate 697

for each gene and patient, based on the observed silent mutations in the gene and 698

noncoding mutations in the surrounding regions. Incorporating mutational 699

heterogeneity, MutSigCV eliminates implausible driver genes that are often predicted by 700

simpler frequency-based models. For each gene, the mutational signal from the observed 701

non-silent counts are compared to the mutational background. The output of the 702

method is an ordered list of all considered genes as a function of a p-value that 703

estimates how likely this gene is to be a driver gene. 704

TUSON uses gene features that encode frequency mutations and functional impact 705

mutations. The underlying idea is that the proportion of mutation types observed in a 706

given gene can be used to predict the likelihood of this gene to be a cancer driver. After 707

having identified the most predicting parameters for OGs and TSGs based on a train 708

set (called the TUSON train set in the present paper), TUSON uses a statistical model 709

in which a p-value is derived for each gene that characterizes its potential as being an 710

OG or a TSG, then scores all genes in the COSMIC database, to obtain two ranked lists 711

of genes in increasing orders of p-values for OGs and TSGs. 712

The 20/20+ method encodes genes based on frequency and mutation types, and 713

other biological information. It uses a train set of OGs and TSGs (called the 20/20 714

train set in the present paper) to train a random forest algorithm. Then, the random 715

forest is used on the COSMIC database and the output of the method is again a list of 716

genes ranked according to their predicted score to be a driver gene [28]. We did not 717

implement this method, so we decided to evaluate its performance only on its original 718

training set: the 20/20 dataset. Moreover, we applied the same method to compute the 719

CE as for MutSigCV and TUSON, which should actually give an advantage to 20/20+, 720

since it is harder to make predictions in a cross-validation loop using a smaller set of 721

known driver genes. 722

DiffMut uses a dataset of somatic mutations and a dataset of healthy genomes, but 723

no training sets of known driver genes. It compares the mutation profiles on a gene in 724

the mutation dataset with the nucleotide variation profile in the healthy genomes, and 725

computes for every gene a score that allows to rank all genes according to their 726

potential as OG or TSG. 727

Code and data availability 728

We implemented LOTUS and performed all experiments in R using in particular the 729

kernlab package for OC-SVM [80]. The code and data to reproduce all experiments are 730

available at http://members.cbio.mines-paristech.fr/~ocollier/lotus.html. 731
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Figure legends 970

Fig 1. ROC curves for TSGs (left) and OGs (right) and the TUSON train set.

Fig 2. ROC curves for TSGs (left) and OGs (right) and the 20/20 train set.

Fig 3. Distribution of the number of TSGs (left) and OGs (right) per cancer type.

Supporting information legends 971

S1 Table List of cancer types. Cancer types derived from annotations in the 972

20/20 mutation dataset along with their numbers of associated OG and TSG. 973

S2 Table Description of cancer types. Descriptors of all cancer types according 974

to their localizations and types that are used to compute the disease kernel used by 975

LOTUS2. 976

S3 Table TSG and OG rankings for LOTUS with the 20/20, the TUSON 977

and the CGC v86 datasets. Note that the training sets were removed every time. 978

Tables 979

Driver type \ Method TUSON LOTUS
OG 3,286 990
TSG 626 127

Table 1. Comparison of Consistency Errors for OG and TSG prediction between
TUSON and LOTUS.

Driver type \ Method 20/20+ DiffMut LOTUS
OG 1,831 4,254 782
TSG 845 2,537 468

Table 2. Comparison of Consistency Errors for OG and TSG prediction between
20/20+, DiffMut and LOTUS.

Driver type \ Method MutSigCV LOTUS
OG 6,294 1,929
TSG 7,232 2,990

Table 3. Comparison of Consistency errors for OG and TSG prediction between
MutSigCV and LOTUS.
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Train set \ Kernel Kmutation KPPI Kdegree Kmutation +KPPI

TUSON datasets 2,904 1,574 1,659 990
20/20 datasets 2,453 1,642 1,774 782

MutSig datasets 2,292 1,450 1,306 1,929

Table 4. Consistency error of LOTUS for OG prediction in the pan-cancer setting,
with different gene kernels (columns) and different gold standard sets of known OGs
and mutations (rows).

Train set \ Kernel Kmutation KPPI Kdegree Kmutation +KPPI

TUSON datasets 393 1,413 1,965 127
20/20 datasets 971 2,460 2,994 468

MutSig datasets 4,335 4,017 4,253 2,990

Table 5. Consistency error of LOTUS for TSG prediction in the pan-cancer setting,
with different gene kernels (columns) and different gold standard sets of known TSGs
and mutations (rows).

Method \ Number of considered predictions 20 50 100
LOTUS 5 10 19
TUSON 13 25 35

Table 6. Number of predictions belonging to the TSGs in CGCv86, when the methods
are run with the TUSON mutation database and train set.

Method \ Number of considered predictions 20 50 100
LOTUS 3 7 16
TUSON 7 11 12

Table 7. Number of predictions belonging to the OGs in CGCv86, when the methods
are run with the TUSON mutation database and train set.

Method \ Number of considered predictions 20 50 100
LOTUS 4 10 16
DiffMut 1 4 10
20/20+ 7 9 16

Table 8. Number of predictions belonging to the TSGs in CGCv86, when the methods
are run with the 20/20 mutation database and train set.

Method \ Number of considered predictions 20 50 100
LOTUS 3 5 9
DiffMut 2 3 4
20/20+ 10 15 20

Table 9. Number of predictions belonging to the OGs in CGCv86, when the methods
are trained with the 20/20 mutation database and train set.
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Number of DiffMut Single-Task Aggregation Multitask Multitask
Disease TSGs LOTUS LOTUS LOTUS LOTUS2
ALL 38 7, 122 1, 431 783 709 631

Astrocytoma 17 7, 605 2, 612 49 38 0
BladUroCarc 9 4, 852 2052 173 138 115
BreastAdeno 34 3, 250 1, 837 801 770 778

CLL 21 4, 253 1, 336 895 894 921
Colorectal 53 7, 600 3, 640 911 870 825

EndomCarc 18 5, 831 1, 222 89 82 59
GliobMulti 24 4, 776 2, 771 166 191 153

HNSC 24 5, 819 3, 051 681 571 595
Kidney Cancer 19 6, 133 2, 766 2, 512 2,474 2,474

LAML 56 5, 947 1, 936 1, 483 1, 451 1,328
LiverHepCarc 10 3, 768 602 221 156 172

Low-Grade Glioma 17 6, 047 2, 712 49 38 0
LungAdeno 30 6, 773 4, 712 339 341 323

LungSquaCarc 16 6, 829 3, 868 53 57 25
LungSmallCarc 28 8, 883 5, 746 58 68 17

Lymphoma B-Cell 37 6, 383 1,754 2, 238 2, 284 2, 252
Medulloblastoma 14 6, 692 1, 123 265 247 230

Melanoma 31 6, 719 2, 467 459 365 233
Multiple Myeloma 7 5, 165 2,871 3, 754 3, 871 3, 683

Ovarian 22 6, 481 2, 632 724 627 593
PancAdeno 13 3, 140 1, 777 140 118 123
ProstAdeno 7 6, 565 2, 345 457 371 514

Rhabd 6 4, 871 1, 957 181 111 26
Soft-Tissue Sarcoma 23 8, 572 4, 447 2, 008 1, 992 1,970

StomAdeno 17 6, 530 2, 878 331 319 322
ThyrCarc 8 10, 352 2, 834 1,222 1, 325 1, 538

Table 10. CE for prediction of disease specific TSGs in the multitask setting. ALL
stands for Acute Lymphocytic Leukemia, BladUroCarc for Bladder Urothelial
Carcinoma, BreastAdeno for Breast Adenocarcinoma, CLL for Chronic Lymphocytic
Leukemia, EndomCarc for Endometrial Carcinoma, GliobMulti for Glioblastoma
Multiform, HNSC for Head and Neck Squamous Cell Carcinoma, LAML for Acute
Myeloid Leukemia, LiverHepCarc for Liver Hepatocellular Carcinoma, LungAdeno for
Lung Adenocarcinoma, LungSquaCarc for Lung Squamous Cell Carcinoma,
LungSmallCarc for Lung Small Cell Carcinoma, PancAdeno for Pancreatic
Adenocarcinoma, ProstAdeno for Prostate Adenocarcinoma, Rhabd for
Rhabdomyosarcoma, StomAdeno for Stomach Adenocarcinoma and ThyrCarc for
Thyroid Carcinoma.
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Number of DiffMut Single-Task Aggregation Multitask Multitask
Disease OGs LOTUS LOTUS LOTUS LOTUS2
ALL 52 8, 479 2, 649 1, 232 1, 269 1,145

Astrocytoma 13 7, 847 2, 894 75 63 13
BladUroCarc 10 5, 324 1, 578 210 139 140
BreastAdeno 19 2, 672 1, 371 852 806 792

CLL 19 4, 582 3, 821 1, 537 1, 501 1,462
Colorectal 23 4, 043 3, 376 818 784 758

EndomCarc 8 5, 112 1, 671 122 128 105
GliobMulti 22 4, 915 2, 539 143 128 106

HNSC 23 4, 539 2, 917 1,305 1, 500 1, 504
Kidney Cancer 11 5, 774 1, 903 543 600 763

LAML 56 4, 990 2, 623 1, 418 1, 408 1,307
Low-Grade Glioma 10 3, 753 1, 541 46 33 3

LungAdeno 26 4, 510 2, 038 84 79 40
LungSmallCarc 6 3, 243 2, 129 1, 061 666 864
LungSquaCarc 24 5, 737 1, 641 67 54 17

Lymphoma B-Cell 34 4, 765 2, 424 1, 712 1, 714 1,669
Medulloblastoma 5 7, 165 58 93 34 25

Melanoma 35 3, 377 1, 925 1, 576 1, 550 1,525
Multiple Myeloma 9 3, 466 2, 870 1,823 1, 877 2, 026

Neuroblastoma 5 5, 298 3, 830 2, 078 2,077 2, 101
Ovarian 12 6, 371 3, 606 1, 256 869 870

PancAdeno 6 1, 464 1, 142 498 426 302
ProstAdeno 13 6, 523 2, 451 955 1, 599 1, 475

Rhabd 7 8, 265 1, 978 172 104 30
Soft-Tissue Sarcoma 38 8, 886 2, 480 2,424 2, 466 2, 444

StomAdeno 10 2, 235 750 85 127 97
ThyrCarc 8 8, 407 2, 656 547 612 494

Table 11. CE for prediction of disease specific OGs in the multitask setting. ALL
stands for Acute Lymphocytic Leukemia, BladUroCarc for Bladder Urothelial
Carcinoma, BreastAdeno for Breast Adenocarcinoma, CLL for Chronic Lymphocytic
Leukemia, EndomCarc for Endometrial Carcinoma, GliobMulti for Glioblastoma
Multiform, HNSC for Head and Neck Squamous Cell Carcinoma, LAML for Acute
Myeloid Leukemia, LungAdeno for Lung Adenocarcinoma, LungSquaCarc for Lung
Squamous Cell Carcinoma, LungSmallCarc for Lung Small Cell Carcinoma, PancAdeno
for Pancreatic Adenocarcinoma, ProstAdeno for Prostate Adenocarcinoma, Rhabd for
Rhabdomyosarcoma, StomAdeno for Stomach Adenocarcinoma and ThyrCarc for
Thyroid Carcinoma.
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Fig 1. ROC curves for TSGs (top) and OGs (bottom) for LOTUS and TUSON, run
with the TUSON mutation database train sets.
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Fig 2. ROC curves for TSGs (top) and OGs (bottom) for LOTUS, 20/20+ and
DiffMut, run with the 20/20 mutation database and train sets.
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Fig 3. Number of TSGs (top) and OGs (bottom) per cancer type: for example, 3
cancer types have between 0 and 5 TSGs.
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