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Olivier Collier1,*, Véronique Stoven2,3,4, Jean-Philippe Vert5,2,†

1 Modal’X, UPL, Univ Paris Nanterre, F-92000 Nanterre, France

2 MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology,

F-75006 Paris, France

3 Institut Curie, F-75248 Paris Cedex 5, France

4 INSERM U900, F-75248 Paris Cedex 5, France

5 Google Brain, F-75009 Paris, France

∗ olivier.collier@parisnanterre.fr, † jpvert@google.com

Abstract

Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the

acquisition of important functions in tumors, providing a selective growth advantage,

allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to

identify these driver genes, both for the fundamental understanding of cancer and to

help finding new therapeutic targets. Although the most frequently mutated driver

genes have been identified, it is believed that many more remain to be discovered,

particularly for driver genes specific to some cancer types.

In this paper we propose a new computational method called LOTUS to predict new

driver genes. LOTUS is a machine-learning based approach which allows to integrate

various types of data in a versatile manner, including informations about gene

mutations and protein-protein interactions. In addition, LOTUS can predict cancer
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driver genes in a pan-cancer setting as well as for specific cancer types, using a

multitask learning strategy to share information across cancer types.

We empirically show that LOTUS outperforms three other state-of-the-art driver

gene prediction methods, both in terms of intrinsic consistency and prediction accuracy,

and provide predictions of new cancer genes across many cancer types.

Author summary

Cancer development is driven by mutations and dysfunction of important, so-called 1

cancer driver genes, that could be targeted by targeted therapies. While a number of 2

such cancer genes have already been identified, it is believed that many more remain to 3

be discovered. To help prioritize experimental investigations of candidate genes, several 4

computational methods have been proposed to rank promising candidates based on 5

their mutations in large cohorts of cancer cases, or on their interactions with known 6

driver genes in biological networks. We propose LOTUS, a new computational approach 7

to identify genes with high oncogenic potential. LOTUS implements a machine learning 8

approach to learn an oncogenic potential score from known driver genes, and brings two 9

novelties compared to existing methods. First, it allows to easily combine heterogeneous 10

informations into the scoring function, which we illustrate by learning a scoring function 11

from both known mutations in large cancer cohorts and interactions in biological 12

networks. Second, using a multitask learning strategy, it can predict different driver 13

genes for different cancer types, while sharing information between them to improve the 14

prediction for every type. We provide experimental results showing that LOTUS 15

significantly outperforms several state-of-the-art cancer gene prediction softwares. 16

Introduction 17

In our current understanding of cancer, tumors appear when some cells acquire 18

functionalities that give them a selective growth advantage, allowing uncontrolled 19

proliferation and avoiding apoptosis [1, 2]. These malignant characteristics arise from 20

various genomic alterations including point mutations, gene copy number variants 21

(CNVs), translocations, inversions, deletions, or aberrant gene fusions. Many studies 22
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have shown that these alterations are not uniformly distributed across the genome [3, 4], 23

and target specific genes associated with a limited number of important cellular 24

functions such as genome maintenance, cell survival, and cell fate [5]. Among these 25

so-called driver genes, two classes have been distinguished in the literature: tumor 26

suppressors genes (TSGs) and oncogenes (OGs) [6, Chapter 15]. TSGs, such as 27

TP53 [7], participate in defense mechanisms against cancer and their inactivation by a 28

genomic alteration can increase the selective growth advantage of the cell. On the 29

contrary, alterations affecting OGs, such as KRAS [8] or ERBB2 [9], can be responsible 30

for the acquisition of new properties that provide some selective growth advantage or 31

the ability to spread to remote organs. Identifying driver genes is important not only 32

from a basic biology point of view to decipher cancer mechanisms, but also to identify 33

new therapeutic strategies and develop precision medicine approaches targeting 34

specifically mutated driver genes. For example, Trastuzumab [10] is a drug given 35

against breast cancer that targets the protein precisely encoded by ERBB2, which has 36

dramatically improved the prognosis of patients whose tumors overexpress that OG. 37

Decades of research in cancer genomics have allowed to identify several hundreds of 38

such cancer genes. Regularly updated databases such as the Cancer Gene Census 39

(CGC) [11], provide catalogues of genes likely to be causally implicated in cancer, with 40

various levels of experimental validations. Many cancer genes have been identified 41

recently by systematic analysis of somatic mutations in cancer genomes, as provided by 42

large-scale collaborative efforts to sequence tumors such as The Cancer Genome Atlas 43

(TCGA) [12] or the International Cancer Genome Consortium (ICGC) [13]. Indeed, 44

cancer genes tend to be more mutated than non-cancer genes, providing a simple 45

guiding principle to identify them. In particular, the COSMIC database [14] is the 46

world’s largest and most comprehensive resource of somatic mutations in coding regions. 47

It is now likely that the most frequently mutated genes have been identified [15]. 48

However, the total number of driver genes is still a debate, and many driver genes less 49

frequently mutated, with low penetrance, or specific to a given type of cancer are still to 50

be discovered. 51

The first methods to identify driver genes from catalogues of somatic mutations 52

simply compared genes based on somatic mutation frequencies, which was proved to be 53

far too basic [16]. Indeed, mutations do not appear uniformly on the genome: some 54
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regions of the genome may be more affected by errors because they are more often 55

transcribed, so that some studies actually overestimated the number of driver genes 56

because they were expecting lower mutation rates than in reality. Mathematically, they 57

were formulating driver prediction as a hypothesis testing problem with an inadequate 58

null hypothesis [17]. Several attempts have been made to adequately calibrate the null 59

hypothesis, like [16] or [18], where it is assumed that mutations result from a mixture of 60

several mutational processes related to different causes. 61

A variety of bioinformatics methods have then been developed to complete the list of 62

pan-cancer or cancer specific driver genes. Globally, they fall into three main categories. 63

First, a variety of “Mutation Frequency” methods such as MuSiC [19] or 64

ActiveDriver [20] identify driver genes based on the assumption that they display 65

mutation frequencies higher than those of a background mutation model expected for 66

passenger mutations. However, this background rate may differ between cell types, 67

genome positions or patients. In order to avoid such potential bias, some methods like 68

MutSigCV [21] derive a patient-specific background mutation model, and may take into 69

account various criteria such as cancer type, position in the genome, or clinical data. 70

Second, “Functional impact” methods such as OncodriveFM [22] assume that driver 71

genes have higher frequency of mutations expected to impact the protein function 72

(usually missense mutations) than that observed in passenger genes. Third, 73

“Pathway-based” methods consider cancer as a disease in which mutated genes occupy 74

key roles in cancer-related biological pathways, leading to critical functional 75

perturbations at the level of networks. For example, DriverNet [23] identifies driver 76

genes based on their effect in the transcription networks. Although these methods tend 77

to successfully identify the most frequently mutated genes, their overall prediction 78

overlap is modest. Since they rely on complementary statistical strategies, one could 79

recommend to use them in combination. The results of some of these tools are available 80

at the Driver DB database [24]. 81

Some methods integrate information on mutation frequency and functional impact of 82

mutations, or other types of data such as genome position, copy number variations 83

(CNVs) or gene expression. The underlying idea is that combining data should improve 84

the prediction performance over tools that use a single type of information. For example, 85

TUSON [25] or DOTS-Finder [26] combine mutation frequencies and functional impact 86
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of mutations to identify OGs and TSGs. Also in this category, the 20/20+ method [27] 87

encodes genes with features based on their frequency and mutation types, in addition to 88

other biological information such as gene expression level in difference cancer cell 89

lines [28] or replication time. Then, 20/20+ predicts driver genes with a random forest 90

algorithm, which constitutes the first attempt to use a machine learning method in this 91

field. In [27], the authors benchmark 8 driver gene prediction methods based on several 92

criteria including the fraction of predicted genes in CGC, the number of predicted driver 93

genes and the consistency. Three methods proved to perform similarly on all criteria, 94

and better than the five others: TUSON, MutSigCV, and 20/20+, validating the 95

relevance of combining heterogeneous information to predict cancer genes. 96

In the present paper, we propose a new method for cancer driver gene prediction 97

called Learning Oncogenes and TUmor Suppressors (LOTUS). Like 20/20+, LOTUS is 98

a machine learning-based method, meaning that it starts from a list of known driver 99

genes in order to “learn” the specificities of such genes and to identify new ones. In 100

addition, LOTUS presents two unique characteristics with respect to previous work in 101

this field. First, it combines informations from all three types of informations likely to 102

contain information to predict cancer genes (mutation frequency, functional impact, and 103

pathway-based informations). This integration of heterogeneous informations is carried 104

out in a unified mathematical and computational framework thanks to the use of kernel 105

methods [29], and allows in principle to integrate other sources of data if available, such 106

as transcriptomic or epigenomic information. More precisely, in our implementation we 107

predict cancer driver genes based not only on gene mutations features like “Mutation 108

Frequency” and “Functional Impact” methods do, but also on known protein-protein 109

interaction (PPI) network like “Pathway-based” methods do. Indeed, the use of PPI 110

information is particularly relevant since it has been reported that proteins encoded by 111

driver genes are more likely to be involved in protein complexes and share higher 112

“betweenness” than a typical protein [25]. Second, LOTUS can predict cancer genes in a 113

pan-cancer setting, as well as for specific cancer types, using a multitask learning 114

strategy [30]. The pan-cancer setting has been adopted by most available prediction 115

methods, since more data is available when pooling together all cancer types. The 116

cancer type-specific prediction problem has been less explored so far, because the 117

number of known driver genes for a given cancer is often too small to build a reliable 118
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prediction model, and because the amount of data such as somatic mutations to train 119

the model is smaller than in the pan-cancer setting. However, the search for cancer 120

specific driver genes is relevant, because cancer is a very heterogeneous disease: different 121

tumorigenic processes seem to be at work in different tissue types, and consequently 122

every cancer type probably has its own list of driver genes [15]. LOTUS implements a 123

multitask algorithm that predicts new driver genes for a given cancer type based on its 124

known driver genes, while also taking into account the driver genes known for other 125

types of cancers according to their similarities with the considered type of cancer. Such 126

approaches are of particular interest when the learning data are scarce in each 127

individual tasks: they increase the amount of data available for each task and thus 128

perform statistically better. To our knowledge, while a similar approach was used to 129

predict disease genes across general human diseases [31], this is the first time a 130

multitask machine learning algorithm is used for the prediction of cancer driver genes. 131

We compare LOTUS to the three best state-of-the art cancer prediction methods 132

according to [27]. We show that that LOTUS outperforms the state-of-the-art in its 133

ability to identify novel cancer genes, and clarify the benefits of heterogeneous data 134

integration and of the multitask learning strategy to predict cancer type-specific driver 135

genes. Finally, we provide predictions of new cancer genes according to LOTUS, as well 136

as supporting evidence that those predictions are likely to contain new cancer genes. 137

Results 138

LOTUS, a new method for pan-cancer and cancer specific 139

driver gene prediction 140

We propose LOTUS, a new method to predict cancer driver genes. LOTUS is a machine 141

learning-based method that estimates a scoring function to rank candidate genes by 142

decreasing probability that they are OGs or TSGs, given a training set of known OGs 143

and TSGs. The score of a candidate gene is a weighted sum of similarities between the 144

candidate gene and the known cancer genes, where the weights are optimized by a 145

one-class support vector machine (OC-SVM) algorithm. The similarities themselves are 146

derived from the analysis of somatic mutation patterns in the genes, or from the relative 147
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positions of genes in a PPI network, or from both; the mathematical framework of 148

kernel methods allows to simply combine heterogeneous data about genes (i.e., patterns 149

of somatic mutations and PPI information) in a single model. 150

Another salient feature of LOTUS is its ability to work in a pan-cancer setting, as 151

well as to predict driver genes specific to individual cancer types. In the later case, we 152

use a multitask learning strategy to jointly learn scoring functions for all cancer types 153

by sharing information about known driver genes in different cancer types. We test 154

both a default multitask learning strategy, that shares information in the same way 155

across all cancer types, and a new strategy that shares more information across similar 156

cancer types. More details about the mathematical formulation and algorithms 157

implemented in LOTUS are provided in the Material and Methods section. 158

In the following, we assess the performance of LOTUS first in the pan-cancer regime, 159

where we compare it to three state-of-the-art methods (TUSON, MutSigCV and 160

20/20+), and second in the cancer type specific regime, where we illustrate the 161

importance of the multitask learning strategies. 162

Cross-validation performance for pan-cancer driver gene 163

prediction 164

We first study the pan-cancer regime where cancer is considered as a single disease, and 165

where we search for driver genes involved in at least one type of cancer. Several 166

computational methods have been proposed to solve this problem in the past, and we 167

compare LOTUS with the three best methods in terms of performance according to a 168

recent benchmark [27]: MutSigCV [21], which is a frequency-based method, and 169

TUSON [25] and 20/20+ [27], which combine frequency and functional information. 170

While MutSigCV is and unsupervised method that scores candidate genes 171

independently of any training set of known drivers, TUSON and 20/20+ depend on a 172

training set, just like LOTUS. To perform a comparison as fair as possible between 173

different methods, we collect the training sets of TUSON and 20/20+, and evaluate the 174

performance of LOTUS on each of these datasets by 5-fold cross-validation (CV) 175

repeated twice (see Methods). For TUSON and 20/20+, we use the prediction results 176

available in the corresponding papers, in order to evaluate the consistency errors (CE) 177
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as the mean number of non-driver genes that are ranked before known driver genes of 178

the TUSON and 20/20 train sets, respectively. We note that these ranks were obtained 179

by training these two algorithms on their respective train set, and that this therefore 180

gives an advantage to TUSON and 20/20+ compared to LOTUS in the evaluation. 181

Indeed for the former two methods the training set is used both to define the score and 182

to assess the performance, while for LOTUS the CV procedure ensures that different 183

genes are used to train the model and to test its performance. However we note that the 184

20/20+ score itself is obtained by a bootstrap procedure similar to our cross-validation 185

approach [27]. This allows us to make fair comparisons between TUSON, MutSigCV 186

and LOTUS (trained on TUSON train set), on the one hand, and between 20/20+, 187

MutSigCV and LOTUS (trained on 20/20 train set), on the other hand. We further 188

note that MutSigCV also provides a ranked list of genes, but does not make the 189

difference between TSG and OG. Therefore, it is not dependent from a train set, and 190

the CE in this case is obtained by averaging the numbers of non-driver genes ranked 191

before each driver genes in the considered train set. 192

The CE for the different methods and the different training sets are presented in 193

Table 1 for OGs and in Table 2 for TSGs. When analyzing these results, one should 194

keep in mind that the total number of cancer driver genes is still a subject of debate, 195

but it is expected to be much lower than the size of the test set of 17849 genes, and it 196

should rather be in the range of a few hundreds. Therefore, consistency errors above a 197

few thousand can be considered as poor performance results. 198

Train set \ Method MutSigCV TUSON 20/20+ LOTUS
TUSON train set 4,489 3,286 × 931
20/20 train set 5,823 × 1,831 819

Table 1. Consistency error for OG prediction in the pan-cancer setting, for different
methods (columns) and different gold standard sets of known OG (rows).

Train set \ Method MutSigCV TUSON 20/20+ LOTUS
TUSON train set 1,443 626 × 130
20/20 train set 2,447 × 845 514

Table 2. Consistency error for TSG prediction in the pan-cancer setting, for different
methods (columns) and different gold standard sets of known TSG (rows).

These results show that LOTUS strongly outperforms all other algorithms in term of 199

CE, for both TSG and OG predictions. More precisly, for OG predictions, TUSON is 200
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about 5-fold better than MutSigCV, 3-fold better than TUSON and 2-fold better than 201

20/20+, in terms of CE. For TSG predictions, the reduction in CE with LOTUS is 202

4-11x, 5x and 1.6x compared to MutSigCV, TUSON and 20/20+, respectively. The 203

performances of TUSON and 20/20+ are in the same range, although we should keep 204

the above remark in mind. The results also show that MutSigCV does not perform as 205

well as the three other methods, at least on the datasets used here. 206

It is interesting to note that, for all methods, the performances obtained for OG do 207

not reach those obtained for TSG, suggesting that OG prediction is a more difficult 208

problem than TSG prediction. This reflects the fundamental difference between TSG 209

mutations and OG mutations: the first lead to loss-of-function and can pile up, while 210

the second are gain-of-function mutations and have a much more subtle nature. In 211

addition, gain-of-function can also be due to overexpression of the OG, which can arise 212

from other mechanisms than gene mutation. One way to improve the OG prediction 213

performance may be to include descriptors better suited to them, such as copy number. 214

Moreover, as mutations affecting OGs are not all likely to provide them with new 215

functionalities, many mutations on OGs present in the database and used here might 216

not bear information on OGs. Therefore, relevant information on OGs is scarce, which 217

makes OG prediction more difficult. In addition, the data themselves might also 218

contribute to difference in performance between TSG and OG prediction. For example, 219

in the case of the TUSON train set, although the TSG and OG train sets both contain 220

50 genes, the mutation matrix that we used to build the gene features contains 13, 525 221

mutations affecting TSGs and 7, 717 mutations affecting OGs. Therefore, the data are 222

richer for TSG, which might contribute to the difference in prediction performance. 223

The benefits of combining mutations and PPI informations 224

LOTUS, 20/20+, MutSigCV and TUSON differ not only by the algorithm they 225

implement, but also by the type of data they use to make predictions: in particular, 226

TUSON and 20/20+ use only mutational data while LOTUS uses PPI information in 227

addition to mutational data. To highlight the contributions of the algorithm and of the 228

PPI information to the performance of LOTUS, we ran LOTUS with 229

Kgenes = Kmutation, or Kgenes = KPPI , i.e., with only mutation information, or only 230
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PPI information. The results are presented in Table 3 and Table 4 respectively for OG 231

and TSG. The last column of these Tables recalls the performance obtained when 232

mutation and PPI information are both used (values reported from Table 1 and 233

Table 2). 234

Train set \ Kernel Kmutation KPPI Kmutation +KPPI

TUSON train set 2,333 1,565 931
20/20 train set 2,072 2,013 819

Table 3. Consistency error of LOTUS for OG prediction in the pan-cancer setting, with
different gene kernels (columns) and different gold standard sets of known OGs (rows).

Train set \ Kernel Kmutation KPPI Kmutation +KPPI

TUSON train set 388 1,645 130
20/20 train set 901 1,858 514

Table 4. Consistency error of LOTUS for TSG prediction in the pan-cancer setting,
with different gene kernels (columns) and different gold standard sets of known TSGs
(rows).

These results show that, both for OG and TSG, using both mutation and PPI 235

information dramatically improves the prediction performance over using only one type 236

of them. This underlines the fact that mutation and PPI are complementary 237

informations that are both useful for the prediction tasks. The performances obtained 238

with only PPI information are similar for OG and TSG, which seems to indicate that 239

this information contributes similarly to both prediction tasks. On the contrary, the 240

performances obtained using only mutation information are much better for TSG than 241

for OG. This is consistent with the above comment that mutation information is more 242

abundant in the database and more relevant in nature for TSG than for OG. It is also 243

consistent with the fact that using Kmutation alone outperforms using KPPI alone for 244

TSGs, while the opposite is observed for OGs. 245

Performance on CGCv84 prediction in the pan-cancer regime 246

We now evaluate the generalization properties of the different methods on new unseen 247

data as external test set. This not only mitigates the potential bias in the evaluation of 248

the performance of TUSON and 20/20+ in the previous paragraph, but also allows to 249

evaluate the performance of the different methods when predicting supposedly “difficult” 250

new cancer genes, which have only been added recently in CGC. For that purpose we 251

train LOTUS with the full 20/20 or TUSON train sets, make predictions on the full 252
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COSMIC database, and evaluate the CE using the CGCv84 database as a gold 253

standard of true cancer genes, under the assumption that this database is enriched in 254

driver genes (a criterion that was also used in [27]). We compare these CE to those of 255

TUSON (for the TUSON train set) and 20/20+ (for the 20/20 train set). For LOTUS, 256

TUSON and 20/20+, genes belonging to their corresponding trains set are removed 257

from the CGCv84 database before calculating the CE. For MutSigCV, the CE is 258

calculated based on the ranked list of genes provided in the corresponding paper [21], 259

removing genes of the TUSON train set from CGCv84 database when MutSigCV is 260

compared to TUSON and LOTUS (Table 5), and removing genes from the 20/20 train 261

set from CGCv84 when MutSigCV is compared to 20/20+ and LOTUS (Table 6). 262

These results are illustrated by the corresponding ROC curves, see Figures 1 and 2. 263

Driver type \ Method MutSigCV TUSON LOTUS
TSG 6, 195 6, 799 3,669
OG 7, 274 7, 180 2,258

Table 5. CE obtained on the CGCv84 data set with the TUSON train set.

Driver type \ Method MutSigCV 20/20+ LOTUS
TSG 6, 925 4, 893 3,944
OG 6, 931 3, 901 2,358

Table 6. CE obtained on the CGCv84 data set with the 20/20 train set.
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Fig 1. ROC curves for TSGs (left) and OGs (right) and the TUSON train set.
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Fig 2. ROC curves for TSGs (left) and OGs (right) and the 20/20 train set.

We observe that, again, LOTUS strongly outperforms all three other methods in this 264

setting. MutSigCV and TUSON have similar performance, and LOTUS outperforms 265

them in all settings by a 1.6- to 3-fold decrease in CE. 20/20+ has better performance 266

than MutSigCV, but has a CE 1.2 to 1.3 larger than LOTUS. We also observe that the 267

absolute performance are overall worse than in the previous cross-validation experiment, 268

which confirms the fact that genes recently added to CGC are overall harder to identify 269

than the ones known for a long time. 270

Analysis of new driver genes predicted by LOTUS 271

We now investigate the ability of LOTUS to make new driver gene predictions. For that 272

purpose we train LOTUS with the CGCv84 train set, and make predictions over the 273

complete COSMIC database (17, 948 genes). The complete results are given in 274

Supplementary Table 3. 275

In the absence of experimental validation, we try to evaluate some of these 276

predictions based on independent sources of information. Complete analyses of the 277

predicted OG and TSG rankings is out of the scope of this paper. However, we consider 278

below the 20 best ranked TSGs and OGs according to LOTUS. 279

Among the 20 best ranked TSGs, 4 genes are actually known TSGs that were not 280

included yet in CGCv84: PTEN [32], FAT1 [33], STAG1 [34], TRAP1 [35]. 281

Interestingly, 8 genes out of these 20 best ranked TSGs are genes coding for proteins 282
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involved in DNA repair, a role closely related to genome maintenance and cancer [36,37]. 283

These genes are EXO1 [38], ERCC1 [39], GTF2H1 and GTF2H4 (both involved in the 284

TFIIH complex [40]), NTHL1 [41], ATR [42], RAD52 [43] and RPA4 [44]. In addition to 285

these clues referring to the DNA repair functions, many additional studies related to 286

these genes are available in the literature, underlining their role in various types of 287

cancers, which provides another clue for them to be confident TSG candidates. In 288

particular, mutations in NTHL1 are known to predispose to colorectal cancer, which is 289

an additional argument in favor of NTHL1 being a strong candidate TSG [45,46]. 290

For 2 additional genes, GALNT5 and PIWIL1, we find recent publications indicating 291

that they could potentially act as TSG, at least in some tumor types. A non-coding 292

RNA directed against GALNT5 is overexpressed in gastric cancer, inhibiting the 293

translation of its target gene, and the level of expression of this non-coding RNA is 294

correlated with cancer progression and metastasis [47]. These results are consistent with 295

a TSG role of GALNT5 in gastric cancer. In the case of PIWIL1, a recent paper 296

concludes that it is an epidriver gene for lung adenocarcinoma, which means that 297

aberrant methylation of its promoter region plays a role in the development of this 298

cancer [48]. 299

Among the 20 best ranked putative OGs, 3 genes are actually known OGs at least 300

for some types of cancers, and not yet included in CGCv84: MAP3K1 [49], PLCE1 [50], 301

FGF5 [51]. 302

One gene, GATA3, is known to behave either as an OG or as a TSG, depending on 303

the genetic context of the disease [52]. In fact, the literature provides other examples of 304

genes able to switch from oncogenes to tumor suppressor genes, depending on the 305

context [53]. In line with this remark, 3 genes among the 20 best ranked OGs are 306

known TSGs. They could in fact have a potential property to be OG or TSG, 307

depending on the context: PIK3R1 [54], APC [55], TP53 [56]. 308

Mutations in the 6th ranked HTPO gene seems to be causal in some cancer types, 309

where it could therefore be considered as an oncogene [57]. 310

Finally 4 genes are known to be associated to cancer development and progression in 311

some cancer types, are studied as biomarkers or as therapeutic targets, which indicates 312

that they could indeed be credible oncogene candidates: PPARP10 [58], HTR2B [59], 313

STAP2 [60], FXYD2 [61]. 314
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Taken together, these results show that LOTUS is able to retrieve, among the top 315

ranked genes, known driver genes that are absent from the training set. They also show 316

that LOTUS suggests high confidence driver genes for which many references about 317

their implication in cancer are available. 318

Identification of cancer-specific driver genes with multitask 319

LOTUS 320

In this section, we do not consider cancer as a single disease, but as a variety of diseases 321

with different histological types and that can affect various organs. It is then important 322

to identify driver genes for each type of cancer. One way to solve this problem is to use 323

a prediction method that is trained only with driver genes known for the considered 324

cancer. Such single-task methods may however display poor performance because the 325

number of known drivers per cancer is often too small to derive a reliable model. 326

Indeed, scarce training data lead to a potential loss of statistical power as compared to 327

the problem of identification of pan-cancer driver genes were data available for all 328

cancers are used. 329

In this context, we investigate the multitask versions of LOTUS, where we predict 330

driver genes for a given cancer based on the drivers known for this cancer but also on all 331

driver genes known for other cancer types. For a given cancer type, this may improve 332

driver genes prediction by limiting the loss of statistical power compared to the 333

aforementioned single-task approach. 334

For that purpose, we derive a list of 174 cancer diseases from COSMICv84 as 335

explained in Methods. This complete list is available in Supplementary Table 1. As 336

expected, many cancer types have only few, if any, known cancer genes (Figure 3). 337

Since we want to evaluate the performance of LOTUS in a cross-validation scheme, 338

we only consider diseases with more than 4 known driver genes in order to be able to 339

run a 2-fold CV scheme. This leads us to keep 27 cancer types for TSG prediction and 340

22 for OG prediction. Note however that prediction are made for these 27 and 22 cancer 341

types while sharing all the driver genes known for the 174 diseases (according to their 342

similarities with these 27 and 22 cancer types). 343

The 2-fold CV consistency error of LOTUS for each of those cancer types is 344
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Fig 3. Distribution of the number of TSGs (left) and OGs (right) per cancer type

presented in Tables 7 (for TSG) and 8 (for OG). Here we compare four variants of 345

LOTUS, as explained in Methods: single-task LOTUS treats each disease in turn 346

independently from the others; aggregation LOTUS applies a pan-cancer prediction by 347

pooling together the known genes of all cancer types; and the two multitask versions of 348

LOTUS use either a standard multitask strategy that do not take into account the 349

relative similarities between diseases (multitask TUSON), or a more refined multitask 350

strategy where similar cancer types share more information than non-similar ones 351

(multitask TUSON2). 352

For most diseases (25/27 for TSG, 20/22 for OG), single-task LOTUS leads to the 353

worst CE, confirming the difficulty to treat each cancer type individually due to the 354

small number of know cancer gene for each individual type. Interestingly, Aggregation 355

LOTUS often leads to a strong improvement in performance. This shows that different 356

cancer types often share some common mechanisms and driver genes, and therefore, 357

simply using all the available information in a pan-cancer paradigm improves the 358

performance of driver gene prediction for each cancer type. However, in many cases, the 359

multitask LOTUS and LOTUS2 algorithms lead to an additional improvement over 360

Aggregation LOTUS, LOTUS2 leading in general to the best results (in 18 types out of 361

27 for TSG prediction, and in 11 types out of 22 for OG prediction) . On average, the 362

decrease in CE between Aggregate LOTUS and LOTUS2 is of 23% for OG and 17% for 363

TSG. The improvement in performance observed between Aggregate LOTUS and 364

LOTUS2 shows that, besides some driver mechanisms common to many cancers, each 365

cancer presents some specific driver mechanisms that can only be captured by 366

prediction methods able to integrate some biological knowledge about the diseases. The 367
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Number of Single-Task Aggregation Multitask Multitask
Disease TSGs LOTUS LOTUS LOTUS LOTUS2
AML 15 1, 552 655 678 525
breast 20 1, 308 1, 149 1, 151 1,131

colon carcinoma 7 943 71 67 51
colorectal 19 811 75 47 43
DLBCL 5 633 568 546 602

endometrial 9 77 77 54 33
gastric 4 2, 414 27 73 55

glioblastoma 4 87 87 89 93
glioma 8 1, 693 64 47 42

hepatocellular carcinoma 6 158 102 86 57
leukemia 11 1, 172 59 81 31

lymphoma 4 2, 069 88 62 42
MDS 4 5, 095 222 178 154

medulloblastoma 9 1, 427 333 333 320
melanoma 12 874 36 64 26
NSCLC 4 300 68 53 35

osteosarcoma 4 2, 539 67 99 61
ovary 11 171 48 49 40

pancreatic 8 174 85 39 54
paraganglioma 5 14, 699 1,993 2, 446 2, 404

pheochromocytoma 6 12, 135 78 114 87
renal 5 2, 845 76 87 107

renal cell carcinoma 6 2, 932 48 33 26
skin basal cell 9 725 48 71 24

skin squamous cell 9 687 56 65 19
T-ALL 5 767 831 833 855

Wilms tumour 4 1, 154 224 231 227

Table 7. CE for prediction of disease specific TSGs in the multitask setting.

In the above table, AML stands for acute myeloid leukemia, DLBCL for diffuse large
B-cell lymphoma, MDS for myelodysplastic syndromes, NSCLC for non-small cell lung
cancer and T-ALL for T-cell acute lymphoblastic cancer.

above results show that multitask algorithms allowing to share information between 368

cancers according to their biological similarities such as LOTUS2, rather than on more 369

naive rules, better capture these specific driver genes. They also show that the kernel 370

Kdiseases = Kdescriptors built on disease descriptors contains some relevant information 371

to compare diseases. 372

Taken together, these results show that multitask machine learning algorithms like 373

LOTUS are interesting approaches to predict cancer specific driver genes. In addition, 374

multitask algorithms based on task descriptors (here, disease descriptors) appear to be 375

promising in order to include prior knowledge about diseases and share information 376
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Number of Single-Task Aggregation Multitask Multitask
Disease OGs LOTUS LOTUS LOTUS LOTUS2
ALL 9 1, 637 873 856 796
AML 20 1, 447 606 600 578

bladder 5 636 83 32 54
breast 8 2, 250 121 134 91
CLL 8 2, 598 824 814 825

colorectal 12 2, 018 68 32 27
DLBCL 5 107 355 353 327

endometrial 6 616 40 28 26
gastric 9 112 40 25 15

glioblastoma 8 3, 452 74 60 54
glioma 6 613 761 773 769

head and neck 6 320 71 51 39
lymphoma 4 5, 651 79 61 77

MDS 9 5, 071 86 109 82
melanoma 14 1, 420 281 276 295

MM 4 3, 122 77 37 60
NSCLC 15 2, 281 280 126 149
ovary 8 3, 194 57 37 32

prostate 8 845 162 126 154
Spitzoid tumour 4 183 68 38 48

T-ALL 4 8, 436 2,041 2, 047 2, 046
WM 4 203 162 160 78

Table 8. CE for prediction of disease specific OGs in the multitask setting

In the above table, ALL stands for acute lymphotic leukemia, AML for acute myeloid
leukemia, CLL for chronic lymphocytic leukemia, DLBCL for diffuse large B-cell lym-
phoma, MDS for myelodysplastic syndromes, MM for multiple myeloma, NSCLC for
non-small cell lung cancer, T-ALL for T-cell acute lymphoblastic cancer and WM for
Waldenstrom macroglogulinemia.

according to biological features characterizing the diseases. 377

Finally, note that we did not try to run TUSON, MutSigCV or 20/20+ to search for 378

cancer specific driver genes. Indeed, according to the results of pan-cancer studies in the 379

single-task setting, they do not perform as well as single-task LOTUS. Moreover, they 380

are not adapted, as such, to the multitask setting. 381

Discussion 382

Our work demonstrates that LOTUS outperforms several state-of-the-art methods on 383

all tested situations for driver gene prediction. This improvement results from various 384

aspects of the LOTUS algorithm. First, LOTUS allows to include the PPI network 385
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information as independent prior biological knowledge. In the single-task setting, we 386

proved that this information has significance for the prediction of cancer driver genes. 387

Because LOTUS is based on kernel methods, it is well suited to integrate other data 388

from multiple sources such as protein expression data, information from chip-seq, HiC 389

or methylation data, or new features for mutation timing as designed in [62]. Further 390

development could involve the definition of other gene kernels based on such type of 391

data, and combine them with our current gene kernel, in order to evaluate their 392

relevance in driver gene prediction. 393

We also showed how LOTUS can serve as a multitask method. It relies on a disease 394

kernel that controls how driver gene information is shared between diseases. 395

Interestingly, we showed that building a kernel based on independent biological prior 396

knowledge about disease similarity leads on average to the best prediction performance 397

with respect to single-task algorithms, and also with respect to a more generic multitask 398

learning strategy that does not incorporate knowledge about the cancer types. Again, 399

the kernel approach leaves space for integration of other types and possibly more 400

complex biological sources of information about diseases. Our multitask approach thus 401

allows to make prediction for cancer types with very few known driver genes, which 402

would be less reliable with the single-task methods. We considered here only diseases 403

with at least 4 known driver genes, in order to perform cross-validation studies, which 404

was necessary to evaluate the methods. However, it is important to note that in 405

real-case studies, at the extreme, both versions of multitask LOTUS could make driver 406

gene prediction for cancer types for which no driver gene is known. 407

Among the 174 diseases derived form the COSMIC database, we kept only 27 cancer 408

types for TSG prediction and 22 for OG prediction, for which at least four driver genes 409

were available. However, inspection of the 174 disease names indicates that there might 410

be diseases that could be grouped (for example “colorectal” and “colorectal 411

adenocarcinoma”, or “skin” with “skin basal cell” or “skin squamous cell”), which 412

would have allowed to enlarge the training sets and possibly improve the predictions. 413

Future directions could be to have experts analyze and potentially modify this disease 414

list, in order to optimize the training sets, or help to derive finer disease descriptors. 415

LOTUS is a machine learning algorithm based on one-class SVM. In fact, the most 416

classical problem in machine learning is binary classification, where the task is to 417
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classify observations into two classes (positives and negatives), based on training sets P 418

of known positives and N of known negatives. Driver gene detection can be seen as 419

binary classification of TSGs vs. neutral genes, and of OGs vs. neutral genes. However, 420

although the P set is composed of known driver genes, it is not straightforward to build 421

the N set because we cannot claim that some genes cannot be drivers. Thus, driver 422

gene detection should rather be seen as binary classification problem with only one 423

training set P of known positives. This problem is called classically called PU learning 424

(for Positive-Unknown), as opposed to PN learning (for Positive-Negative). 425

The classical way to solve PU learning problems is to choose a set N of negatives 426

among the unlabeled data and apply a PN learning method. For example, one can 427

consider all unknown items as negatives (some of which may be reclassified afterwards 428

as positives), or randomly choose bootstrapped sets of negatives among the unknown, 429

like in [31]. Both methods assume that a minority of the unlabeled items are in fact 430

positives, which is expected for driver genes. 431

The one-class SVM algorithm [63] can also be used as a PU learning method, in 432

which a virtual item is chosen as the training set of negatives. We preferred this 433

approach because in preliminary studies, we found that it had slightly better 434

performances than PU learning methods and was also faster. 435

For LOTUS, as for all machine learning algorithm, the set of known driver genes is 436

critical: if this set is poorly chosen (i.e., if some genes were wrongly reported as driver 437

genes, or more likely, if the reported genes are not the best driver genes), the best 438

algorithm might not minimize the consistency error CE. To circumvent this problem, 439

we propose two new approaches for future developments: one could build a multi-step 440

algorithm that iteratively removes some genes from the positive set and labels them as 441

unknown, and add relabel as positives some of the best ranked unknown genes. We 442

believe that such an algorithm would make the set of positives converge to a more 443

relevant list. Alternatively, one could assign (finite) scores to the known driver genes 444

before performing classification and increment these scores at each step. 445
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Materials and methods 446

Pan-cancer LOTUS 447

LOTUS is a new machine learning-based method to predict new cancer genes, given a 448

list of know ones. In the simplest, pan-cancer setting, we thus assume given a list of N 449

known cancer genes {g1, . . . , gN}, and the goal of LOTUS is to learn from them a 450

scoring function f(g), for any other gene g, that predicts how likely it is that g is also a 451

cancer gene. Since TSGs and OGs have different characteristics, we treat them 452

separately and build in fact two scoring functions fTSG and fOG trained from lists of 453

know TSGs and OGs, respectively. 454

LOTUS learns the scoring function f(g) with a one-class support vector machine 455

(OC-SVM) algorithm [63], a classical method for novelty detection and density level set 456

estimation [64]. The scoring function f(g) learned by a OC-SVM given a training set 457

{g1, . . . , gN} of known cancer genes takes the form: 458

f(g) =

N∑
i=1

αiK(gi, g) , (1)

where α1, . . . , αN are weights optimized during the training of OC-SVM [63], and 459

K(g, g′) is a so-called kernel function that quantifies the similarity between any two 460

genes g and g′. In other words, the score of a new gene g is a weighted combination of 461

its similarities with the know cancer genes. 462

The kernel K encodes the similarity among genes. Mathematically, the only 463

constraint that K must fulfill is that it should be a symmetric positive definite 464

function [29]. This leaves a lot of freedom to create specific kernels encoding one’s prior 465

knowledge about relevant information to predict cancer genes. In addition, one can 466

easily combine heterogeneous information in a single kernel by, e.g., summing together 467

two kernels based on different sources of data. In this work, we restrict ourselves to the 468

following basic kernels, and leave for future work a more exhaustive search of 469

optimization of kernels for cancer gene prediction. 470

• Mutation kernel. Given a large data set of somatic mutations in cohorts of cancer

patients, we characterize each gene g by a vector Φmutation(g) ∈ R3 encoding 3

features. For OG prediction the three features are the number of damaging
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missense mutations, the total number of missense mutations, and the entropy of

the spatial distribution of the missense mutations on each gene. For TSG

prediction, the features are the number of frameshift mutations, the number of

LOF mutations (defined as the nonsense and frameshift mutations), and the

number of splice site mutations. These features were calculated as proposed

by [25]. We chose them because they were found to best discriminate OGs and

TSGs by the TUSON algorithm [25] and were also all found among the most

important features selected by the random forest algorithm used by the 20/20+

method [27]. Given two genes g and g′ represented by their 3-dimensional vectors

Φ(g) and Φ(g′), we then define the mutation kernel as the inner product between

these vectors:

Kmutation(g, g′) = Φmutation(g)>Φmutation(g′) .

Notice that using Kmutation as a kernel in OC-SVM produces a scoring function 471

(1) which is simply a linear combination of the three features used to define the 472

vector Φmutation. 473

• PPI kernel. Given an undirected graph with genes as vertices, such as a PPI 474

network, we define a PPI kernel KPPI as a graph kernel over the network [65,66]. 475

More precisely, we used a diffusion kernel of the form KPPI = expM (−L), where 476

L = I −D−1/2AD−1/2 is the normalized Laplacian of the graph and expM is the 477

matrix exponential function. Here I is the identity matrix, A stands for the 478

adjacency matrix of the graph (Ai,j = 1 if vertices i and j are connected, 0 479

otherwise) and D for the diagonal matrix of degrees (Dii =
∑n

j=1Aij). Intuitively, 480

two genes are similar according to KPPI when they are close and well connected 481

through several routes to each other on the PPI network, hence learning a 482

OC-SVM with KPPI allows to diffuse the information about cancer genes over the 483

network. 484

• Integrated kernel. In order to train a model that incorporates informations about

both mutational features and PPI, we create an integrated gene kernel by simply
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averaging the mutation and PPI kernels:

Kgene(g, g
′) = (Kmutation(g, g′) +KPPI(g, g′)) /2 .

While more complex kernel combination strategies such as multiple kernel learning 485

could be considered, we restrict ourselves to this simple kernel addition scheme to 486

illustrate the potential of our approach for heterogeneous data integration. 487

Multitask LOTUS for cancer type-specific predictions 488

The pan-cancer LOTUS approach can also be used for cancer-specific predictions, by 489

restricting the training set of known cancer genes to those cancer genes known to be 490

driver in a particular cancer type. However, for many cancer types, only few driver 491

genes have been validated, creating a challenging situation for machine learning-based 492

methods like LOTUS that rely on a training set of known genes to learn a scoring 493

function. Since cancer genes of different cancer types are likely to have similar features, 494

we propose instead to learn jointly cancer type-specific scoring functions by sharing 495

information about known cancer genes across cancer types, using the framework of 496

multitask learning [30,31]. Instead of starting from a list of known cancer genes, we now 497

start from a list of known (cancer gene, cancer type) pairs of the form 498

{(g1, d1), . . . , (gN , dN )}, where a sample (gi, di) means that gene gi is a known cancer 499

gene in disease di. Note that a given gene (and a given cancer type) may of course 500

appear in several such pairs. 501

The extension of OC-SVM to the multitask setting is straightforwardly obtained by

creating a kernel for (gene, disease) pairs of the form:

Kpair ((g, d), (g′, d′)) = Kgene(g, g
′)×Kdisease(d, d

′) ,

where Kgene is a kernel between genes such as the one used in pan-cancer LOTUS and 502

Kdisease is a kernel between cancer types described below. We then simply run the 503

OC-SVM algorithm using Kpair as kernel and {(g1, d1), . . . , (gN , dN )} as training set, in 504

order to learn a cancer type-specific scoring function of the form f(g, d) that estimates 505

the probability that g is a cancer gene for cancer type d. 506
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The choice of the disease kernel Kdisease influences how information is shared across 507

cancer types. One extreme situation is to take the uniform kernel Kuniform(d, d′) = 1 508

for any d, d′. In that case, no distinction is made between diseases, and all known 509

cancer genes are pooled together, recovering the pan-cancer setting (with the slight 510

difference that genes may be counted several times in the training set if they appear in 511

several diseases). Another extreme situation is to take the Dirac kernel 512

KDirac(d, d
′) = 1 if d = d′, 0 otherwise. In that case, no information is shared across 513

cancer types, and the joint model over (gene, disease) pairs is equivalent to learning 514

independently a model for each disease. 515

In order to leverage the benefits of multitask learning and learn disease-specific 516

models by sharing information across diseases, we consider instead the following two 517

disease kernels: 518

• First, we consider the standard multitask learning kernel:

Kmultitask(d, d′) = (Kuniform(d, d′) +KDirac(d, d
′)) /2 ,

which makes a compromise between the two extreme uniform and Dirac 519

kernels [30]. Intuitively, for a given cancer type, prediction of driver genes is made 520

by assigning twice more weight to the data available for this cancer than to the 521

data available for all other cancer types. 522

• Second, we test a more elaborate multitask version where we implement the idea

that a given cancer might share various degrees of similarities with other cancers.

Therefore, known cancer genes for other cancers should be shared with those of

the considered cancer based on this similarity. Hence we create a specific disease

kernel Kcancer(d, d′) to capture our prior hypothesis about how similar cancer

genes are likely to be between different cancers. To create Kcancer, we first

represent each cancer type as a 50-dimensional binary vector as follows. The first

15 bits correspond to a list of cancer type characteristics used in COSMIC to

describe tumors: adenocarcinoma, benign, blastoma, carcinoma, gastro-intestinal

stromal tumour, germ cell tumour, glioma, leukemia, lymphoma, melanoma,

meningioma, myeloma, neuro-endocrine, sarcoma, stromal. The last 35
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components correspond to localization characteristics also used in COSMIC to

describe tumors: bile ducts, bladder, blood vessels, bone, bone marrow, breast,

central nervous system, cervix, colorectal, endocrine glands, endometrium, eye,

gall bledder, germ cell, head and neck, heart, intestine, kidney, liver, lung,

lymphocytes, mouth, muscle, nerve, oesophagus, ovary, pancreas, pituitary glands,

prostate, salivary glands, skin, soft tissue, stomach, tendon, thyroid. A disease

might be assigned one or several types and be associated to one or several

locations. For example, neurofibroma is associated with a single localization

(“nerve”) and two types (“benign” and “sarcoma”), so that neurofibroma is

described by a vector with three 1’s and forty-seven 0’s. For each disease, we

construct the list of binary features by documenting every disease in the literature.

The corresponding vectors encoding the considered disease are given in

Supplementary Table S2. Finally, if Ψ(d) ∈ R50 denotes the binary vector

representation of disease d, we create the disease kernel as a simple inner product

between these vectors, combined with the standard multitask kernel, i.e.:

Kcancer(d, d′) =
(
Ψ(d)>Ψ(d′) +Kuniform(d, d′) +KDirac(d, d

′)
)
/3 .

Data 523

In all experiments, we restrict ourselves to the total set of 17, 948 genes considered in 524

the TUSON, 20/20 and MutSigCV papers, as candidate driver genes. Somatic 525

mutations were collected from COSMIC [14], TCGA (http://cancergenome.nih.gov/) 526

and [18]. This dataset contains a total of 1, 195, 223 mutations across 8, 207 patients. 527

We obtained the PPI network from the HPRD database release 9 from April 13, 528

2010 [67]. It contains 39, 239 interactions among 7, 931 proteins. As for known 529

pan-cancer driver genes, we consider three lists in our experiments: (i) the TUSON 530

train set, proposed in [25], consists of two high confidence lists of 50 OGs and 50 TSGs 531

extracted from CGC (release v71) based on several criteria, in particular excluding 532

driver genes reported through translocations; (ii) the 20/20 train set, proposed in [27] to 533

train the 20/20+ method, contains 53 OGs and 60 TSGs; finally, (iii) the CGCv84 train 534

set consists of two broader lists that we extracted from CGC release v84 of the 535
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COSMIC database: the list of all 136 dominant driver genes in the CGC database that 536

were not reported through translocations (i.e., OGs), and the list of all 138 recessive 537

driver genes in the CGC database that were not reported through translocations (i.e., 538

TSGs). For cancer type-specific lists of driver genes, we only consider the CGCv84 train 539

set. We distinguished 174 diseases based on the available annotations describing 540

patients in COSMIC, using as few interpretations as possible: for example, we merged 541

together diseases corresponding to obvious synonyms like singular and plural forms of 542

the same cancer name. The names of these diseases and their numbers of associated 543

TSGs and OGs can be found in Supplementary Table 1. For each of the resulting 544

diseases, 1 to 20 TSGs/OGs were known in CGCv84. We considered only diseases with 545

at least 4 known TSGs or OGs available, in order to have enough learning data points 546

to perform a cross-validation scheme, which led us to consider 27 diseases for TSG 547

prediction and 22 for OG prediction. 548

Experimental protocol 549

To assess the performance of a driver gene prediction method on a given gold standard

of known driver genes, we score all genes in the COSMIC database and measure how

well the known driver genes are ranked. For that purpose, we plot the receiver operating

characteristic (ROC) curve, considering all known drivers as positive examples and all

other genes in COSMIC as negative ones, and define the consistency error (CE) as

CE = #N × (1−AUC),

where #N is the number of negative genes, and AUC denotes the area under the ROC 550

curve. In words, CE measures the mean number of “non-driver” genes that the 551

prediction method ranks higher than known driver genes. Hence, a perfect prediction 552

method should have CE = 0, while a random predictor should have a CE near #N/2. 553

To estimate the performance of a machine learning-based prediction method that 554

estimates a scoring function from a training set of known driver genes, we use k-fold 555

cross-validation (CV) for each given gold standard set of known driver genes. In k-fold 556

CV, the gold standard set is randomly split into k subsets of roughly equal sizes. Each 557

subset is removed from the gold standard in turn, the prediction method is trained on 558
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the remaining k− 1 subsets, and its CE is estimated considering the subset left apart as 559

positive examples, and all other genes of COSMIC not in the gold standard set as 560

negative examples. A mean ROC curve and mean CE is then computed from the k 561

resulting ROC curves. This computation is repeated several times to consider several 562

possibly different partitions of the gold standard set. 563

Tuning of parameters 564

Each version of LOTUS depends on a unique parameter, the regularization parameter C 565

of the OC-SVM algorithm. Each time a LOTUS model is trained, its C parameter is 566

optimized by 5-fold CV on the training set, by picking the value in a grid of candidate 567

values {2−5/2, 2−4/2, . . . , 25/2} that minimizes the mean CE over the folds. 568

Other driver prediction methods 569

We compare the performance of LOTUS to three other state-of-the-art methods: 570

MutSigCV [21], which is a frequency-based method, and TUSON [25] and 20/20+ [27] 571

that combine frequency and functional information. 572

MutSigCV searches driver genes among significantly mutated genes which adjusts for 573

known covariates of mutation rates. The method estimates a background mutation rate 574

for each gene and patient, based on the observed silent mutations in the gene and 575

noncoding mutations in the surrounding regions. Incorporating mutational 576

heterogeneity, MutSigCV eliminates implausible driver genes that are often predicted by 577

simpler frequency-based models. For each gene, the mutational signal from the observed 578

non-silent counts are compared to the mutational background. The output of the 579

method is an ordered list of all considered genes as a function of a p-value that 580

estimates how likely this gene is to be a driver gene. 581

TUSON uses gene features that encode frequency mutations and functional impact 582

mutations. The underlying idea is that the proportion of mutation types observed in a 583

given gene can be used to predict the likelihood of this gene to be a cancer driver. After 584

having identified the most predicting parameters for OGs and TSGs based on a train 585

set (called the TUSON train set in the present paper), TUSON uses a statistical model 586

in which a p-value is derived for each gene that characterizes its potential as being an 587
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OG or a TSG, then scores all genes in the COSMIC database, to obtain two ranked lists 588

of genes in increasing orders of p-values for OGs and TSGs. 589

The 20/20+ method encodes genes based on frequency and mutation types, and 590

other biological information. It uses a train set of OGs and TSGs (called the 20/20 591

train set in the present paper) to train a random forest algorithm. Then, the random 592

forest is used on the COSMIC database and the output of the method is again a list of 593

genes ranked according to their predicted score to be a driver gene [27]. We did not 594

implement this method, so we decided to evaluate its performance only on its original 595

training set: the 20/20 dataset. Moreover, we applied the same method to compute the 596

CE as for MutSigCV and TUSON, which should actually give an advantage to 20/20+, 597

since it is harder to make predictions in a cross-validation loop using a smaller set of 598

known driver genes. 599

Code and data availability 600

We implemented LOTUS and performed all experiments in R using in particular the 601

kernlab package for OC-SVM [68]. The code and data to reproduce all experiments are 602

available at http://members.cbio.mines-paristech.fr/~ocollier/lotus.html. 603
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Turcan et al. Recurrent somatic mutation of FAT1 in multiple human cancers 695

leads to aberrant Wnt activation. Nature Genet, 45(3), 253–61, 2013. 696

August 22, 2018 30/35



34. L. Benedetti, M. Cereda, L. Monteverde, N. Desai and F.D. 697

Ciccarelli Synthetic lethal interaction between the tumour suppressor STAG2 698

and its paralog STAG1. Oncotarget, 8(23), 37619–32, 2017. 699

35. D. Matassa, I. Agliarulo, R. Avolio, M. Landriscina and F. Esposito 700

TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor 701

Suppressor. Genes, 9(4), 195, 2018. 702

36. Y.K. Chae, J.F. Anker, B.A. Carneiro, S. Chandra, J. Kaplan, A. 703

Kalyan et al. Genomic landscape of DNA repair genes in cancer. Oncotarget, 704

7(17), 23312–21, 2016. 705

37. A. Torgovnick and B. Schumacher DNA repair mechanisms in cancer 706

development and therapy. Front Genet, 6, 157, 2015. 707

38. J. Genschel, L.R. Bazemore and P.J. Modrich Human exonuclease I is 708

required for 5’ and 3’ mismatch repair. J Biol Chem, 277:13302–11, 2002. 709

39. M. Manandhar, K.S. Boulware and R.D. Wood The ERCC1 and ERCC4 710

(XPF) genes and gene products. Gene, 569(2):153–161, 2015. 711

40. M. Okuda, Nakazawa, C. Guo, T. Ogi and Y. Nishimura Common TFIIH 712

recruitment mechanism in global genome and transcription-coupled repair 713

subpathways. Nucleic Acids Res, 45(22):13043–55, 2017. 714

41. R. Aspinwall, D.G. Rothwell, T. Roldan-Arjona, C. Anselmino, C.J. 715

Ward, J.P. Cheadle et al. Cloning and characterization of a functional 716

human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci U S A, 717

94:109–114, 1997. 718

42. A. Kumagai, J. Lee, H.Y. Yoo and W.G. Dunphy TopBP1 activates the 719

ATR-ATRIP complex. Cell, 124(5):943–55, 2006. 720

43. M.S. Park, D.L. Ludwig, E. Stigger and S.H. Lee Physical interaction 721

between human RAD52 and RPA is required for homologous recombination in 722

mammalian cells. J Biol Chem, 271:18996–19000, 1996. 723

August 22, 2018 31/35



44. A.C. Masson, R. Roy, D.T. Simmons and M.S. Wold Functions of 724

alternative replication protein A in initiation and elongation. Biochem, 725

49:5919–28, 2010. 726

45. R.P. Kuiper and N. Hoogerbrugge NTHL1 defines novel cancer syndrome. 727

Oncotarget, 6(33):34069–70, 2015. 728

46. I. Tomlinson The Mendelian colorectal cancer syndromes. Ann Clin Biochem, 729

52(6):690–692, 2015. 730

47. H. Guo, L. Zhao, B. Shi, J. Bao, D. Zheng, B. Zhou et al. GALNT5 731

uaRNA promotes gastric cancer progression through its interaction with HSP90. 732

Oncogene, 1, 2018. 733

48. K. Xie, K. Zhang, J. Kong, C. Wang, Y. Gu, C. Liang et al. 734

Cancer-testis gene PIWIL1 promotes cell proliferation, migration, and invasion in 735

lung adenocarcinoma. Cancer Med, 7(1):157–166, 2018. 736

49. P.J. Stephens, P.S. Tarpey, H. Davies, P. Van Loo, C. Greenman, D.C. 737

Wedge et al. The landscape of cancer genes and mutational processes in breast 738

cancer. Nature, 486(7403):400–4, 2012. 739

50. S. Zhai, C. Liu, L. Zhang, J. Zhu, J. Guo, J. Zhang et al. PLCE1 740

Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional 741

Activity of Snail. Neoplasia, 19(3):154–164, 2017. 742

51. S. Allerstorfer, G. Sonvilla, H. Fischer, S. Spiegl-Kreinecker, C. 743

Gauglhofer, U. Setinek et al. FGF5 as an oncogenic factor in human 744

glioblastoma multiforme: autocrine and paracrine activities. Oncogene, 745

27(30):4180–90, 2008. 746

52. H. Cohen, R. Ben-Hamo, M. Gidoni, I. Yitzhaki, R. Kozol, A. 747

Zilberger et al. Shift in GATA3 functions, and GATA3 mutations, control 748

progression and clinical presentation in breast cancer. Breast Cancer Res, 749

16(6):464, 2014. 750

August 22, 2018 32/35



53. C. Lobry, P. Oh, M.R. Mansour, A.T. Look and I. Aifantis Notch 751

signaling: switching an oncogene to a tumor suppressor. Blood, 123(16):2451–9, 752

2014. 753

54. L.X. Yan, Y.H. Liu, J.W. Xiang, Q.N. Wu, L.B. Xu, X.L. Luo et al. 754

PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by 755

reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome 756

of breast cancer. Int J Oncol, 48(2), 471–484, 2016. 757

55. A.C. Lesko, K.H. Goss, F.F. Yang, A. Schwertner, I. Hulur, K. Onel 758

et al. The APC tumor suppressor is required for epithelial cell polarization and 759

three-dimensional morphogenesis. Biochim Biophys Acta, 1853(3):711–23, 2015. 760

56. E. Kotler, O. Shani, G. Goldfeld, M. Lotan-Pompan, O. Tarcic, A. 761

Gershoni et al. A Systematic p53 Mutation Library Links Differential 762

Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. 763

Mol Cell, 71(1):178–190, 2018. 764

57. M.E. Houwing, E.A. Koopman-Coenen, R. Kersseboo, S. Gooskens, I.M. 765

Appel, S.T. Arentsen-Peters et al. Somatic thrombopoietin (THPO) gene 766

mutations in childhood myeloid leukemias. Int J Hematol, 102(1):140–3, 2015. 767

58. T. Ekblad, A.E. Lindgren, C.D. Andersson, R. Caraballo, A.G. 768

Thorsell, T. Karlberg et al.(2015) Towards small molecule inhibitors of 769

mono-ADP-ribosyltransferases. Eur J Med Chem, 95:546–51, 2015. 770

59. S. Ten Hoorn, A. Trinh, J. de Jong, L. Koens and L. Vermeulen 771

Classification of Colorectal Cancer in Molecular Subtypes by 772

Immunohistochemistry. Methods Mol Biol, 1765:179–191, 2018. 773

60. Y. Kitai, M. Iwakami, K. Saitoh, S. Togi, S. Isayama, Y. Sekine et al. 774

STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth 775

factor receptor stabilization. J Mol Biol, 292(47):19392–99, 2017. 776

61. K.L. Ng, C. Morais, A. Bernard, N. Saunders, H. Samaratunga, G. 777

Gobe et al. A systematic review and meta-analysis of immunohistochemical 778

August 22, 2018 33/35



biomarkers that differentiate chromophobe renal cell carcinoma from renal 779

oncocytoma. J Clin Pathol, 69(8):661–71, 2016. 780

62. T. Sakoparnig, P. Fried et N. Beerenwinkel Identification of constrained 781

cancer driver genes based on mutation timing. PLoS Comput Biol, 782

11(1):e1004027, 2015. 783

63. B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, J. Platt 784

Support vector method for novelty detection. Mach Learn Interpret Neuroimaging 785

(1999), 582-588, 1999. 786

64. R. Vert and J.-P. Vert Consistency and convergence rates of one-class SVMs 787

and related algorithms. J. Mach. Learn. Res., 7:817-54, 2006. 788

65. R.I. Kondor and J. Lafferty Diffusion kernels on graphs and other discrete 789

input spaces. Proc Int Conf Mach Learn,3:315-322, 2002. 790

66. L. Cowen, T. Ideker, B.J. Raphael and R. Sharan Network propagation: 791

a universal amplifier of genetic associations. Nature Rev Genet, 2017. 792

67. T.S.K. Prassad, R. Goel, K. Kandasamy, S. Keerthimukar, S. Kumar, 793

S. Mathivanan et al. Human Protein Reference Database - 2009 update. 794

Nucleic Acids Res, 37, D767-72, 2009. 795

68. A. Karatzoglou, A. Smola, K. Hornik and A. Zeileis kernlab – An S4 796

Package for Kernel Methods in R. J Stat Softw, 11-9, 1-20, 2004. 797

Supporting information 798

S1 Table List of cancer types (CGC v84). Cancer types derived from COSMIC 799

annotations along with their numbers of associated OG and TSG. The resulting names 800

are sometimes very general and sometimes very specific, and some redundancies may be 801

present, because we chose to add as little interpretation as possible. 802

S2 Table Description of cancer types (CGC v84). Descriptors of all cancer 803
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S3 Table TSG and OG rankings for LOTUS with the 20/20, the TUSON 806

and the CGCv84 datasets. Note that the training sets were removed every time. 807
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