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Abstract
Proving behavioural equivalences in higher-order languages is a difficult task, because interactions

involve complex values, namely terms of the language. In coinductive (i.e., bisimulation-like) techniques
for these languages, a useful enhancement is the ‘up-to context’ reasoning, whereby common pieces of
context in related terms are factorised out and erased. In higher-order process languages, however, such
techniques are rare, as their soundness is usually delicate and difficult to establish.

In this paper we adapt the technique of unique solution of equations, that implicitly captures ‘up-to
context’ reasoning, to the setting of the Higher-order π-calculus. Equations are written and solved with
respect to normal bisimilarity, chosen both because of its efficiency — its clauses do not require universal
quantifications on terms supplied by the external observer — and because of the challenges it poses on
the ‘up-to context’ reasoning and that already show up when proving its congruence properties.

Keywords: bisimilarity, unique solution of equations, termination, process calculi, higher-order

Introduction
Bisimilarity is employed to define behavioural equivalences and reason about them. Finding its origins in
concurrency theory, bisimilarity is now widely used also in other areas, as well as outside Computer Science.

We focus in this paper on weak bisimilarity, whereby we abstract from internal moves of terms (as opposed
to the strong version, which makes no distinction between internal moves and transitions corresponding to
interactions with the environment). Weak bisimilarity, and, more generally, weak equivalences, are more
relevant in practice, because they allow one to compare programs which produce the same result with
different numbers of reduction steps.

One of the main reasons for the success of bisimilarity is its coinductive proof method — the bisimulation
proof method — whereby two terms are deemed bisimilar if there is a bisimulation relation containing them
as a pair. An active topic of research studies proof methods for bisimilarity. The best known such strand is
about enhancements of the bisimulation proof method [PS11]. In such techniques, called up-to techniques,
the derivatives of two terms in the bisimulation game can be rewritten and manipulated, with the goal
of working with candidate relations that need not be bisimulations — simply contained in a bisimulation.
Among the most powerful such forms of enhancement is the up-to context technique, that allows one to
exploit linguistic algebraic structures so to remove a common context in the derivative terms, and then
requires the resulting terms to be related (the context may have multiple holes, in which case the tuples of
resulting terms should be componentwise related). It is rarely the case that the derivatives terms explicitly
exhibit a common context; usually they have to be ‘massaged’ (i.e., by applying some algebraic laws) in
order to bring up such a common context. A common way of achieving this is by combining up-to context
with up-to expansion (expansion is a preorder that refines bisimilarity); other combinations have also been
used.
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Up-to context techniques can be particularly effective in higher-order languages (where terms of the
language are first-order values and may thus instantiate variables), such as the λ-calculi, Higher-order π-
calculi, Ambients (e.g., [Las98a, Las98b, KW06, SW01, MN05]). Unfortunately, in such calculi proving
the soundness of up-to context techniques can be surprisingly hard. Even in pure λ-calculi, and for the
most basic form of bisimilarity (e.g., call-by-name or call-by-value λ-calculus and Ambramsky’s applicative
bisimilarity) long-standing open problems remain about soundness. Higher-order process calculi are the class
of languages in which up-to context techniques in the literature are most scarce. Recently, techniques of this
kind have been derived exploiting fully-abstract translations into first-order calculi (CCS-like or π-calculus-
like) [MPS14]. However fully abstract translations are sensitive to the grammar of the language chosen: a
modification to the grammar may break or prevent a fully abstract translation to be defined, or, at the very
least, will require a careful re-examination of the full abstraction proof.

The topic of this paper is precisely proof techniques for bisimilarity in higher-order process calculi which
allow one to reason up to contexts. We look for direct proofs of soundness, that do not rely on translations
into first-order languages. To the best of our knowledge, the only such direct proofs are [MN05], for the
Ambient calculus, and [SKS11] for the Higher-Order π-calculus (HOπ). The Ambient calculus represents a
rather special case of higher-order calculus, for processes can move but cannot be communicated. Moving
a process is quite different from communicating it as in HOπ: in the former case the process will always
be run, immediately and exactly once; in the latter case, in contrast, the process may be copied, and it is
the recipient of the process that decides when and where to run each copy. Thus the problems of soundness
for up-to context only show up in a limited form in Ambients. The up-to context technique considered
in [SKS11] is for environmental bisimilarity. This bisimilarity involves universal quantifications on processes
supplied by the environment. Up-to context is essential for limiting the burden due to such quantifications.
The contexts used have constraints and are disallowed in certain clauses (necessary for the soundness of the
technique).

As a calculus we take HOπ and, as a form of bisimilarity, we consider normal bisimilarity [San96], for two
main reasons. First, it is the most effective in proofs, as its clauses do not make use of additional universal
quantifications with respect to ordinary bisimulation of CCS-like processes (other forms of bisimilarity, such
as context bisimilarity or environmental bisimilarity, make use of universal quantifications in the input
terms supplied by the external observer, as well as in other clauses). Second, precisely due to such lack of
universal quantifications, the ‘contextual’ properties of normal bisimilarity are quite delicate. Even proving
substitutivity with respect to basic operators such as parallel composition is hard (indeed, usually this is
proved by relying on mappings onto other forms of bisimilarity or onto first-order calculi). No direct proofs
of soundness of forms of up-to contexts exists (see also the discussion after Theorem 1.3 below).

In the paper we develop proof techniques for higher-order process calculi with the power of ‘up-to con-
texts’, by following the approach of unique solutions of equations. This bisimulation technique allows one to
establish that two tuples of processes are componentwise bisimilar by establishing that they are solutions of
the same system of equations. It was first proposed by Milner in the setting of CCS [Mil89], and has been
used in verification tools based on algebraic reasoning [Ros10, BBR10, GM14]. Since uniqueness of solution
does not hold for all equations (for instance the equation X = τ .X is satisfied, for weak equivalences, by
any process), sufficient conditions must be stated to guarantee this property. In Milner’s theorem [Mil89],
the equations must be both strongly guarded and sequential: the variables of the equations may only be used
underneath a visible prefix and preceded, in the syntax tree, only by the sum and prefix operators. This
limits the expressiveness of the technique, since other operators, like parallel composition and restriction,
are not allowed above the variables (and occurrences of these cannot, in general, be removed). Moreover, in
several cases (e.g., languages for distributed systems or higher-order languages), the sum operator is absent,
which means that the theorem cannot be adapted, or it would be essentially useless.

We therefore appeal to a development [DHS17] of Milner’s theorem, in turn inspired by results by Roscoe
in CSP [Ros97, Ros92] and that, in its basic form, essentially says that a guarded equation (or system of
equations) whose infinite unfolding never produces a divergence has the unique-solution property. We trans-
port the theory in [DHS17] to the setting of HOπ and normal bisimilarity. This also includes a refined version
of the unique-solution theorem, in which we distinguish between different forms of divergence. Notably, we
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can ignore divergences that appear after a finite number of unfoldings of the equations, called innocuous
divergences.

In the paper, we recall the syntax and operational semantics of HOπ, the Higher-Order π-calculus, and
show how we can adapt these definitions to write and solve systems of equations in HOπ. The structure
of the proofs of the unique-solution theorems for HOπ in this paper is similar to that of the analogous
theorems for CCS [DHS17]. We consider this as a positive outcome: the main objective of the current paper
was to examine if and how the CCS proofs could be transported onto a higher-order setting. There are
however noticeable differences in the proofs. For instance, often the proofs require reasoning on sequences
of transitions. Now, in CCS the derivative of any transition is a process. In HOπ, in contrast, the derivative
of an input is an abstraction, that needs to receive a process before becoming a process itself; similarly for
output transitions, whose derivatives are concretions. This has also consequences on the reasoning about
unfolding of equations. Similar issues with instantiation of terms occur in the definitions of bisimilarity in
CCS and in HOπ, and are at the heart of the differences between them.

Paper outline. We recall the definition of HOπ and of normal bisimilarity in Section 1. Section 2 in-
troduces systems of equations, and Sections 3 and 4 present our unique-solution techniques (Theorems 3.3
and 4.2), highlighting the difficulties that are specific to HOπ. We illustrate the use of our approach on
an example in Section 5, and compare it with existing proof methods. Concluding remarks are given in
Section 6.

1 The Higher-Order π-calculus
1.1 Processes and Transitions
In the syntax for HOπ we adopt, we use abstractions and concretions to represent input and output prefixes;
we also use first-order names, i.e., names which carry nothing. These are opposed to higher-order names,
i.e., names which are used to exchange processes. For the theory we shall develop, the presence of first-order
names is not necessary, but makes the presentation of various results easier.

Thus, let F be the infinite set of first-order names, and H the infinite set of higher-order names. Then,
F def= {m | m ∈ F}, H def= {a | a ∈ H}, N def= F ∪ H and N def= F ∪ H. The special symbol τ , which does
not occur in N or N , denotes a silent step. We let µ range over N ∪N ∪ {τ}, and ` range over F ∪F ∪ {τ}
(the set of CCS-like actions). By convention, if ` 6= τ then ` = `. We use symbols x, y, z for names in N ;
symbols m,n for names in F ; and symbols a, b, c for names in H. We also assume an infinite set of process
variables, ranged over by X,Y, Z, and a set constant identifiers (or simply constants) ranged over by K,H,
to write recursively defined processes.

Definition 1.1. The syntactic categories of our language and their grammar are:

Processes P : = a.F | a.C | `.P | P1 | P2 | νa P | X | F ◦ P | 0
Abstractions F : = (X)P | K
Concretions C : = νx C | 〈P1〉P2

Agents A : = P | F | C
A prefix a. (X)P represents an input, in which the process received at a will replace X in P . Dually,

a. 〈P1〉P2 is an output, in which P1 is emitted at a and P2 is the continuation. In an application F ◦ P
process P is supposed to replace the formal parameter of the abstraction F . The remaining operators are
the usual one of CCS and derived calculi. Symbols P,Q,R, . . . range over processes, F,G over abstractions,
C,D over concretions, A,B over agents. Each constant K has a corresponding definition K

4= (X)P (as
P may contain K, the behaviour may be recursive). Although in HOπ recursion can be derived (examples
of this will be shown in Section 5), we take constants as primitives because they are useful when reasoning
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about equations. The calculus is monadic — (higher-order) names carry exactly one name; correspondingly,
abstractions are parametrised over exactly one value. We stick to monadicity for simplicity of presentation.

We often omit trailing occurrences of 0, therefore abbreviating m. 0 as m, and a . 〈Q〉0 as a . 〈Q〉; we
also omit the parameter in constants when it is not needed, therefore simply writing K 4= P and simply
using K as a process. We shall also sometimes use a special form of constants, namely the replication !P ,
that intuitively stands for an infinite number of copies of P in parallel; it can be written as the constant
KP

4= P | KP .
An application redex ((X)P ) ◦ Q can be normalised as P{Q/X}. An agent is normalised if all such

application redexes have been contracted. Although the full application F ◦ P is often convenient, when it
comes to reasoning on behaviours it is useful to assume that all expressions are normalised, in the above sense.
Thus in the remainder of the paper we identify an agent with its normalised expression. The application
construct F ◦ P will play an important role in the treatment of equations in the following sections.

An abstraction (X)P binds all free occurrences of X in P ; similarly a restriction νx P binds the free
occurrences of x in P . These binders give rise in the expected way to the definitions of alpha conversion,
free (process) variables and free names of an agent A. An agent is closed if it has no free variable (it can
have free names). We use a tilde to denote a tuple; all notations are extended to tuples componentwise.
P{Q̃/X̃} denotes the componentwise and simultaneous substitution of variables X̃ with processes Q̃ (where
it is assumed that the members of X̃ are distinct). We often abbreviate νx1 . . .νxn A as (νx1, . . . , xn)A.
In a statement, we shall say that a name is fresh to mean that it is different from any other name occurring
in agents of the statement.

We shall only admit standard concretions, i.e., expressions νx̃ 〈P1〉P2 where names in x̃ are pairwise
distinct and x̃ ⊆ fn(P1). Indeed, the remaining concretions have little significance: in νx̃ 〈Q〉P , by alpha
conversion, names x̃ can be assumed to be distinct; and if x 6∈ fn(Q)∪{x̃} then in (νx, x̃)〈Q〉P the restriction
on name x can be pushed inwards, resulting in the standard concretion νx̃ 〈Q〉(νx P ). In the following, we
therefore assume that if x 6∈ fn(Q) ∪ {x̃}, then (νx, x̃ )〈Q〉P denotes νx̃ 〈Q〉(νx P ).

We wish to extend restriction to operate on abstractions, and (a form of) parallel composition to operate
on abstractions and concretions:

Let F = (X)Q:

— if X 6∈ fv(P ) then F | P denotes (X) (Q | P )

(and similarly for P | F ),

— νx F denotes (X) νx Q;

if C = νx̃ 〈Q〉R then

if x̃ ∩ fn(P ) = ∅ then C | P denotes νx̃ 〈Q〉(R | P )

(and similarly for P | C).

We now present the operational semantics of the calculus. First, we define an operation of pseudo-
application between an abstraction F = (X)P and a concretion C = νx̃ 〈Q〉R. By alpha conversion, we can
assume that x̃ ∩ fn(F ) = ∅, and then we set

C • F def= νx̃ (R | P{Q/X})
and, symmetrically,

F • C def= νx̃ (P{Q/X} | R) .

The operational semantics of the calculus is reported in Table 1. We have omitted the symmetric forms
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Prefix µ.A µ−→ A

Parallelism P1
µ−→ A implies P1 | P2

µ−→ A | P2

First-order communication P1
m−→ P ′1

P2
m−→ P ′2 implies P1 | P2

τ−→ P ′1 | P ′2

Higher-order communication P1
a−→ F

P2
a−→ C implies P1 | P2

τ−→ F • C

Restriction P
µ−→ A, µ 6∈ {x, x} implies νx P

µ−→ νx A

Constants F ◦ P µ−→ A

K
4= F implies K ◦ P µ−→ A

Table 1: The transition system

of the parallelism and communication rules. The following forms of judgements are introduced:

P
a−→ F (higher-order input transition at port a)

P
a−→ C (higher-order output transition at port a)

P
`−→ Q (first-order transition)

where P,Q, F,C are agents. In turn, a first-order transition can be a first-order input (if ` ∈ F), a first-order
output (if ` ∈ F), or an interaction (if ` = τ).

In the remainder of the paper we work up to alpha conversion; thus “=” denotes syntactic equality
up to alpha conversion. We shall normally put enough brackets in the expressions so to avoid precedence
ambiguities among the operators. However, to reduce the number of brackets, in a few places we shall assume
the following syntactic rules: substitutions and notations “•” and “ ◦ ” have the highest syntactic precedence;
the abstraction and concretion constructs the lowest; parallel composition has weaker precedence than the
other process constructs. For instance, 〈P 〉!m.R | Q stands for 〈P 〉((!m.R) | Q), and F •C | Q{R/X} stands
for (F • C) | (Q{R/X}).

If R is a relation on processes, we write P R Q to denote that (P,Q) ∈ R. Moreover, R1R2 is the
composition of the two relations R1 and R2.

1.2 Normal bisimulation
We only discuss weak equivalences, i.e., equivalences that abstract from internal steps and that, practically,
are the most relevant ones. To introduce them, we first define weak transitions. Thus =⇒ is the reflexive
and transitive closure of τ−→, and P µ=⇒ A holds if there is P ′ such that P =⇒ P ′ and P ′ µ−→ A (note that
weak transitions are defined using the ‘delay semantics’, as we do not allow τ -steps after the µ-transition).

Finally, P µ̂=⇒ A is P =⇒ A if µ = τ and P µ=⇒ A otherwise.
An arguably natural notion of bisimulation for higher-order processes is context bisimulation; it exploits

the duality between abstractions and concretions, so to test an abstraction with all possible concretions it
can be used with, and conversely. Its bisimulation clauses on higher-order inputs and outputs are therefore
as follows, if R is a context-bisimulation candidate:
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1. whenever P a−→ F , there exists G s.t. Q a=⇒ G and C • F R C •G, for all closed concretions C;

2. whenever P a−→ C, there exists D s.t. Q a=⇒ D and F • C R F •D, for all closed abstractions F .

Surprisingly, the universal quantifications on concretions and abstractions supplied by the external ob-
server may be removed using a special kind of concretion and of abstraction, namely the concretion 〈m. 0〉0
and the abstraction (X) !m.X, where m is supposed to be a name fresh in the tested processes. In the
former concretion, the continuation is null and therefore we can simply use the process m. 0 (or even just
m), called a trigger and abbreviated Trm. Similarly we write Abm as an abbreviation for (X) !m.X. We
thus obtain normal bisimulation.

Definition 1.2 (normal bisimulation). A relation R ⊆ Pr×Pr is a normal simulation if P R Q implies,
for m 6∈ fn(P,Q):

1. whenever P `−→ P ′, there exists Q′ s.t. Q ̂̀=⇒ Q′ and P ′ R Q′;

2. whenever P a−→ F , there exists G s.t. Q a=⇒ G and F ◦ Trm R G ◦ Trm;

3. whenever P a−→ C, there exists D s.t. Q a=⇒ D and C • Abm R D • Abm.

A relation R is a normal bisimulation, in symbols ≈-bisimulation, if R and R−1 are normal simulations.
We say that P and Q are normal bisimilar, in symbols P ≈ Q, if P R Q, for some ≈-bisimulation R.

In clauses (2) and (3) of Definition 1.2 it is enough to pick some fresh name m, since the specific choice
of the fresh name does not affect the equivalence of the resulting processes. The extension of ≈ to closed
abstractions and open agents is defined similarly, only employing fresh triggers. For closed concretions C
and D we set C ≈ D if C • Abm ≈ D • Abm, for some fresh m.

Theorem 1.3. Normal bisimilarity is a congruence relation in HOπ.

The proof in [San96] derives the congruence of normal bisimilarity from congruence of context bisimilarity.
In doing so, an auxiliary relation, triggered bisimilarity, is used for an intermediate characterisation. We are
not aware of a simpler and direct proof of congruence for normal bisimulation, using the bisimulation proof
method. The hard case is that of parallel composition. Usually, substitutivity of a bisimilarity with respect
to an operator is established using, as a candidate relation, the closure of the bisimilarity under the operator
itself (possibly enhanced with an auxiliary operator such as restriction), and using some ‘bisimulation up-to’
techniques to simplify the reasoning.

For normal bisimilarity and parallel composition, we have to prove that P ≈ Q implies P | T ≈ Q | T
for all T . In the case of a higher-order interaction between P and T , the hypotheses at hand can be used
to show the existence of a matching interaction between Q and T , but this is not sufficient to conclude.
Normal bisimilarity guarantees that P and Q remain related after a higher-order input only when a trigger
process is received; however T may transmit an arbitrary process. Replacing a trigger with an arbitrary
process is possible as an algebraic law. However the replacement is unsound within up-to techniques. The
natural up-to technique would be the ’up-to expansion’ technique (expansion is a behavioural preorder, finer
than weak bisimilarity, capturing an idea of ‘process efficiency’). For the technique to be sound, however,
the expansion preorder must be applied in a specific direction, whereas the algebraic transformation needed
for the replacement of a trigger would require the opposite direction. Similar problems exist on interactions
between P and T , and between Q and T when P and Q perform higher-order outputs.

2 Systems of Equations in HOπ

In CCS, uniqueness of solutions of equations [Mil89] intuitively says that if a context C obeys certain
conditions, then all processes P that satisfy the equation P ≈ C[P ] are bisimilar with each other.
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Since in HOπ, in contrast with CCS, processes may be communicated, it is useful to have parametrised
equations — much like the difference between ordinary constants of CCS and the parametrised constants of
HOπ. Therefore the solution of an HOπ equation is an abstraction (as opposed to a process, as for a CCS
equation). We use bold letters X,Y, . . . for the variables needed for writing equations, and called equation
variables. The body of an equation is an abstraction possibly containing equation variables. As elsewhere
in the paper, we stick to monadic abstractions.

We call extended HOπ the HOπ syntax of Section 1 extended with equation variables. To make the
distinction between the ordinary syntax of HOπ and the syntax of extended HOπ, we use bold letters to
range over the syntactic categories of the latter. Thus, in extended HOπ, P,Q stand for extended processes,
F for extended abstractions, C for extended concretions, and A for extended agents (the word ‘extended’ is
used here to denote the fact that equation variables may occur). The grammar for F is:

F : = (X) P | K | X.

Extended agents can be either extended processes, extended concretions or extended abstractions.

Definition 2.1. Assume that, for each i of a countable indexing set I, we have variables Xi, and abstractions
Fi possibly containing such variables. Then {Xi = Fi}i∈I is a system of HOπ equations. (There is one
equation for each variable Xi.)

Example 2.2. We report some examples of systems of equations, whose solutions are then discussed in
Example 2.5:

1. X = (Y ) (X ◦ Y ) .

2. X = (Y ) (X ◦ Y | Y ) .

3. X = (X) a. (Y )(X | Y ) (where the variable X of the equation does not occur in the body) .

4. X = (X) d. (Z) Y ◦ Z
Y = (Z) r. (Z | Y ◦ Z)

If the parameter of the equation is not important, we omit it, as in the equation X = a. (X)b.〈X〉X,
whose solution is a link process that repeatedly receives a process at a and emits it at b.

We write A[F̃ ] for the expression resulting from A by replacing each variable Xi with the abstraction
Fi, assuming F̃ and X̃ have the same length.

Remark 2.3. To avoid issues with restriction, we take the replacement in A[F̃ ] to be a substitution, not a
syntactic replacement (i.e., in the substitution, free names of an Fi may not be bound by a restriction in A).
An alternative would have been to impose abstractions without free names; this would however introduce
issues related to name mobility and make the proofs of the main results more complex.

As for the plain syntax, so in the extended syntax we assume a normalisation of application redexes; thus
any subterm of the form ((X)P ) ◦Q should be thought of as an abbreviation for P{Q/X}.

Definition 2.4. Suppose {Xi = Fi}i∈I is a system of equations:

• F̃ is a solution of the system of equations for ≈ if for each i it holds that Fi ≈ Fi[F̃ ];

• it has a unique solution for ≈ if whenever F̃ and G̃ are both solutions for ≈, then F̃ ≈ G̃.

Example 2.5. Consider the equations from Example 2.2:

1. the equation X = (Y ) (X ◦ Y ) is satisfied by any closed abstraction of the form (Y )P .

2. In X = (Y ) (X ◦ Y | Y ), the abstraction (Y ) (P | !Y ) is solution, for any P .

3. The body of the equation X = (X) a. (Y )(X | Y ) does not use the variable X, hence the only solution
is precisely its defining abstraction (X) a. (Y )(X | Y ).
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4. The system of equations

X = (X) d. (Z) Y ◦ Z
Y = (Z) r. (Z | Y ◦ Z)

has a unique solution. The abstraction for X receives a process at d, and then makes it available at r,
so that any output at r will start a copy of the received process.

To show that a system of equations has a unique solution, we manipulate the unfoldings of said system
of equations. The unfolding of X̃ = F̃, written F̃[F̃], is the system obtained by replacing each Xi with Fi in
F̃. As when instantiating using (non extended) abstractions, this operation is a substitution, not syntactic
replacement, and we assume normalisation of application redexes.

The operation of unfolding can be iterated, giving rise to the notion of finite unfolding:

Definition 2.6 (Finite unfoldings). Given a system of equations {Xi = Fi}i∈I , its finite unfoldings Fni are
defined recursively, for any i ∈ I:

• F0
i is defined as Xi

• Fn+1
i is defined as Fni [F̃]

Accordingly, F1
i is defined as Fi. We write F̃n for the tuple {Fni }i∈I .

Definition 2.7 (Syntactic solution). Given a system of equations {Xi = Fi}i∈I , its syntactic solution is
defined as the tuple of mutually recursive constants K̃F (there is one KF,i for each i ∈ I ), where the defining
equations are KF,i

4= Fi[K̃F].

The syntactic solution of a system of equations can be seen as the result of the infinite unfolding of the
equations defining the system.

Example 2.8. We show the syntactic solutions of some of the equations in Example 2.5.

1. The syntactic solution of the equation X = (Y ) X ◦ Y is the constant K 4= (Y ) (K ◦ Y ). This recursive
process actually behaves as 0.

2. The syntactic solution of the equation X = (Y ) (X◦Y | Y ) is the constant K 4= (Y ) (K ◦Y | Y ), which
receives a process and runs infinitely many copies of it.

3. The syntactic solution of the equation X = (X) a. (Y )(X | Y ) is the constant K 4= (X) a. (Y )(X | Y )
— as the equation does not use equation variables, the expression of the equation is the same as the
expression defining the constant.

The lemma below shows a form of commutativity on the order in which replacements are made, when
unfolding equations and instantiating its variables.

Lemma 2.9. For any extended agent A, and extended abstractions F̃ and F̃′, we have

A[F̃][F̃′] = A[F̃[F′]] .

Note that in the above lemma, F̃ and F̃′ need not have the same length. A special case of the above lemma
is when F̃′ are simple (i.e., non extended) abstractions, say F̃ ′. In this case we obtain A[F̃][F̃ ′] = A[F̃[F̃ ′].
This observation also holds for other results below, which are often specialised with simple abstractions.

Lemma 2.10. For any extended agent A, we have that A[F̃] is guarded if either A is guarded, or all
extended abstractions F̃ are guarded.
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We use the SOS rules of Table 1 also on the syntax of extended HOπ. The following lemma relates
transitions of terms of extended HOπ, possibly containing free equation variables, with terms resulting from
instantiations of such variables.

Lemma 2.11.

1. Given P an extended process and A an extended agent, if P µ−→ A, then P[F̃] µ−→ A[F̃], for all extended
abstractions F̃.

2. If P is a guarded extended process and P[F̃] µ−→ A0, then there is an extended agent A such that
P µ−→ A and A0 = A[F̃].

Both properties of the previous lemma are valid, as a special case, for transitions emanating from P[F̃ ].
When case 1 above holds, we call a transition P[F̃] µ−→ A[F̃] an instance of the transition P µ−→ A.

The following lemma states basic properties about ◦ and •; it is used implicitly in several places below.

Lemma 2.12.

• For all F, F̃ , and Q, we have (F ◦Q)[F̃ ] = F[F̃ ] ◦Q.

• For all C, F̃ and F , we have (C • F )[F̃ ] = C[F̃ ] • F .

Recall that for a name m, a trigger at m is a process Trm
def= m. 0, often simply written m, and

that Abm
def= (X)!m.X. Thus, given an extended concretion C = 〈P1〉P2 (resp. an extended abstraction

F = (X) P), we have C • Abm = !m. P1 | P2 (resp. F ◦ Trm = P{m/X}).

Divergences in HOπ. In order to state the unique solution theorems in Sections 3 and 4, we need
to introduce the notion of divergence in HOπ. A divergence in a process consists of a finite sequence of
transitions (of any kind) followed by an infinite sequence of τ transitions. A diverging process is a process
that contains a divergence. In other words, before embarking in a sequence of internal moves, a diverging
process may perform some higher-order interactions with its environment. In order to account for these, we
follow the definition of normal bisimulation (Definition 1.2), and instantiate agents with the special forms for
triggers and abstractions (processes Trm and Abm). By using such processes with freshly generated names,
we avoid possible interferences with other transitions of the process, and do not break divergences.

We first introduce the notion of reduct, which then allows us to define divergences.

Definition 2.13 (Reducts).

1. We say that P reduces to P′, written P _ P′, if one of the following holds:

(a) P `−→ P′;

(b) P′ = C • Abm for some fresh m and some C such that P a−→ C;
(c) P′ = F ◦ Trm for some fresh m and some F such that P a−→ F.

Relation P _ P ′ (“P reduces to P ′ ”) is defined in the same way for processes that do not contain
equation variables.

2. The set of reducts of an extended process P, written red(P), is given by:

red(P) 4=
⋃
n

{Pn | P _ P1 . . . _ Pn for some n and Pi (1 ≤ i ≤ n) }.

Again, the set of reducts of a process P , red(P ), is defined in the same way.
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3. The set of reducts of the unfoldings of a system of equations {Xi = Fi}i∈I , written redω(F̃), is defined
as

redω(F̃) 4=
⋃

n∈N,i∈I,m fresh
red(Fni ◦ Trm).

Definition 2.14 (Divergence). A process P diverges if there is P ′ ∈ red(P ) such that P ′ can perform an
infinite sequence of internal moves; i.e., there are processes Pi, i ≥ 0 such that P ′ = P0

τ−→ P1
τ−→ P2

τ−→ . . . .

3 Unique Solution Theorem
The proofs presented in this section are, in spirit, similar to the proofs in the case of CCS [DHS17]. Techni-
cally, they rely in an essential way on reasoning about the transitions of unfoldings of the equations, based
on the observation that if F is a solution of the equation X = F, then F is also a solution of equation
X = F[F], of X = F[F[F]], and so on.

In analysing such transitions, there are several aspects which differ between CCS and HOπ. First, we
rely on the notions of reducts and divergences (Definitions 2.13 and 2.14), which, as explained above, have
to be tailored to HOπ. Moreover, input and output transitions yield abstractions and concretions, which
need to be instantiated. This shows up in several places below, like in the following definition, in clauses 3
and 4, when we need to refer to processes in order to impose a condition involving ≈.

Definition 3.1. A system of equations X̃ = F̃ protects its solutions if, for all solution F̃ , and for all
P′ ∈ redω(F̃), the following hold:

1. if P′[F̃ ] =⇒ Q for some Q, then there exists P′′ and n such that P′[F̃n] =⇒ P′′ and P′′[F̃ ] ≈ Q.

2. if P′[F̃ ] `=⇒ Q for some Q, then there exists P′′ and n such that P′[F̃n] `=⇒ P′′ and P′′[F̃ ] ≈ Q.

3. if P′[F̃ ] a=⇒ F0, for some a and some F , then there exists F and n such that P′[F̃n] a=⇒ F0 and
(F0 ◦ Trm)[F̃ ] ≈ F0 ◦ Trm (for any m fresh).

4. if P′[F̃ ] a=⇒ C, for some a and some C, then there exists C and n such that P′[F̃n] a=⇒ C and
(C • Abm)[F̃ ] ≈ C • Abm (for any m fresh).

Intuitively, a system of equations X̃ = F̃ protect its solutions when transitions emanating from P[F̃ ],
where P ∈ redω(F̃) and F̃ is a solution, can be mimicked by transitions of P[F̃n] for some n — i.e., by
replacing the solutions with unfoldings of the equations.

Proposition 3.2. A system of equations that protects its solutions has a unique solution for ≈.

Proof. We have to show that given two solutions F̃ , F̃ ′ of the system of equations X̃ = F̃, and a fresh name
m0, it holds that F̃ ◦ Trm0 ≈ F̃ ′ ◦ Trm0 .

With these hypotheses, we set P̃ = F̃ ◦ Trm0 , P̃ = F̃ ◦ Trm0 and P̃ ′ = F̃ ′ ◦ Trm0 ; we have that P̃[F̃ ] ≈ P̃
and P̃[F̃ ′] ≈ P̃ ′, and, by definition, redω(P̃) ⊂ redω(F̃).

We prove that the relation

R 4= {(S, T ) | ∃P′, s.t. S ≈ P′[F̃ ], T ≈ P′[F̃ ′] and P′ ∈ redω(P̃)}

is a bisimulation relation satisfying P̃RQ̃.
We consider (S, T ) ∈ R, that is, S ≈ P′[F̃ ] and T ≈ P′[F̃ ]

′
, for some P′ ∈ redω(P̃). We reason about

the possible transitions from S.

1. Suppose S τ−→ S′. We deduce:
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• P′[F̃ ] =⇒ S′′ ≈ S′ (by bisimilarity).

• P′[F̃n] =⇒ P′′ and P′′[F̃ ] ≈ S′′ for some n, P′′ (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] =⇒ P′′[F̃ ′] (by Lemma 2.11(1)).

• T ≈ P′[F̃ ′] ≈ P′[F̃n[F̃ ′]] (T ≈ P′[F̃ ′] and F̃ ′ ≈ F̃n[F̃ ′], because F̃ ′ is a solution of F̃).

• T =⇒ T ′ ≈ P′′[F̃ ′] (by bisimilarity, from P′[F̃n[F̃ ′]] =⇒ P′′[F̃ ′]).

This situation can be depicted on the following diagram:

S

τ

��

≈ P′[F̃ ]

��

≈ P′[F̃n[F̃ ]]

��
=

P′[F̃n[F̃ ′]]

��

≈ P′[F̃ ′] ≈ T

��
S′ ≈ S′′ ≈ P′′[F̃ ] P′′[F̃ ′] ≈ T ′

From P′ ∈ redω(P̃) and P′[F̃n] =⇒ P′′, we deduce that P′′ ∈ redω(P̃). Finally, T ′ ≈ P′′[F̃ ′] and
S′ ≈ P′′[F̃ ] give that (S, T ) ∈ R.

2. Similarly, suppose S `−→ S′. We deduce:

• P′[F̃ ] `=⇒ S′′ ≈ S′ (by bisimilarity).

• P′[F̃n] `=⇒ P′′ and P′′[F̃ ] ≈ S′′ for some n, P′′ (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] `=⇒ P′′[F̃ ′] (by Lemma 2.11(1))

• T ≈ P′[F̃ ′] ≈ P′[F̃n[F̃ ′]] (T ≈ P′[F̃ ′] and F̃ ′ ≈ F̃n[F̃ ′], because F̃ ′ is a solution of F̃).

• T `=⇒ T ′ ≈ P′′[F̃ ′] (by bisimilarity, from P′[F̃n[F̃ ′]] `=⇒ P′′[F̃ ′]).

From P′ ∈ redω(P̃) and P′[F̃n] `=⇒ P′′, we deduce that P′′ ∈ redω(P̃). Finally, T ′ ≈ P′′[F̃ ′] and
S′ ≈ P′′[F̃ ] give that (S, T ) ∈ R.

3. Suppose now S
a=⇒ F . We deduce:

• P′[F̃ ] a=⇒ F ′ and F ◦ Trm ≈ F ′ ◦ Trm for some m (by bisimilarity).

• P′[F̃n] a=⇒ F and (F ◦ Trm)[F̃ ] ≈ F ′ ◦ Trm for some n, F (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] a=⇒ F[F̃ ′]. (by Lemma 2.11(1)).

• T ≈ P′[F̃ ′] ≈ P′[F̃n[F̃ ′]] (T ≈ P′[F̃ ′] and F̃ ′ ≈ F̃n[F̃ ′], because F̃ ′ is a solution of F̃).

• T a=⇒ F ′′ and F ′′ ◦ Trm ≈ F[F̃ ′] ◦ Trm = (F ◦ Trm)[F̃ ′] for some F ′′ (by bisimilarity, from
P′[F̃n[F̃ ′]] a=⇒ F[F̃ ′]).

From P′ ∈ redω(P̃) and P′[F̃n] a=⇒ F, we deduce that F ◦ Trm ∈ redω(P̃). Finally, F ′′ ◦ Trm ≈
(F ◦ Trm)[F̃ ′] and F ◦ Trm ≈ (F ◦ Trm)[F̃ ] give that (F ◦ Trm, F ′′ ◦ Trm) ∈ R.

4. Again, suppose now that S a=⇒ C. Again:

• P′[F̃ ] a=⇒ C ′ and C • Abm ≈ C ′ • Abm for some m (by bisimilarity).

• P′[F̃n] a=⇒ C and (C • Abm)[F̃ ] ≈ C ′ • Abm for some n, C (F̃ protects its solutions).

• P′[F̃n[F̃ ′]] a=⇒ C[F̃ ′] (by Lemma 2.11(1)).

• T ≈ P′[F̃ ′] ≈ P′[F̃n[F̃ ′]] (T ≈ P′[F̃ ′] ≈ P′[F̃n[F̃ ′]], because F̃ ′ is a solution of F̃).
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P0[F̃n[F̃ ]]

=
��

P0[F̃n+1[F̃ ]]

��

= P0[F̃n+1[F̃ ]]

��

Pn[F̃ ]

��

≈ Pn[F̃[F̃ ]]

��

= Pn[F̃[F̃ ]]

��

��

Pn+1[F̃ ]

AP ≈ Tn ≈ Tn+1 = Tn+1

Figure 1: Recursion: construction of the sequence of transitions P0[Fn] =⇒ Pn

• T a=⇒ C ′′ and C ′′ • Abm ≈ C[F̃ ′] • Abm = (C • Abm)[F̃ ′] (by Lemma 2.12 and by bisimilarity, from
P′[F̃n[F̃ ′]] a=⇒ F[F̃ ′]).

From P′ ∈ redω(P̃) and P′[F̃n] a=⇒ C, we get that C • Abm ∈ redω(P̃).
Finally, C ′′ • Abm ≈ (C • Abm)[F̃ ′] and C • Abm ≈ (C • Abm)[F̃ ] allow us to deduce that (C • Abm, C ′′ •
Abm) ∈ R.

We reason symmetrically for the actions of T .

We say that the syntactic solutions of the system X̃ = F̃ do not diverge if, for all i ∈ I, KF̃,i does not
diverge.

Theorem 3.3 (Unique solution). A guarded system of equations whose syntactic solutions do not diverge
has a unique solution for ≈.

Proof. Given a guarded system of equations X̃ = F̃ whose syntactic solutions do not diverge, we prove that
F̃ protects its solutions.

To prove that, we need to consider some P0 ∈ redω(F̃) and some solution F̃ of X̃ = F̃. There are four
cases to consider, according to the four clauses of Definition 3.1.

1. Consider a transition P0[F̃ ] =⇒ P .

We build a sequence of extended processes Pn and an increasing sequence of transitions P0[F̃n] =⇒ Pn

such that: either this construction stops, yielding a transition P0[F̃n] =⇒ Pn, or the construction is
infinite, therefore giving a divergence of K̃F̃.
We build this sequence so that it additionally satisfies:

• Pn[F̃ ] =⇒≈ P ,
• The sequence is strictly increasing: the sequence of transitions P0[F̃n+1] =⇒ Pn[F̃] is a strict
prefix of the sequence of transitions P0[F̃n+1] =⇒ Pn+1 (hence Pn[F̃] =⇒ Pn+1).

This construction is illustrated by Figure 2. We initialise with the empty sequence from P0.
Then, at step n, we have P0[F̃n[F̃ ]] =⇒ Pn[F̃ ] =⇒ Tn, with P ≈ Tn.

• If Pn[F̃ ] =⇒ Tn is the empty sequence, we stop. We have in this case P0[F̃n] =⇒ Pn and
P ≈ Pn[F̃ ].

• Otherwise (as depicted on Figure 1), we unfold the equations in F̃ one more time. We deduce
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P0[F̃ ]

��

≈ P0[F̃[F̃ ]]

��

≈ P0[F̃2[F̃ ]]

��

≈ P0[F̃3[F̃ ]]

��

≈ . . . ≈ P0[F̃n[F̃ ]]

���� ��

P ≈ T1 ≈ T2 ≈ T3 ≈ . . . ≈ Pn[F̃ ]






Figure 2: Construction of the transition

– P0[F̃n+1] =⇒ Pn[F̃] (by Lemma 2.11), and
– Pn[F̃[F ]] =⇒ Tn+1 ≈ P for some Tn+1 (by congruence and bisimilarity).

If Pn[F̃[F ]] =⇒ Tn+1 is the empty sequence, we stop as previously. Otherwise, we take Pn[F̃] =⇒
Pn+1 to be the longest prefix sequence of transitions in Pn[F̃[F ]] =⇒ Tn+1 that are instances of
transitions from Pn[F̃] (we remark that as Pn[F̃] is guarded, this sequence is not empty).

Suppose now that the construction given above never stops. We know that Pn[F̃] =⇒ Pn+1, there-
fore Pn[K̃F̃] =⇒ Pn+1[K̃F̃]. This gives an infinite sequence of transitions starting from P0[K̃F̃]:
P0[K̃F̃] =⇒ P1[K̃F̃] =⇒ . . . . We observe that in the latter sequence, every step involves at least
one transition, and moreover, there is no visible action occurring in this infinite sequence. Therefore
P0[K̃F̃] is divergent, which contradicts the hypothesis of the theorem. Hence, the construction does
stop, and this concludes the proof.

Before moving on to the next case, we can remark that here, in contrast with the situation in CCS, no
τ can follow an action triggered by a prefix in a weak transition: by definition (Section 1.2), µ=⇒ stands
for =⇒ followed by µ−→. This means that in the construction given above, (i) we stop as soon as said
action is performed, and (ii) we directly build a divergence if the construction never stops, rather than
a sequence of transitions leading to a divergence.

2. Now consider a transition P0[F̃ ] `=⇒ P . The construction is similar to that of the previous point, for a
transition =⇒; we just build the sequence Pn so that it satisfies Pn[F̃ ] `=⇒≈ P .
For the same reason as in the previous case, the construction necessarily stops, otherwise we would
observe a divergence of the syntactic solutions.

3. Consider a transition P0[F̃ ] a=⇒ F ′. Likewise, we build an increasing sequence of transitions P0[F̃n] =⇒

13



Pn, such that when the construction stops, it yields a transition P0[F̃n] a=⇒ F′, for some equation
abstraction F′ such that (F′ ◦ Trm)[F̃ ] ≈ F ′ ◦ Trm, for some m fresh. We fix such an m.
The sequence also satisfies:

• Pn[F̃ ] a=⇒ Gn for some Gn, and Gn ◦ Trm ≈ (F′ ◦ Trm)[F̃ ].
• The sequence is strictly increasing.

Again, we initialise with the empty sequence from P0. Suppose we are at step n. We then have

• P0[Fn[F̃ ]] =⇒ Pn[F̃ ] a=⇒ Gn with Gn ◦ Trm ≈ F ′ ◦ Trm.

• P0[F̃n+1] =⇒ Pn[F̃] (by Lemma 2.11).

• Pn[F̃[F̃ ]] a=⇒ Gn+1 for some Gn+1 such that Gn+1 ◦ Trm ≈ Gn ◦ Trm (by congruence and bisimi-
larity).

If Pn[F̃[F̃ ]] a=⇒ Gn+1 is an instance of a transition from Pn[F̃], meaning Pn[F̃] a=⇒ F′ for some F′ such
that F′[F̃ ] = Gn+1, we stop. Such a transition Pn[F̃] a=⇒ F′ satisfies indeed the desired properties.

Otherwise, we take Pn[F̃] =⇒ Pn+1 to be the longest prefix sequence of transitions in Pn[F̃[F̃ ]] a=⇒
Gn+1 that are instances of transitions from Pn[F̃]. It must be a strict prefix, otherwise Pn[F̃[F̃ ]] a=⇒
Gn+1 would be an instance of a transition from Pn[F̃]; it is indeed a transition =⇒ (as the input a
must be the last performed action), and since Pn[F̃] is guarded, it is not the empty sequence.
Again, the construction necessarily stops, otherwise it gives an infinite sequence of transitions from
P0[K̃F̃], hence a divergence of the syntactic solutions.

4. Consider a transition P0[F̃ ] a=⇒ C. The proof is similar to the previous case: we build an increasing
sequence of transitions P0[F̃n] =⇒ Pn; when the construction stops, it yields a transition P0[F̃n] a=⇒ C
such that (C • Abm)[F̃ ] ≈ C • Abm (m fixed). The sequence is still strictly increasing, and Pn[F̃ ] a=⇒ Cn
with Cn • Abm ≈ (C • Abm)[F̃ ].
At step n, we have

• P0[F̃n[F̃ ]] =⇒ Pn[F̃ ] a=⇒ Cn with Cn • Abm ≈ C • Abm.

• P0[F̃n+1] =⇒ Pn[F̃].

• Pn[F̃[F̃ ]] a=⇒ Cn+1 for Cn+1 such that Cn+1 • Abm ≈ Cn • Abm.

If Pn[F̃[F̃ ]] a=⇒ Cn+1 is an instance of a transition from Pn[F̃] we stop. Otherwise, we take Pn[F̃] =⇒
Pn+1 to be the longest strict prefix sequence of transitions in Pn[F̃[F̃ ]] a=⇒ Cn+1 that are instances
transitions from Pn[F̃]. It is not the empty sequence.
Again, the termination argument still applies.

This concludes the proof.

4 Innocuous Divergences
We show in this section that we can ignore some divergences in the conditions of Theorem 3.3, namely the
divergences that show up in a finite unfolding of the equation (i.e., observing such divergences does not
require the infinite unfolding).
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Definition 4.1 (Innocuous divergence). Consider a guarded system of equations X̃ = F̃ and its syntactic
solutions K̃F̃, and suppose that KF̃,i exhibits a divergence for some i.

The divergence is given by a sequence of processes (Qk)k≥0 such that Q0 ∈ red(KF̃,i) and, for all k ≥ 0,
Qk

τ−→ Qk+1.
If there exists n ≥ 0 such that for all k ≥ n, the derivation of the transition Qk

τ−→ Qk+1 does not use
the transition rule for constants (Table 1) with any of the syntactic solution KF̃,j, we say that the divergence
is innocuous.

Theorem 4.2 (Unique solution with innocuous divergences). Let X̃ = F̃ be a system of guarded equations,
and K̃F̃ be its syntactic solutions. If for any i, all divergences of KF̃,i are innocuous, then F̃ has a unique
solution for ≈.

Proof. We reason like in the proof of Theorem 3.3. Cases 2, 3 and 4, corresponding to inputs and outputs,
are handled in the same way in the present proof.

The differences arise in case 1, corresponding to a τ transition.

• If at some point the transition P0[F̃n[F̃ ]] τ=⇒ Tn is an instance of a transition P0[F̃n] τ=⇒ Pn, then the
construction can stop.

• If on the other hand the construction never stops, we can build a non innocuous divergence: we can
assume that for any n, P0[F̃n[F̃ ]] τ=⇒ Tn is not an instance of a transition from P0[F̃n] (case 1), and
likewise for transitions P0[F̃n[F̃ ]] a=⇒ Fn or P0[F̃n[F̃ ]] a=⇒ Cn. This means that in the sequence of
transitions leading to the divergence, the constant rule is used at least n times applied to the constants
KF̃,i for various i. Hence, the divergence we build uses at least n times the constant rule for all n.
Therefore, it is not innocuous, which is a contradiction.

An example of an innocuous divergence is when the body of an equation P is able to output a certain
process P . In this case, the syntactic solution of P inherits the divergences of P , which are innocuous.

Example 4.3. Consider the equation
X = a. 〈P 〉P

where P diverges (take for instance P = !τ). The syntactic solution of this equation diverges: indeed we
have (using _ from Definition 2.13):

a. 〈P 〉P _ !m.P | P .

After an input on m, P is active, and the divergence can happen. However this divergence is innocuous, and
does not prevent unique solution, as there is no need to unfold the equation more than once to unleash the
divergence.

We now show an example of a non-innocuous divergence that does not prevent the equation from having
a unique solution.

Example 4.4. Consider the single equation

X = a. 〈!n〉 | n. X .

Its syntactic solution, which is given by K 4= a. 〈!n〉 | n.K, has a divergence. Indeed we have (again, using
_ from Definition 2.13):

K _ !m. !n | n.K for m fresh (i.e., m 6= n)
_ !m. !n | !n | n.K
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and the latter process can do an infinite sequence of τ -transitions, through synchronisations on channel n.
This divergence involves the unfolding of K after each τ -step, so it is not innocuous.

However, the equation has a unique solution, intuitively because the transition at a, which unleashes the
divergence, can be avoided; therefore such a divergence causes no harm. We see here, therefore, a limitation
of the notion of innocuous divergence.

5 An example
In this section we show an application of the unique-solution technique discussed in the paper. We consider
the proof of the equality between the terms P1

def= a . 〈b . (Y )P 〉 and Q1
def= a . 〈b . (Y )Q〉, where

P
def= νa (d.R | a . 〈R〉)

R
def= a . (X) (Y | d.X | a . 〈X〉)

and
Q

def= νa (S | a . 〈Y | S〉)
S

def= a . (X) (d.X | a . 〈X〉)
Terms P1 and Q1 send on a terms that can receive a process at b and then make this process freely

available, at a channel d (i.e., arbitrarily many copies of the process may be activated, using d). Essentially,
processes P and Q correspond to two ways of modelling a replication operator in HOπ, with a different
internal structure. Indeed, if T is the process received at b, and that replaces Y in P and Q, with the
abbreviations PT

def= P{T/Y } and RT
def= R{T/Y }, we have

PT
d−→ νa (RT | a . 〈RT 〉)
τ−→ νa (T | d.RT | a . 〈RT 〉)
≡ T | PT
d−→ . . .

where ≡ indicates the application of a simple algebraic law for shrinking the scope of a restriction. Similarly,
for QT

def= Q{T/Y } and ST
def= S{T/Y } we have

QT
τ−→ νa (d. (T | ST ) | a . 〈T | ST 〉)
d−→ νa (T | ST | a . 〈T | ST 〉)
≡ T | νa (ST | a . 〈T | ST 〉)
τ−→ T | νa (d. (T | ST ) | a . 〈T | ST 〉)
d−→ . . .

We prove P1 ≈ Q1 using the technique of unique solution of equations. We use the following equations

X1 = a . 〈b . (Y ) (X2 ◦ Y )〉
X2 = (Y ) d. (Y | (X2 ◦ Y ))

The equations are guarded and their unfoldings do not introduce divergences, hence we can apply Theo-
rem 3.3. We derive P1 ≈ Q1 by showing that both the pair P1, (Y )P and the pair Q1, (Y )Q are solutions
of the system. For the first pair we have to prove

P1 ≈ a . 〈b . (Y )P 〉
(Y )P ≈ (Y ) d. (Y | P )

The first equivalence is trivial, as the two processes are identical. For the second, by definition of normal
bisimulation, for some m fresh, and writing Pm as abbreviation for P{m. 0/Y }, we have to show

Pm ≈ d. (m. 0 | Pm)
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We have, for Rm
def= R{m. 0/Y } :

Pm = νa (d.Rm | a . 〈Rm〉)
≈ d. νa (Rm | a . 〈Rm〉)
= d. νa (a . (X) (m. 0 | d.X | a . 〈X〉) | a . 〈Rm〉)
≈ d. νa ((m. 0 | d.Rm | a . 〈Rm〉))
≈ d. (m. 0 | νa ((d.Rm | a . 〈Rm〉)))
= d. (m. 0 | Pm)

where the uses of ≈ are derived using some simple algebraic laws for prefix and restriction plus (for the
second occurrence of ≈) the law

νa (a . (X)T1 | a . 〈T2〉T3) ≈ νa (((X)T1) • (〈T2〉T3))
= νa (T1{T2/X} | T3)

which is straightforward too, as the process on the right is the only immediate derivative of the process on
the left. The reasoning for the other pair, Q1, (Y )Q, is similar (in fact, simpler).

The proof above makes use of two equations only. One may find this surprising, because the calculus
is higher-order and therefore process terms are exchanged with the environment (i.e., the input at b and
the output at a), and because of the recursive structure of the terms compared (their ‘fixed-point-like’
behaviour). Such reduced size is due both to the choice of normal bisimulation (that does not make use of
universal quantifications on concretions or abstractions in the input and output clauses), and to the ‘up-to
context’ flavour of the unique-solution technique.

When comparing the technique of unique solution of equations to the bisimulation proof method [San15]
the size of a system of equations is the number of equations involved, whereas the size of a bisimulation is
the number of its pairs. Thus the proof above, involving two equations, would correspond to a bisimulation
candidate with two pairs. The proof of a similar result in [SKS11] (Section 6.7, second example) uses
’environmental bisimulation up-to context’. The relation employed in that proof is infinite, because in
environmental bisimulation one has to take into account all possible processes that may be received in a
higher-order input and because of the limitations of the known forms of ‘up-to context’ for environmental
bisimulation (only in certain clauses of the bisimulation a context may be erased and even in these cases
there are syntactic constraints on the context itself).

6 Conclusion
In the paper we have proposed a new bisimulation technique for the Higher-Order π-calculus (HOπ), based on
unique solution of equations. The technique implicitly enables ‘up-to context’ reasoning, something known
to be important in higher-order languages. As bisimilarity we have focused on normal bisimilarity, both for
its efficiency (its clauses do not require universal quantifications on terms provided by the observer), and
because direct proofs of forms of ‘bisimulation up-to context’ for it appear challenging.

We have focused on the monadic calculus and on monadic abstractions, and considered only process
passing. The extension to polyadicity and to the communication of abstractions (i.e., parametrised pro-
cesses) of arbitrarily high type, as in the full HOπ [San92], appears to be only notationally more complex.
However, handling more sophisticated types for the terms exchanged (i.e., abstractions with recursive types
or polymorphism) would seem challenging.

We believe that Theorems 3.3 and 4.2 can be adapted to other (weak) behavioural equivalences and
preorders, as is the case of their counterpart in CCS [DHS17]. However, with context bisimulation (discussed
in Section 1.2), the technique and the treatment of divergence might need refinements, because, as the
clauses of the bisimulation involve universal quantifications on terms supplied by the external environment,
the current conditions on divergence might be too restrictive.

Another approach to the ‘unique-solution’ proof technique involves inequations and the contraction pre-
order, in place of equations [San15]. In the case of normal bisimilarity, however, this approach does not seem
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applicable because the substitutivity problems for normal bisimilarity (that also represent the main obstacle
to the development of ‘up-to context’ enhancements for its bisimulation method) would also show up with
contraction. See the discussion at the end of Section 1.2 about the expansion preorder; the problems with
the contraction preorder are similar.

An issue not tackled in this paper is completeness of the technique proposed. This issue has many facets.
First, there is a completeness issue with respect to normal bisimilarity: is it possible to prove all normal
bisimilarities using the unique solution technique? Stated so, the question is vacuous, since any bisimilarity
P ≈ Q could be handled with the equation

X = P .

A more interesting question is whether for any normal bisimulation there is a system of equations with
the same size (i.e., the number of equations is not larger than the number of pairs in the relation) that
would prove the same equalities. An analogous question could then be formulated with respect to ‘normal
bisimulation up-to context’, as our unique solution technique claims to allow ‘up-to context’ reasoning. The
answer to both questions is likely to be negative, because of the condition on divergence in the unique-solution
technique. It would be interesting however to see whether a positive answer can be given by introducing
appropriate syntactic restrictions, or using more refined forms of divergence as suggested by Example 4.4.
(Completeness holds in CCS, for inequations and contractions [San15]).

An interesting use of ‘up-to context’ has been put forward by Biernacki et al. in the λ-calculus [BLP18].
We would like to see if similar enhancements can also be applied to higher-order processes and to the
unique-solution technique.
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