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Abstract— This paper deals with the synthesis of symbolic
controllers for interconnected sampled-data systems where each
component has its own sampling period. A compositional
approach based on continuous-time assume-guarantee contracts
is used. We provide sufficient conditions guaranteeing for
a sampled-data system, satisfaction of an assume-guarantee
contract and completeness of trajectories. Then, compositional
results can be used to reason about interconnection of mul-
tiperiodic sampled-data systems. We then show how discrete
abstractions and symbolic control techniques can be applied to
enforce the satisfaction of contracts and ensure completeness
of trajectories. Finally, theoretical results are applied to a
vehicle platooning problem on a circular road, which show
the effectiveness of our approach.

I. INTRODUCTION

The use of symbolic models for the control of continuous
and hybrid systems has attracted considerable attention in
the past decade (see [1] and the references therein). A sym-
bolic model (also called discrete abstraction) is a dynamical
system with a finite number of states and related to the
original system by some formal behavioral relationship (e.g.
simulation, bisimulation and their alternating/approximate
versions), which makes it possible to refine a symbolic
controller, designed for the abstraction, into a concrete one
that can be used on the original system. Symbolic controllers
can be synthesized using techniques developed in the areas
of supervisory control of discrete event systems [2] and
algorithmic game theory [3]. Symbolic models are often
obtained through discretization of the state-space and of the
time (if the original system is continuous-time), see e.g. [4],
[5].

Due to discretization of the state-space, these abstraction
techniques suffer from the curse of dimensionality (the num-
ber of symbolic states increases exponentially with respect
to the state-space dimension). For large systems made of
interconnected components, a way to tackle the lack of scal-
ability is to develop compositional methods for abstraction
or symbolic controller synthesis (see e.g. [6], [7], [8], [9],
[10], [11], [12]). The authors in [6] proposed a composi-
tional abstraction based on the notion of interconnection-
compatible approximate bisimulation. In [13], the notion of

*This work has been supported by Labex DigiCosme (project ANR-
11-LABEX-0045-DIGICOSME) operated by ANR as part of the program
”Investissement d’Avenir” Idex Paris Saclay (ANR-11-IDEX-0003-02).

1Laboratoire des Signaux et Systèmes (L2S), CNRS,
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(approximate) disturbance simulation was used for compo-
sitional abstraction of continuous-time systems, where the
states of the neighbouring components were modeled as dis-
turbance signals. The results in [10] provide compositional
constructions of approximately bisimilar finite abstractions
for networks of discrete-time control systems under some
incremental stability properties and using a small-gain type
conditions.The authors in ([7], [9], and [11]) use assume-
guarantee reasoning and contract based design to provide
compositional synthesis.

Existing approaches assume that sampling periods of all
components are equal. In this paper, we use a compo-
sitional approach to symbolic controller synthesis, based
on continuous-time assume-guarantee contracts [14], which
makes it possible to reason on the interconnection of
sampled-data systems (such as those synthesized using sym-
bolic control techniques) where we have different compo-
nents with different sampling periods (multiperiodic sam-
pling). We rely on a notion of strong satisfaction of such
assume-guarantee contracts introduced in [15], which allows
us to deal with cascade and feedback compositions. We
first provide a simple criteria for a sampled-data system to
strongly satisfy an assume-guarantee contract and ensure the
completeness of maximal trajectories. We then show how
symbolic control techniques can be applied to enforce those
criteria. We illustrate our approach with several numerical
experiments on a vehicle platooning problem [16].

The paper is organized as follows. In Section II, we briefly
present the general framework introduced in [15], for com-
positional reasoning using assume-guarantee contracts. Then,
we instantiate this framework to reason about multiperiodic
interconnections of sampled-data systems. In Section III
we show how symbolic control techniques can be used to
enforce the specified assume-guarantee contracts and ensure
completeness of trajectories. In Section IV, we apply the
theoretical framework to a vehicle platooning problem. The
proofs for the lemmas, propositions and theorems can be
found in the appendix.

Notations: R, R+
0 , R+ denote the set or reals, non-

negative reals and positive reals respectively. The set of
continuous-time domains is I(R+

0 ) = {[0, a], a ∈ R+
0 } ∪

{[0, a), a ∈ R+} ∪ {R+
0 }. For I ∈ I(R+

0 ) and a metric
space X , C(I,X) denote the set of continuous functions
from I to X . N denote the set of nonnegative integers.
Given two sets A and B, a set-valued map f : A ⇒ B
is a map from A to the set of subsets of B, its domain is
dom(f) = {a ∈ A| f(a) 6= ∅}. For x ∈ Rn, ‖x‖ denotes the
Euclidean norm of x. For ε ∈ R+, A ⊆ Rn the ε-expansion



of A is Bε(A) = {y ∈ Rn | ∃x ∈ A, ‖x− y‖ ≤ ε}.
II. CONTRACTS FOR SAMPLED-DATA SYSTEMS

A. Systems and contracts

In this paper, we deal with sampled-data systems con-
sisting of continuous-time systems with periodic controllers.
In this section, we present a broader class of systems and
associated assume-guarantee contracts, introduced in [15],
which will allow us to reason on interconnection of sampled-
data systems, even when components have different sampling
periods. The results are stated without proofs, which can be
found in [15].

1) Systems and interconnections:
Definition 1: A system is a tuple Σ = (W,X, Y, T ) where
• W ⊆ Rm, X ⊆ Rn and Y ⊆ Rp, are the sets of external

inputs, states, and outputs;
• T is a set of trajectories (w, x, y) : I → W ×X × Y

where I ∈ I(R+
0 ) and y ∈ C(I, Y ).

Given two trajectories (w, x, y) : I → W × X × Y and
(w′, x′, y′) : I ′ → W × X × Y in T , (w, x, y) is said
to be a prefix of (w′, x′, y′) if I ⊆ I ′ and for all t ∈ I ,
w(t) = w′(t), x(t) = x′(t) and y(t) = y′(t). A trajectory
(w, x, y) ∈ T is said to be maximal if there does not exist any
trajectory (w′, x′, y′) ∈ T such that (w′, x′, y′) 6= (w, x, y)
and (w, x, y) is a prefix of (w′, x′, y′). A trajectory (w, x, y) :
I →W ×X × Y in T is said to be complete if I = R+

0 .
We consider elementary interconnections of systems that

can be described using cascade and feedback compositions
and formally defined as follows.

Definition 2: Let Σ1 = (W1, X1, Y1, T1) and Σ2 =
(W2, X2, Y2, T2) be two systems, with Y1 ⊆ W2. The
cascade composition of Σ1 and Σ2 is the system Σ1||cΣ2 =
(W1, X1 × X2, Y2, Tc), such that (w1, (x1, x2), y2) : I →
W1 × (X1 × X2) × Y2 belongs to Tc if and only if there
exist (w1, x1, y1) : I1 → W1 × X1 × Y1 in T1, and
(w2, x2, y2) : I2 →W2×X2×Y2 in T2 such that I = I1∩I2
and for all t ∈ I , y1(t) = w2(t).

Definition 3: Let Σ = (W,X, Y, T ) be a system with Y ⊆
W . The feedback composition of Σ is the system Σf =
({0}, X, {0}, Tf ), such that (0, x, 0) : I → {0} ×X × {0}
belongs to Tf if and only if there exists (w, x, y) : I →
W ×X × Y in T such that y = w.

Note that systems obtained by feedback composition have
trivial null inputs and outputs. Hence, with an abuse of
notation, we will denote Σf = (X, Tf ) and x ∈ Tf , with
x : I → X . Other system interconnections considered in this
paper are defined using cascade and feedback compositions
as shown in Figure 1.

2) Assume-guarantee contracts: Contracts make it possi-
ble to reason about the interconnection of systems based on
properties of its components [14]. In this paper, we consider
the following type of contracts:

Definition 4: Let Σ = (W,X, Y, T ) be a system,
an assume-guarantee contract for Σ is a tuple C =
(AW , GX , GY ) where:

Σ1 Σ2

Σ1||cΣ2

y1 = w2w1 y2
Σ

Σf

y = w

Σ1 Σ2
y1 = w2 Σ3

y2 = w3

y3 = w1

(Σ1||cΣ2||cΣ3)f

Fig. 1. Cascade, feedback compositions and an example of interconnection
of systems

• AW ⊆W is a set of assumptions;
• GX ⊆ X and GY ⊆ Y are sets of guarantees, where
GY is closed.

We say that Σ strongly satisfies contract C, denoted Σ |=s C
if for all trajectories (w, x, y) : I →W ×X × Y in T :
• y(0) ∈ GY ;
• for all t ∈ I , such that for all s ∈ [0, t], w(s) ∈ AW ,

we have
– for all s ∈ [0, t], x(s) ∈ GX ;
– there exists δ > 0, such that for all s ∈ [0, t+δ]∩I ,
y(s) ∈ GY .

An assume-guarantee contract states that if the system’s
input belongs to AW up to a time instant t, then the system’s
state belongs to GX at least until t, and the system’s output
belongs to GY until t + δ with δ > 0 (or δ = 0 in case of
weak satisfaction, see [15]).

3) Compositional reasoning: We now provide results al-
lowing to reason about cascade and feedback compositions
of systems:

Theorem 1 (Contracts under cascade composition):
Let Σi = (Wi, Xi, Yi, Ti), i = 1, 2 be systems with
Y1 ⊆ W2. Let Ci = (AWi

, GXi
, GYi

) be assume-guarantee
contracts for Σi, i = 1, 2 with GY1 ⊆ AW2 , and let
Cc = (AW1 , GX1 ×GX2 , GY2). If Σ1 |=s C1 and Σ2 |=s C2,
then Σ1||cΣ2 |=s Cc.

Theorem 2 (Contracts under feedback composition):
Let Σ = (W,X, Y, T ) be a system with Y ⊆ W and let
Σf = (X, Tf ). Let C = (AW , GX , GY ) be an assume-
guarantee contract for Σ with GY ⊆ AW . If Σ |=s C then,
for all trajectories x : I → X in Tf , we have for all t ∈ I ,
x(t) ∈ GX .

Remark 1: While weak satisfaction of assume-guarantee
contracts is sufficient to reason about cascade composition,
strong satisfaction as given in Definition 4 is critical to reason
about feedback composition.

B. Sampled-data systems

In this section, we introduce the class of sampled-data sys-
tems and show that these can be embedded in the framework
presented above. We then provide sufficient conditions for
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Fig. 2. Sampled-data system

sampled-data systems to satisfy assume-guarantee contracts
and ensure completeness of maximal trajectories.

Definition 5: A sampled-data system is a tuple Σ =
(W,X, Y, U, f, g, h, τ) where
• W ⊆ Rm, X ⊆ Rn and Y ⊆ Rp, are the sets of external

inputs, states, and outputs;
• U ⊆ Rq is the set of internal inputs;
• f : X × U ×W → Rn is a map, g : X ⇒ U is a set

valued-map, and h : X → Y is a continuous map;
• τ ∈ R+ is the sampling period.

A pictural representation of a sampled-data system is shown
in Figure 2. In this paper, we make the following assumption:

Assumption 1: For all x0 ∈ dom(g), u ∈ g(x0), w ∈
C([0, τ ],W ), there exists a unique solution x : [0, τ ] → X
to the differential equation:

ẋ(t) = f(x(t), u, w(t)), x(0) = x0. (1)

We use the notation x = χ(., x0, u, w) to denote to the
solution of (1).

Let us remark that f need not be continuous, so we con-
sider solutions of differential equations in the Caratheodory
sense (see e.g. [17]).

The sequence of sampling instants (τk)k∈N is given by
τk = kτ , for k ∈ N. The initial sampling instant τ0 coincides
with the initial time 0. Sampled-data systems can be seen as
systems in the sense of Definition 1 where a trajectory in T is
a triple (w, x, y) : I →W×X×Y , where I = [0, τl+1] with
l ∈ N or l = +∞ (then I = R+

0 ), w and y are continuous,
x is absolutely continuous, and for all k ∈ N with k ≤ l,
x(τk) ∈ dom(g), and there exists uk ∈ g(x(τk)) such that{

ẋ(t) = f(x(t), uk, w(t)), for almost all t ∈ [τk, τk+1]
y(t) = h(x(t)), for all t ∈ [τk, τk+1]

Let us remark that in particular, x(0) = x(τ0) ∈ dom(g).
Assumption 1 guarantees that trajectories of Σ are well-

defined between the sampling instants: given x(τk) ∈
dom(g), uk ∈ g(x(τk)), and values of w on [τk, τk+1], x
and y can be defined on [τk, τk+1]. Then, it follows that
maximal trajectories of Σ are either complete (i.e. l = +∞)
or incomplete (i.e. l ∈ N) with x(τl+1) /∈ dom(g).

Cascade and feedback composition of sampled systems
are defined according to Definitions 2 and 3. Let us remark
that components have generally different sampling periods,
and thus interconnection of sampled systems may not be
definable in the formalism of Definition 5.

Remark 2: In this paper, it is assumed that all sampled
systems have the same initial sampling time τ0 = 0.
This restriction is made for the sake of simplicity and the
following results could be generalized to interconnections of
sampled systems with an initial clock drift (τ0 ∈ [0, τ)).

An assume-guarantee contract C = (AW , GX , GY ) for
sampled-data systems is given by Definition 4. The following
result, gives sufficient conditions for strong satisfaction of
contracts:

Proposition 1: Let Σ = (W,X, Y, U, f, g, h, τ) be a
sampled-data system satisfying Assumption 1, and let C =
(AW , GX , GY ) be an assume-guarantee contract for Σ with
h(GX) ⊆ GY and dom(g) ⊆ GX . Let us assume that there
exists ε > 0 such that for all x0 ∈ dom(g), u ∈ g(x0) and
w ∈ C([0, τ ],W ), x = χ(., x0, u, w) satisfies:

(∀t ∈ [0, τ ], w(t) ∈ AW )

=⇒ (∀t ∈ [0, τ ], x(t) ∈ GX); (2)
(∀t ∈ [0, τ ], w(t) ∈ Bε(AW )

=⇒ (∀t ∈ [0, τ ], h(x(t)) ∈ GY ). (3)

Then, Σ |=s C.

The following result complements the previous one by
providing sufficient conditions for the existence of complete
trajectories of a sampled-data system:

Proposition 2: Let Σ = (W,X, Y, U, f, g, h, τ) be a
sampled-data system satisfying Assumption 1, and let C =
(AW , GX , GY ) be an assume-guarantee contract for Σ. Let
us assume that for all x0 ∈ dom(g), u ∈ g(x0) and
w ∈ C([0, τ ],W ), x = χ(., x0, u, w) satisfies:

(∀t ∈ [0, τ ], w(t) ∈ AW ) =⇒ (x(τ) ∈ dom(g)). (4)

Then, all maximal trajectories (w, x, y) : I → W ×X × Y
in T such that for all t ∈ I , w(t) ∈ AW , are complete (i.e.
I = R+

0 ).

Propositions 1 and 2 provide simple criteria guarantee-
ing for a sampled-data system, strong satisfaction of an
assume-guarantee contract and completeness of trajectories.
Intuitively, Proposition 1 gives conditions on the behavior
between the sampling instants, while Proposition 2 gives
conditions on the behavior at the sampling instants. Then,
Theorems 1 and 2 allow us to reason about interconnection
of sampled-data systems.

Given a sampled data system and an assume-guarantee
contract, in the following we show how symbolic control
techniques can be used to enforce the strong satisfaction
of such contract while ensuring the completeness of the
maximal trajectories. Hence, the design problem can be
formulated as follows:

Problem 1: For sampled-data system Σ =
(W,X, Y, U, f, g, h, τ), and τ > 0, and for assume-
guarantee contract C = (AW , GX , GY ) with h(GX) ⊆ GY ,
design a control map g : X ⇒ U such that Σ |=s C and all
maximal trajectories (w, x, y) : I →W ×X × Y of Σ such
that for all t ∈ I , w(t) ∈ AW , are complete.



In the following, we provide a solution to Problem 1, based
on conditions given by Propositions 1 and 2 and symbolic
control techniques.

III. SYMBOLIC CONTROL DESIGN

In this section, we design a control map g : X ⇒ U ,
which is a solution to Problem 1.

A. Symbolic model

In this part, we show how to compute a symbolic ab-
straction, which guarantees by design the fulfilment of the
conditions of Proposition 1 for strong satisfaction of the
assume-guarantee contracts.

Our symbolic abstraction is given by a transition system
A = (Xd, Ud,∆) where Xd and Ud are finite sets of states
and inputs, and ∆ : Xd ×Ud ⇒ Xd is a transition relation.

1) Discretization: Our approach is based on a discretiza-
tion of the state-space and input sets. We discretize the set
of inputs U into nu ≥ 2 values, the discrete input set is
given by: Ud =

{
u`| ` = 0, . . . , nu − 1

}
. We discretize the

state-space into nx ≥ 1 using a finite partition Xd of the set
GX given by: Xd =

{
x`| ` = 0, . . . , nx− 1

}
. We define the

quantizer QXd
: GX → Xd associated to the partition Xd as

follows: for x ∈ GX and q ∈ Xd, QXd
(x) = q if and only

if x ∈ q.
For a state of the abstraction q ∈ Xd, we denote the set

of enabled inputs by enab∆(q) = {u ∈ Ud| ∆(q, u) 6= ∅}.
We denote the set of non-blocking states by nb∆ = {q ∈
Xd| enab∆(q) 6= ∅}.

2) Transition relation: We define the reachable set of (1)
from a set of initial states X0 ⊆ X at s ∈ R+

0 under the
constant control input u ∈ U and a subset of disturbance
inputs W ∗ ⊆W by:

Rs(X0, u,W
∗) = {χ(s, x0, u, w)

∣∣∣ x0 ∈ X0, w : [0, s]→W ∗}

Similarly the reachable set of (1) from a set of initial states
X0 ⊆ X on [0, t] ⊆ R+

0 under the constant control input
u ∈ U and a subset of disturbance inputs W ∗ ⊆W is given
by: R[0,t](X0, u,W

∗) =
⋃

s∈[0,t]

Rs(X0, u,W
∗).

We suppose that we are able to compute an over-
approximation of the reachable set denoted R (several
methods exist for the computation of over-approximation of
reachable sets for linear systems [18], monotone systems [19]
or general nonlinear systems [20]).

The transition relation ∆ : Xd × Ud ⇒ Xd, ab-
stracting the dynamics of the sampled-data system Σ =
(W,X, Y, U, f, g, h, τ) is formally defined as follows.

Let ε > 0 arbitrarily small, q ∈ Xd and u ∈ Ud, q′ ∈
∆(q, u) if and only if:

R[0,τ ](q, u,AW ) ⊆ GX ;

h(R[0,τ ](q, u,Bε(AW ))) ⊆ GY ; (5)
q′ ∩Rτ (q, u,AW ) 6= ∅.

Let us remark that for q ∈ Xd, u ∈ enab∆(q) if and only
if the first two conditions of the transition relation (5) hold.

The parameter ε used in this construction of the transition
relation can be freely chosen but is critical to ensure the
strong satisfaction of the contract using the criterion of
Proposition 1.

The following Lemma establishes the formal behavioral
relationship between the dynamics of A and Σ:

Lemma 1: Let Σ and C be as in Problem 1. Let A =
(Xd, Ud,∆) be constructed as in Section III-A . Let q ∈ nb∆,
x0 ∈ q, u ∈ enab∆(q), w ∈ C([0, τ ],W ) such that for all
t ∈ [0, τ ], w(t) ∈ AW , and x = χ(., x0, u, w). Then, there
exists q′ ∈ ∆(q, u) such that x(τ) ∈ q′.

Intuitively, the previous Lemma shows that A relates
formally to the uncontrolled (i.e. with g(x) = U for all
x ∈ U ) dynamics of Σ at sampling times with external inputs
constrained in AW by an alternating simulation relation [1].
The next proposition provides a simple condition relating the
control map g to be designed to the symbolic abstraction A,
which guarantees the strong satisfaction of assume-guarantee
contracts:

Proposition 3: Let Σ and C be as in Problem 1. Let A =
(Xd, Ud,∆) be constructed as in Section III-A. If the control
map g : X ⇒ U satisfies:

dom(g) ⊆ GX and ∀x ∈ GX , g(x) ⊆ enab∆(QXd
(x)),

(6)
then, Σ |=s C.

B. Symbolic controller synthesis

In this section, we show how to design the control map
g : X ⇒ U , solving Problem 1. We state the main result of
this section:

Theorem 3: Let Σ and C be as in Problem 1. Let A =
(Xd, Ud,∆) be constructed as in Section III-A. Let the
discrete controller Θ : Xd ⇒ Ud for the abstraction A
satisfying:

∀q ∈ Xd, Θ(q) ⊆ enab∆(q), (7)
∀q ∈ domΘ, ∀u ∈ Θ(q), ∆(q, u) ⊆ dom(Θ), (8)

Let the control map g : X ⇒ U of Σ defined by:

dom(g) ⊆ GX and ∀x ∈ GX , g(x) = Θ(QXd
(x)) (9)

Then, Σ |=s C and all maximal trajectories (w, x, y) : I →
W ×X × Y of Σ such that for all t ∈ I , w(t) ∈ AW , are
complete.

The previous result establishes the conditions that the set-
valued map Θ : Xd ⇒ Ud has to satisfy in order to solve
Problem 1. Let us remark that these conditions actually state
that Θ is a discrete safety controller for the abstraction
A keeping the trajectories of A in nb∆. Thus, Θ can be
synthesized by computing the maximal controlled invariant
of A in nb∆, which can be done by a maximal fixed point
computation (see e.g. [1]).
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Fig. 3. A platoon of 4 vehicles on a circular road

IV. VEHICLE PLATOONING EXAMPLE

A. Model description

In the following, we consider a platoon where each vehicle
is modeled as a nonlinear and nonsmooth control system. We
shall adapt the model from [16]:

Mv̇ = α(F, v) =

{
F − f0 − f1v − f2v

2 if v > 0
max(F − f0, 0) if v = 0

(10)
where M > 0 represent the mass of the vehicle, v its
velocity, F is the net engine torque applied to the wheels
and the term f0 + f1v + f2v

2 include the rolling resistance
and aerodynamics (f0, f1, f2 ∈ R+). In this equation, F
is the control input and satisfies F ∈ [Fmin, Fmax], where
Fmin < 0 < Fmax.

Contrarily to [16], we have added the second equation
to eliminate the unrealistic behaviour where the vehicle is
moving backward (i.e v(t) ≥ 0 for all t ∈ R+

0 ).
In this paper, we deal with a platoon of m vehicles in a

circular road (see Figure 3). The dynamic of each vehicle
i ∈ {1, . . . ,m} is given by:{

ḋi = vi−1 − vi
Mv̇i = α(Fi, vi).

(11)

with the convention that v0 = vm, where di ≥ 0 represents
the relative distance between vehicle i and the preceding
vehicle i− 1, vi its velocity and Fi its control input.

We can see that the dynamic of the vehicle is not con-
tinuous, however it can be easily shown that we have the
existence and uniqueness of solution and Assumption 1 is
satisfied.

Remark 3: We assume that all vehicles are identical only
to keep notations simple. However, our approach can be ex-
tended directly to heterogeneous vehicles with αi depending
on the vehicle parameters (Mi, f0i, f1i, f2i).

B. Problem formulation and solution strategy

Our goal is to synthesize controllers, giving values of input
Fi, for all vehicles of a platoon such that the velocity of each
vehicle remains between 0 and vmax, and the relative distance

v

d

S2

S3

vmax

d′dmin

S1

Fig. 4. Partition of GX = [dmin,+∞) × [0, vmax] with nd = 5 and
nv = 3.

between two vehicles remains larger than dmin ≥ 0:

∀i ∈ {1, . . . ,m}, ∀t ∈ R+
0 , vi(t) ∈ [0, vmax]

and di(t) ∈ [dmin,+∞) (12)

Since, we are using symbolic control techniques, the dy-
namics of vehicle i can then be described by a sampled-
data system Σi = (W,X, Y, U, f, gi, h, τi) where the external
input wi = vi−1, the state xi = (di, vi)

T , the output
yi = vi, the dynamic of the vehicle f is given by (11) and
W = R+

0 , X = R× R+
0 , Y = R+

0 , U = [Fmin, Fmax].
Then, the dynamics of the vehicle platoon on a

cyclic road is given by the feedback-cascade composition
(Σ1||c . . . ||cΣm)f . Therefore, in view of Theorems 1 and
2, the control objective (12) can be achieved by assigning
a suitable contract C to each vehicle in the platoon and
resolving Problem 1 for the system Σi and the contract C.

We assign the assume-guarantee contracts C =
(AW , GX , GY ) to systems Σi where AW = GY = [0, vmax]
and GX = [dmin,+∞)× [0, vmax]. We use the symbolic ap-
proach presented in Section III-A to construct an abstraction
A of Σi which guarantees by design the strong satisfaction of
the contract C. Then, a safety controller Θ is synthesized for
the abstraction A and refined into a controller g : X ⇒ U
for the system Σi ensuring the completeness of maximal
trajectories, using the approach presented in III-B. First, we
explain the partitioning technique used for this problem.

C. Abstraction

Given the state space GX and let d′ > dmin, we have that
GX = S1 ∪ S2 ∪ S3, where: S1 = [d′,+∞) × (0, vmax],
S2 = [dmin, d

′]× (0, vmax] and S3 = [dmin,+∞)× {0}, as
shown in figure 4. Using nv and nd as abstraction parameters
for velocity and distance axis respectively, partitions of S1,
S2 and S3 are constructed as follows:
• We use unbounded regions for the partition of the set
S1. Let us remark that this is necessary to cover the
unbounded set GX with a finite number of subsets;

• We construct a partition of S2 using a uniform grid;
• We use regions with empty interior (flat symbols) for

the set S3. This is necessary to discriminate the case
when the velocity is 0 from the case when it belongs
to (0, vmax]. For instance, if the leading vehicle stops
and remains motionless, it is necessary to stop the
following vehicle. Not being able to discriminate the



case when the velocity is 0 from the case when it is
(even slightly) positive would result in uncontrollable
symbolic abstraction. Moreover, the partition of the
set S3 contains an unbounded region corresponding to
[d′,+∞)× {0}.

Remark 4: We can see that our partition differs from the
classical partitions used in the literature. Indeed the problem
cannot be solved using a uniform partition for the reasons
stated above. This constraints are specific to this particular
problem. The approach of the paper can also be applied to
other systems for which a simple uniform partition can be
used.

The input space U = [Fmin, Fmax] is uniformly discretized
into nu values. The transition relation is constructed based
on (5) where we used the monotonicity of the system to
construct an overapproximation of the reachable set.

D. Numerical results

In this section, we illustrate our results using numerical
simulations. We use the numerical values from [21] for the
vehicle parameters. These values as well as the contract
parameters are shown in Table I.

TABLE I
VEHICLE AND CONTRACT PARAMETERS

Parameter Value Unit
M 1370 Kg
f0 51.0709 N
f1 0.3494 Ns/m
f2 0.4161 Ns2/m2

Fmin −4031.9 mKg/s2

Fmax 2687.9 mKg/s2

dmax −10 m
vmax 15 m/s

We compute the symbolic abstraction A using the ap-
proach described in Section III-A, with the partition tech-
nique presented in Section IV-C. For discrete controller
synthesis, the maximal fixed point computation allows us
to determine the most permissive safety controller. The
controller Θ is obtained after determinization of the most
permissive safety controller by selecting the maximal safe
input. Intuitively, it means that the vehicles drive as fast as
possible while guaranteeing satisfaction of assume-guarantee
contracts.

Figure 5 represents the resulting controller g for sampling
period τ = 0.5, parameter of the construction of the transi-
tion relation ε = vmax

1000 and the following values of abstraction
parameters: nu = 10, d′ = 70, nd = 70, nv = 30. The
computation time for generating the symbolic abstraction and
synthesizing the controller is about 1 minute (implementation
in MATLAB, Processor 2.7 GHz Intel Core i5, Memory 8
GB 1867 MHz DDR3).

The choice of the abstraction parameters is important, of
course the larger nu, nd and nv , the more accurate the
abstraction. In particular, small values of these parameters
may lead to uncontrollable abstractions (i.e. the maximal
controlled invariant of A is empty). The choice of parameter
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Fig. 5. Synthesized control map g.

d′ also has an influence, if d′ too close to the value dmin,
then the vehicles will not be able to drive at maximal speed.
On Figure 5, we can see that if we modify and set d′ = 50,
nd = 50, then the vehicles speed will never exceed 13m/s.

For numerical simulations, we consider a platoon of 20
vehicles. We consider identical vehicles, with parameters
given by Table I, to emphasize the effect of the sampling
periods. However the same approach can be applied even if
we have heterogeneous vehicles.

1) Periodic sampling: We consider that all the vehicles
have the same sampling period τ = 0.5, and the same
abstraction parameters. Note that these parameters are the
same as the ones used for computing the controller shown
on Figure 5.

Figure 6 shows the simulation results for given initial
conditions. One can check that distances between vehicles
are always greater than 10 m and that velocities remain
between 0 and 15 m/s at all time, so the overall objective
is satisfied. It is interesting to remark that after a transient
period, the vehicles distribute themselves uniformly on the
road (i.e. the distances between vehicles are all equal) and
drive at almost constant speed.

2) Multiperiodic sampling: We consider 20 vehicles with
different sampling periods, where 7 vehicles have the sam-
pling periods in [0.5, 0.62], 6 vehicles have the sampling
periods in [1.3, 1.4] and 7 vehicles have their sampling
periods in [2, 2.12].

Figure 7 shows the simulation results. One can check that
distances between vehicles are always greater than 10 m
and that velocities remain between 0 and 15 m/s at all
time, so the overall objective is satisfied despite multiperiodic
sampling. Similar to the periodic sampling case, we remark
that after a transient period, the vehicles drive at almost
constant speed. However, it is interesting to note that the
final speed is smaller than in the periodic sampling case. An
even more significant difference is seen on the inter-vehicle
distances. Indeed, the vehicles do not distribute uniformly on
the road. On this simulation, one can see that the vehicles
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Fig. 6. Simulation results of a platoon of 20 vehicles on a circular road with
the same sampling period: inter-vehicle distance (top), velocities (bottom).

with larger sampling period need to keep a larger distance
to the front vehicle, which can be explained by the fact, that
they need more time to react.

V. CONCLUSION

In this paper, we have presented a compositional approach
to the design of interconnected sampled-data systems, based
on a notion of continuous-time assume-guarantee contracts.
This approach makes it possible to deal with heterogeneous
components with different sampling periods. Synthesis of
the sampled-data controller is addressed using discrete ab-
straction and symbolic controller synthesis. This approach
has been applied to the design of controllers for vehicle
platooning and numerical results show the effectiveness of
the approach and reveal some interesting behaviours of these
vehicle platoons. In future work, we will develop more
general contracts, which may include dynamical models of
external inputs and study their composition. These contracts
will be applied to vehicle platooning where a model of the
front vehicle can be taken into account during controller
synthesis. We will also extend the results from cascade and
feedback interconnections, to different types of interconnec-
tions.
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Fig. 7. Simulation results of a platoon of 20 vehicles on a circular
road with different sampling periods: inter-vehicle distance (top), velocities
(bottom)(red: vehicles with different sampling periods in [0.5, 0.62], purple:
vehicles with different sampling periods in [1.3, 1.4], blue: vehicles with
different sampling periods in [2, 2.12]).
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APPENDIX

Proof of Proposition 1

Proof: Let (w, x, y) : I →W ×X × Y be a trajectory
of Σ. We have h(x0) ∈ h(dom(g)) ⊆ h(GX) ⊆ GY .

Let t ∈ I , such that for all s ∈ [0, t], w(s) ∈ AW , let
m ∈ N such that τm ≤ t < τm+1.

For k ∈ {0, . . . ,m − 1}, τk ∈ I , x(τk) ∈ dom(g)
and there exists uk ∈ g(x(τk)) such that for almost all
s ∈ [τk, τk+1], ẋ(s) = f(x(s), uk, w(s)). Then, by (2),
since for all s ∈ [τk, τk+1], w(s) ∈ AW , we have for all
s ∈ [τk, τk+1], x(s) ∈ GX . By (3), we get that for all
s ∈ [τk, τk+1], y(s) = h(x(s)) ∈ GY . We also have τm ∈ I ,
for which we consider two distinct cases.

If I = [0, τm], then t = τm, and it follows from above
that for all s ∈ [0, t], x(s) ∈ GX and for any δ > 0, for all
s ∈ [0, t] = [0, t+ δ] ∩ I , y(s) ∈ GY .

If I 6= [0, τm], then [0, τm+1] ⊆ I , x(τm) ∈ dom(g) and
there exists um ∈ g(x(τm)) such that for almost all s ∈
[τm, τm+1], ẋ(s) = f(x(s), um, w(s)). We have for all s ∈
[τm, t], w(s) ∈ AW . Let us start by proving the guarantee on
the state. Let w̄ : [τm, τm+1] → W given by w̄(s) = w(s)
for s ∈ [τm, t] and w̄(s) = w(t) for s ∈ [t, τm+1]. w̄
is continuous and since for all s ∈ [τm, t], w(s) ∈ AW ,
we have for all s ∈ [τm, τm+1], w̄(s) ∈ AW . Then, let
x̄ : [τm, τm+1] → X be the solution of the differential
equation ˙̄x(s) = f(x̄(s), um, w̄(s)) with x̄(τm) = x(τm).
Then, by (2), we have for all s ∈ [τm, τm+1], x̄(s) ∈ GX .
Moreover, by Assumption 1, it follows that x̄(s) = x(s) for
all s ∈ [τm, t]. Hence, for all s ∈ [0, t], x(s) ∈ GX . For the

guarantee on the output, using the fact that for all s ∈ [τm, t],
w(s) ∈ AW , from the continuity of w and for ε > 0, there
exists δ > 0 such that for all s ∈ [τm, t+δ], w(s) ∈ Bε(AW ).
We suppose without loss of generality that δ < τm+1 − t.
Let w∗ : [τm, τm+1] → W given by w∗(s) = w(s) for s ∈
[τm, t+ δ] and w∗(s) = w(t+ δ) for s ∈ [t+ δ, τm+1]. w∗ is
continuous and since for all s ∈ [τm, t+δ], w(s) ∈ Bε(AW ),
we have for all s ∈ [τm, τm+1], w∗(s) ∈ Bε(AW ). Then,
using a similar reasoning to the guarantee on the states, we
have for all s ∈ [τm, t+ δ] = [τm, t+ δ]∩ I , h(x(s)) ∈ GY .

Proof of Proposition 2

Proof: Let us consider a maximal trajectory (w, x, y) :
I →W×X×Y in T such that for all t ∈ I , w(t) ∈ AW , and
let us assume that (w, x, y) is not complete (i.e. I = [0, τl+1]
with l ∈ N). Then, x(τl) ∈ dom(g), ul ∈ g(x(τl)) and for
almost all t ∈ [τl, τl+1], ẋ(t) = f(x(t), ul, w(t)); it follows
from (4) that x(τl+1) ∈ dom(g). Then, let:
• w̄ : [0, τl+2] → W be a continuous function such that

for all t ∈ [0, τl+1], w̄(t) = w(t);
• x̄ : [0, τl+2]→ X be an absolutely continuous function

such that for all t ∈ [0, τl+1], x̄(t) = x(t), and
for all t ∈ [τl+1, τl+2], ˙̄x(t) = f(x̄(t), ul+1, w̄(t)),
for a ul+1 ∈ g(x(τl+1)), such a function exists by
Assumption 1;

• ȳ : [0, τl+2]→ Y be a continuous function such that for
all t ∈ [0, τl+1], ȳ(t) = y(t), and for all t ∈ [τl+1, τl+2],
ȳ(t) = h(x̄(t)).

Then, it is clear that (w̄, x̄, ȳ) ∈ T and that (w, x, y) is
a prefix of (w̄, x̄, ȳ) which contradicts the maximality of
(w, x, y). Hence, necessarily, (w, x, y) is complete.

Proof of Lemma 1

Proof: Let q ∈ nb∆, x0 ∈ q, u ∈ enab∆(q) and
w ∈ C([0, τ ],W ) such that for all t ∈ [0, τ ], w(t) ∈
AW . We have x(τ) = χ(τ, x0, u, w) ⊆ Rτ (q, u,AW ) ⊆
R[0,τ ](q, u,AW ) ⊆ GX . Hence, using the definition of the
transition relation ∆ there exists q′ ∈ ∆(q, u) satisfying
x(τ) ∈ q′.

Proof of Proposition 3

Proof: We prove the strong satisfaction of the contract
using Proposition 1.

Let us remark that dom(g) ⊆ GX . Then, let x0 ∈ dom(g),
u ∈ g(x0), w ∈ C([0, τ ],W ) and x = χ(., x0, u, w). By
(6), u ∈ enab∆(q0) where q0 = QXd

(x0). First, let us
suppose that for all t ∈ [0, τ ], w(t) ∈ AW , we have for
all t ∈ [0, τ ], x(t) = χ(t, x0, u, w) ∈ Rt(q0, u, AW ) ⊆
R[0,τ ](q0, u, AW ) ⊆ GX , where the second inclusion comes
from the first condition in the definition of the transition
relation. Now, let ε > 0 be as in the definition of transition re-
lation (5) and assume that for all t ∈ [0, τ ], w(t) ∈ Bε(AW ).
We have for all t ∈ [0, τ ], h(x(t)) = h(χ(t, x0, u, w)) ∈
h(Rt(q0, u,Bε(AW))) ⊆ h(R[0,τ ](q0, u,Bε(AW))) ⊆ GY ,
where the second inclusion comes from the second condition



of the definition of the transition relation. Hence, we can
conclude that Σ |=s C.

Proof of Theorem 3

Proof: Let us remark that (9) and (7) imply that g
satisfies the condition (6). Then, Σ |=s C. To prove the
second part of the theorem, we show that condition (4)
in Proposition 2 holds. Let x0 ∈ dom(g), u ∈ g(x0),
w ∈ C([0, τ ],W ), and x = χ(., x0, u, w). By (9), u ∈ Θ(q0)
where q0 = QXd

(x0). By (7), u ∈ enab∆(q0) and by
Lemma 1, there exists q′ ∈ ∆(q, u) such that x(τ) ∈ q′.
Then, (8) gives that q′ ∈ dom(Θ), which in turn implies by
(9) that x(τ) ∈ dom(g).


