
HAL Id: hal-01857386
https://hal.science/hal-01857386v1

Submitted on 15 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Hamming distance-based fuzzy join in
MapReduce using Bloom Filters

Thi-To-Quyen Tran, Thuong-Cang Phan, Anne Laurent, Laurent D’orazio

To cite this version:
Thi-To-Quyen Tran, Thuong-Cang Phan, Anne Laurent, Laurent D’orazio. Improving Hamming
distance-based fuzzy join in MapReduce using Bloom Filters. FUZZ-IEEE 2018 - International Confer-
ence on Fuzzy Systems, Jul 2018, Rio de Janeiro, Brazil. pp.1-7, �10.1109/FUZZ-IEEE.2018.8491658�.
�hal-01857386�

https://hal.science/hal-01857386v1
https://hal.archives-ouvertes.fr

Improving Hamming distance-based fuzzy join in
MapReduce using Bloom Filters

Thi-To-Quyen TRAN
Univ Rennes, CNRS, IRISA

Lannion, France
thi-to-quyen.tran@irisa.fr

Thuong-Cang PHAN
Cantho University
Cantho, Vietnam

ptcang@cit.ctu.edu.vn

Anne LAURENT
Univ Montpellier, LIRMM, CNRS

Monpellier, France
Anne.Laurent@lirmm.fr

Laurent D’Orazio
Univ Rennes, CNRS, IRISA

Lannion, France
laurent.dorazio@univ-rennes1.fr

Abstract—Join operation is one of the key ones in databases,
allowing to cross data from several tables. Two tuples are crossed
when they share the same value on some attribute(s). A fuzzy
or similarity join combines all pairs of tuples for which the
distance is lower than or equal to a prespecified threshold ε from
one or several relations. Fuzzy join has been studied by many
researchers because its practical application. However, join is the
most costly and may even not be possible to compute on large
databases. In this paper, we thus propose the optimization for
MapReduce algorithms to process fuzzy joins of binary strings
using Hamming Distance. In particular we propose to use an
extension of Bloom Filters to eliminate the redundant data,
reduce the unnecessary comparisons, and avoid the duplicate
output. We compare and evaluate analytically the algorithms
with a cost model.

Index Terms—Fuzzy join, Similarity join, MapReduce

I. INTRODUCTION

Join is a critical operation within a data management
system, making it possible to enrich data from a source with
information stored outside of it. This is why literature is rich
in working on join optimization, especially in parallel and dis-
tributed systems. In recent years, researches has focused on the
problem of efficient joins in large-scale parallel environments.
In other words, researchers toward their goals of limiting the
use of resources in terms of bandwidth consumption or CPU
usage. The first results, concerning the equi-join [1], impose
strong constraints on the data (one of the sets having to be
small enough to be distributed to all the machines used for the
treatment) or their organization (sorting according to the join
attribute, placement of data on specific nodes), leading to many
data transfers (some unnecessary) and heavy workload on
machines or requiring multiple (expensive) execution phases.

The problem is even more difficult when the equality
constraint is released while this type of query is often nec-
essary. A query in computer network defense for example:
grouping information from a URL written in different ways (eg
www.irisa.fr in a source and http://www.irisa.fr in the other),
set of IP addresses (192.168.150.30, 192.168.150.31, etc.). As
another query example [2] in mining social networking sites
where user’s preferences are stored as bit vectors (where a ”1”
bit means interest in a certain domain), applications wants to
discover the similar interests of users. A user with preference
bit vector ”[1,0,0,1,1,0,1,0,0,1]” possibility has similar inter-
ests to a user with preferences ”[1,0,0,0,1,0,1,0,0,1]”. This

query is defined as a fuzzy or similarity join and arosed in
many applications, including detecting attacks from colluding
attackers [3], mining in social networking sites [4], detecting
near duplicate web-pages in web crawling [5], document
clustering [6], master data management [7].

When dealing with a very large amount of data, fuzzy
join becomes a challenging problem in a distributed parallel
computing environment with the expensive cost of data shuffle.
As a result, the data redundancy is very difficult to accept.
Vernica et al. [2] proposed a similarity join method using 3-
stage MapReduce which utilized the prefix filtering method
to support set-based similarity functions. Metwally et al. [8]
proposed a 2-stage algorithm VSMART join for similarity join
on set, multisets and vector. Afrati et al. [9] proposed multiple
algorithms to perform fuzzy join in a single MapReduce stage.
While recent studies on the fuzzy join have the common
limitations as redundancy and duplication of data, the filter-
based approaches in our recent studies [1], [10] can solve these
problems. Our team was interested in using Bloom Filters [11],
Intersection Filter [10]. The idea is to filter irrelevant data as
soon as possible to reduce data transfers and workload on
different machines.

This study, therefore, focuses on a theoretical analysis of
various Hamming distance-based similarity join algorithms
in MapReduce, and their cost comparison in a map-reduce-
shuffle computation.

The remaining part of this paper is organized as follows.
Section 2 presents the research background by the related
works. Various Hamming distance-based similarity join al-
gorithms are analysed as a research context in section 3.
We propose the optimizations in section 4. We theoretically
compare and evaluate the algorithms by an example in section
5. Finally, section 6 concludes and discusses future works.

II. BACKGROUND

A. MapReduce

MapReduce [12] is a parallel and distributed programming
model to process large amounts of data on data centers consist-
ing of commodity hardware. This model allows users to focus
on designing their applications regardless of the distributed
aspects of the execution. Figure 1 illustrates MapReduce
execution.

Fig. 1. MapReduce Execution

A MapReduce program consists of two distinct phases,
namely, the Map phase and the Reduce phase. Each phase
performs a user function on a key / value pair. The function
Map (M) takes a pair of entries (k1, v1) and emits a list of
intermediate pairs (k2, v2).

(k1, v1)
map−−−→ (k2, v2)

The intermediate values associated with the same key k2 are
grouped together and then transmitted to the Reduce function
which aggregates the values.

(k2, v2)
reduce−−−−→ (k3, v3)

A MapReduce program is executed on multiple nodes.
During the Map phase, each Map task reads a subset (called
split) of an input dataset and applies the Map function for
each key / value pair. The system supports the grouping of
intermediate data and sends them to the relevant nodes to
apply the Reduce phase. This communication process is called
Shuffle. Each Reduce task collects the key / value pairs of all
the Map tasks, sorts / merges the data with the same key and
calls the Reduce function to generate the final results.

B. Fuzzy join

A fuzzy join aims to group data based on their similarity. It
relies on a distance measure to find all pairs (x, y) in the
input dataset(s) with a distance bellow some pre-specified
threshold ε. Different solutions have been proposed for big
data systems [2], [8], [9], [13]–[16]. A survey has been writ-
ten on MapReduce-based fuzzy join [17] studying supported
data types (fixed-length string, variable-length string, numeric,
vector, set) and distance functions (Hamming distance, Edit
distance, Jaccard similarity, Tanimoto Coefficient, Cosine Co-
efficient, Ruzicka similarity, Dice Similarity, Set Cosine Sim,
Vector Cosine Sim). In this paper, we focus on fuzzy join
algorithms using Hamming distance [9] with fixed-length data
inputs (b-bit strings).

Hamming distance (HD) between two strings s, t is the
number of positions in which they differ. Given a set, S, of
b-bit strings, a fuzzy join is stated using a Hamming distance
used to define a similarity and a threshold ε is

{(s, t)|s, t ∈ S,HD(s, t) ≤ ε}

. The ball of radius d (B(d)) can be obtained by flipping the
value of at most d bits of any given b-bit string. Thus, it is
computed by the following formula [9]:

B(d) =

d∑
k=0

(
b

k

)
≈ bd/d!

Bs(d) consists of all similar elements in the ball of radius
d around of s. In other words,

∀t ∈ Bs(d), HD(s, t) ≤ d

Example: Consider the 3-bit string (b = 3),
• d = 0, the ball of radius 0 around any given element
B000(0) now is itself (000).

• d = 1, the B000(1) now has 1 + 3 = 4 elements
(000, 001, 010, 100).

• d = 2, the B000(2) now has 1 + 3 + 3 = 7 elements
(000, 001, 010, 100, 011, 101, 110).

C. Bloom filter

A Bloom Filter (BF) [11] is a space-efficient randomized
data structure used for testing membership in a set with a
small rate of false positives. Figure 2 presents a Bloom Filter
structure consisting of m bits, k independent hash functions,
and a set S of n elements represented by BF (S). BF (S) can
be described as follows:
• The set S = {x1, x2, ..., xn} of n elements is represented

by an array of m bits, initially all set to 0.
• The filter uses k independent hash functions h1, h2, ..., hk

with hi : x→ {1..m}.
• To insert an element x ∈ S, we compute
h1(x), h2(x), ..., hk(x), and set the corresponding
positions in the bit array to 1. Once this operation has
been done for each element of S, the resulting bit array
can be used as an approximate representation of the set.

• To check if y ∈ S, we check whether for each of the k
hash functions, the position hi(y) is set to 1 in the bit
array. If at least one position is set to 0, this means that
y /∈ S. Otherwise, all positions are set to 1, that is to say
that y may be a member of S with some probability.

BF never returns false negatives. However, it can return false
positives. A false positive element of BF is an element that

Fig. 2. A Bloom filter BF (S) with 3 hash functions.

does not belong to a set S while testing it on BF lead to
the opposite result. Indeed, in some cases, a hash function can
return the same value for multiple elements. As a consequence,
an element that does not belong to S can also have a hash
value at its position of 1. BF is a space-efficient structure to
accelerate querying. The size of a filter is fixed, independently
of the number n of elements. However, there is a relation
between the size of the structure m and the false positive
probability [18]

fBF (S) = (1− (1− 1

m
)nk)k

D. Motivation

This paper aims to improve fuzzy joins using Hamming
distance in a MapReduce environment, relying on Bloom
Filter. In order to compare the costs of different algorithms,
it adapts a previous model (M,C,R) [9], where M , R, C
are used to measure the effectiveness of an algorithm. The
notations and parameters are described in Table I.

TABLE I
SYMBOLS AND DESCRIPTION

Notation Description

M
Total computation (map or preprocessing) cost for all
input records

C

Total communication cost (network resources) to transfer
data from the mappers to the reducers. Other operations
such as copying, comparing, hashing are performed at a
unit cost

R Total computation cost for all reducers
S, |S| Input dataset S and its size
d Pre-specified threshold of distance
s, t, b A string s or t and its length
B(d) Ball of radius d
k Number of hash functions
K Number of reducers
D Size of intermediate data for shuffle

III. FUZZY JOIN ALGORITHMS IN MAPREDUCE

This paper studies hamming distance-based fuzzy join
algorithms in MapReduce using the (M,C,R) cost model
[9]. More precisely, it focuses on Naive join, Ball Hashing,
Splitting and Anchor Points algorithms

A. Naive Algorithm

Naive algorithm can be used for any data type and distance
function. It relies on a single MapReduce job. The main idea
is to distribute each input record to a small set of reducers
so that any two records be mapped to at least one common

reducer for computing distance. The details of Naive algorithm
for an input set S are specified as follows:
• With a constant J > 0, let K =

(
J+1
2

)
= J(J + 1)/2 or

J ≈
√
K be the number of reducers.

• Each reducer is identified by a pair (i, j), such that 0 ≤
i ≤ j ≤ J

• During the Map phase, all members X of S are hashed
to J buckets so as to be sent to exactly J reducers (i, j)
or (j, i) ∀i = [0, J) (key, value) pairs of the form
((i, j), X).

X
map−−−→ ((i, j), X)

The total map cost and communication (data transfer
from mappers to reducers) is M = C = O(|S|J) =
O(|S|

√
K)

• A reducer receives all records with the same key (i, j),
computes the distance between each pair of records and
outputs the pairs satisfying the similarity, that is to say
the threshold ε. Each reducer receives around |S|J/K =
2|S|(J + 1) elements, which requires

(
2|S|/(J+1)

2

)
=

O(|S|2/K) comparisons. As a consequence, for K re-
ducers, the total computation cost for all reducers R is
O(|S|2)

The challenge is to define K in order for every pairs of
elements of S to be sent to exactly one reducer and thus avoid
data duplication. Each input records must be compared with
all others leading to data redundancy and inefficiency.

B. Ball Hashing Algorithms

Ball Hashing is a family of two algorithms BH1 and BH2.
These algorithms rely on the ”ball of radius d” to reduce
unnecessary comparisons. This means that each record is
compared to the others within its similarity radius. To do this,
there is one reducer for each of the n possible strings of length
b. The number of reducers is thus n = 2b.

1) BH1:
• The mappers generate all elements t in ball of radius d

of each input record s (Bs(d)) as (key, value) pairs of the
form (s,−1) and (t, s) such that t 6= s and send them to
the corresponding reducers. t is a string obtained from s
by changing i ∈ [1, d) bits.

s
map−−−→

{
(s,−1)
(t, s), ∀t ∈ Bs(d), t 6= s

Thus the map cost is B(d) per input element.
• Call a reducer that receives (s,−1) ”active”, it infers

that s is in the input set and outputs all pairs of similar
received strings. Assuming that it is not possible for
multiple input records to have the same join value, the
average number of strings to be sent to each reducer is
|S|B(d)/n. The total cost of all |S| active reducers is
|S|2B(d)/n.

• A issue with BH1 is data duplication due to t - s
and s - t similarity. A proposed solution is to proceed
lexicographically [19]. A mapper only emits (t, s) if
t < s. However, redundant data still exist in ”inactive”

reducers because similar records in Bs(d) are sent to
reducers although they are not elements in S.

2) BH2: BH2 is an extension of BH1. The difference is
that during the map phase, BH2 generates ball of radius d/2.
Because of this, every reducer is active and checks for the
similarity between all the possible combinations of two strings
it receives and eliminates the duplicate outputs.

C. Splitting Algorithm

Splitting algorithm is based on a principle of which have
any of two similarity b-bit strings with a distance less than d,
there exists at least one same substring of length b/(d+ 1).
• Mappers decompose each input string s into d+1 equal-

length substrings s1, s2, ..., sd+1 and emits (si, s).
s

map−−−→ ((i, si), s), i = 1..(d+ 1), si ⊂ s
Each substring of length (d+1) has 2b/(d+1) possible val-
ues. Therefore, the number of reducers is (d+1)2b/(d+1).
The total communication cost is (d+ 1)|S|.

• There is at least one reducer that will receive any two
similar strings in S. Reducers test each string to see
if it is within distance d of all other received strings,
similar to the Naive algorithm. The processing cost is
(d + 1)|S|2/2b/(d+1). To avoid duplicate results, when
a reducer in the ith family finds that s and t are at
distance d or less, it checks that there is no j < i for
in which jth substrings are also equal and outputs s, t if
there is no such j. However, the Splitting algorithm has
also the same issue of redundant data as the Ball hashing
algorithm.

D. Anchor Points Algorithm

Anchor Points algorithm is the only randomized algorithm
considered. The algorithm chooses a random universe. If the
set is large enough, at least one string in the set can be
expected to be within distance dd/2e of any two strings in
the input data. This algorithm will not be included in our
research since the paper that introduced it showed that it is
outperformed by the other algorithms [9].

IV. BLOOM FILTER-BASED FUZZY JOINS

The previous algorithms generate intermediate elements that
may be not relevant to the join process in the map phase,
because they do not match with any similar record in the input
dataset. In this section, we propose to integrate BF into the
join algorithms to improve performances. Naive algorithm will
be used as a baseline for comparison with other solutions.

A. BF-BH1 Algorithms

During the map phase, BH1 generates all elements within
a distance d from s and sends to them to the reducers for
combining with similar input records. It is easy to see that not
all elements in the Bs(d) belong to S. Our approach integrates
BF (S) to remove elements in Bs(d) that do not belong to S
before sending it to the reducers. This solution consists of two
stages:

• Stage 1 (Pre-processing) : A filter BF (S) is built on a
join key value set of the input dataset S. Figure 3 describe
an example of preprocessing stage of BF −BH1 for the
fuzzy join with 3-bit string.

• Stage 2 (Join processing) : BF (S) is distributed to all
the computing nodes and used to eliminate non-similar
elements of the input dataset in each ball of radius d
during the map phase. An example of join stage of BF−
BH1 for the fuzzy join with 3-bit string and threshold
d = 1 is shown in Figure 4.

s
map−−−−→

BF (S)

{
(s,−1)
(t, s), ∀t ∈ Bs(d) ∩ S, t < s

After filtering none relevant data, the join algorithm then
proceeds as in BH1.

Let us recall assumption that hash operation performs in unit
time. With k hash functions, the pre-processing cost on all
input records is k|S|. However, this cost can be amortized by
streaming or caching techniques.

Each membership test also uses k hash functions, so the
map cost for each record is kB(d).

In the shuffle phase, the number of intermediate elements
for each record will be reduced, instead of B(d). Precisely, if
we note δS the ratio of similar records of S, fBF (S) the false
positive probability of the BF of S, then the cost to transfer
intermediate data from mappers to reducers is

DBF−BH1 = |S|[δSB(d) + fBF (S)(1− δS)B(d)]

DBF−BH1 < |S|B(d)

As a consequence, the processing cost in the reduce phase
is also improved, the reduction being: DBF−BH1|S|/n

BF can also be used in BH2 and will be the subject of
future works. In particular, we envision to address multiple
inputs with Intersection Filters [1], [10].

B. BF-Splitting algorithm

The Splitting algorithm generates redundant data by sending
each record to d+1 reducers. In fact, each record just need to
be sent to some identified reducers if all its actual similar
elements present in S and its substrings are known. As a
solution we propose to combine Ball Hashing, Splitting and
BF.

This approach also requires a pre-processing stage for build-
ing BF (S) with a cost of k|S|. The join stage is described as
follows:
• A mapper generates all elements in the ball of radius d

around each input record s. By the membership test in
BF (S), it determines which elements {t 6= s} in Bs(d)
may actually be similar to s. Then each of them is divided
in to d + 1 equal-length substrings {si} and {ti}, i =
1..(d+ 1). For each si, if there exists a substring ti of t
in the intersection of S and Bs(d) that matches with si,
the pair (si, s) will be outputs, and then t will never be
considered again.

Fig. 3. Pre-processing stage

Fig. 4. Join processing stage of BF-BH1 Algorithm

Fig. 5. Join processing stage of BF-Splitting Algorithm

s
map−−−−→

BF (S)
(si, s)

si ⊂ s
∀t ∈ Bs(d) ∩ S
∃ti ⊂ t ≡ si

An example of join stage of BF − Splitting for the
fuzzy join with 4-bit string and threshold d = 1 is shown
in Figure 5. The map cost is k|S|B(d)(d+ 1).

• Each record is sent only if there is actual similar elements,
with a small false positive. The communication cost is

DBF−Splitting = [δS |S|+ fBF (S)(1− δS)|S|]

DBF−Splitting < (d+ 1)|S|

• The reducers collect, test the distance, and output records
as in the Naive algorithm. However, in such an approach,
each similar pair in S is sent to at most one reducer,
solving the duplicated output problem without a lexi-
cography test. The total computation cost for reducers
is DBF−Splitting|S|/2b/(d+1)

TABLE II
SUMMARY OF COSTS FOR VARIOUS HAMMING DISTANCE-BASED JOIN ALGORITHMS

Approche Pre-processing Map cost per element # Reducers Communication Processing
Naive 0 J ≈

√
K K |S|

√
K |S|2

BH1 0 B(d) n = 2b |S|B(d) |S|2B(d)/2b

BF-BH1 k|S| kB(d) n = 2b DBF−BH1 < |S|B(d) DBF−BH1|S|/2b
Splitting 0 d+ 1 (d+ 1)2b/(d+1) (d+ 1)|S| (d+ 1)|S|2/2b/(d+1)

BF-Splitting k|S| kB(d)(d+ 1) (d+ 1)2b/(d+1) DBF−Splitting < (d+ 1)|S| DBF−Spitting |S|/2b/(d+1)

TABLE III
VALUE OF EXPRESSIONS FROM TABLE II WHEN b = 20, d = 4, |S| = 105,K = 104, δS = 1%, k = 8, fBF (S) = 10−4

Approche Pre-processing Map cost per element # Reducers Communication Processing
Naive 0 100 104 107 1010

BH1 0 6226 106 6.2× 108 6.2× 107

BF-BH1 8× 105 49808 106 6.26× 106 6.26× 105

Splitting 0 5 80 5× 105 3.1× 109

BF-Splitting 8× 105 249040 80 103 6.2× 103

V. SYNTHESIS

Table II summarizes the costs of the different algorithms.
According to the processing cost, Naive algorithm is the most
expensive solution, but its cost is independent with the change
of distance. With respect to the communication cost, Splitting
algorithm is the best approach, while Ball Hashing is the most
suitable solution to processing cost. However, Ball Hashing
is sensitive to distance. With the greater the distance d, the
number of elements in B(d) increases dramatically. Integrating
BF in the algorithms implies the following changes according
the (M,C,R) model:
• The pre-processing cost is incurred by reading the input

to generate BF (S). However this cost can be amortized,
especially using streaming or caching techniques (e.g
Spark [20]).

• The map phase use k hash functions for the membership
test. In the BF-Splitting, the map phase generates Bs(d)
for each input record.

• The number of reducer does not change.
• Using BF (S), redundant elements are eliminated, thus

the communication cost is reduced. This also leads to a
decrease of the computation cost on reducers.

Table III compares the costs of algorithms via a concrete
example [9]. We choose b = 20, so n = 220 ≈ 106. We use
d = 4, so B(d) = 6226. We also take |S| be 10000. For
the Naive algorithm, we take K = 10000. We assume that
the the ratio of similar records of S is δS = 1%, the small
false positive of BF (S) is fBF (S) = 0.0001. As a conclusion,
no algorithm is the best. Choosing a solution depends on the
context. However, in a parallel and distributed environment,
communication cost is one of the most important factors.
Experiments in our previous studies [1], [10] have proved that
filtering can significantly improve execution times.

VI. CONCLUSIONS

In this paper, we study theoretical details for the fuzzy join
algorithms based on Hamming distance measure in MapRe-
duce, applied for b-bit strings input dataset. We propose the

optimization for the Ball Hashing and Splitting algorithms, and
show the comparison through the MapReduce cost model. Our
approaches eliminate the redundant intermediate data, reduce
the unnecessary comparisons and avoid the data duplication.
For the fuzzy join of multiple input datasets, Intersection filter
[10] is applied instead of Bloom filter. Our optimizations may
be extended in the cache or streaming supported framework to
reuse the preprocessing cost. In the future works, we continue
to validate our works, compare with other approachs and
extend the research for other fuzzy join algorithms.

REFERENCES

[1] T. Phan, L. d’Orazio, and P. Rigaux, “A Theoretical and Experimental
Comparison of Filter-Based Equijoins in MapReduce,” TLDKS, vol. 25,
pp. 33–70, 2016.

[2] R. Vernica, M. J. Carey, and C. Li, “Efficient Parallel Set-similarity Joins
Using MapReduce,” in SIGMOD, 2010, pp. 495–506.

[3] A. Metwally, D. Agrawal, and A. El Abbadi, “Detectives: Detecting
Coalition Hit Inflation Attacks in Advertising Networks Streams,” in
WWW, 2007, pp. 241–250.

[4] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating similarity
measures: A large-scale study in the Orkut social network,” in SIGKDD,
2005, pp. 678–684.

[5] M. Henzinger, “Finding Near-duplicate Web Pages: A Large-scale
Evaluation of Algorithms,” in SIGIR, 2006, pp. 284–291.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
Clustering of the Web,” in WWW, 1997, pp. 1157–1166.

[7] M. Sahami and T. D. Heilman, “A Web-based Kernel Function for
Measuring the Similarity of Short Text Snippets,” in WWW, 2006, pp.
377–386.

[8] A. Metwally and C. Faloutsos, “V-SMART-Join: A Scalable
MapReduce Framework for All-Pair Similarity Joins of Multisets
and Vectors,” CoRR, vol. abs/1204.6077, 2012. [Online]. Available:
http://arxiv.org/abs/1204.6077

[9] F. N. Afrati, A. D. Sarma, D. Menestrina, A. Parameswaran, and J. D.
Ullman, “Fuzzy Joins Using MapReduce,” in ICDE, 2012, pp. 498–509.

[10] T.-C. Phan, L. d’Orazio, and P. Rigaux, “Toward Intersection Filter-
based Optimization for Joins in MapReduce,” in Cloud-I, 2013, pp. 2:1–
2:2.

[11] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[13] Y. N. Silva, J. M. Reed, and L. M. Tsosie, “MapReduce-based Similarity
Join for Metric Spaces,” in Cloud-I, 2012, pp. 3:1–3:8.

[14] Y. N. Silva and J. M. Reed, “Exploiting MapReduce-based Similarity
Joins,” in SIGMOD. ACM, 2012, pp. 693–696.

[15] A. Okcan and M. Riedewald, “Processing Theta-joins Using MapRe-
duce,” in SIGMOD, 2011, pp. 949–960.

[16] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient Similarity
Joins for Near-duplicate Detection,” ACM TODS, vol. 36, no. 3, pp.
15:1–15:41, 2011.

[17] Y. N. Silva, J. Reed, K. Brown, A. Wadsworth, and C. Rong, “An Ex-

perimental Survey of MapReduce-Based Similarity Joins,” in Similarity
Search and Applications, 2016, pp. 181–195.

[18] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network Applications
of Dynamic Bloom Filters,” in INFOCOM, 2006, pp. 1–12.

[19] B. Kimmett, V. Srinivasan, and A. Thomo, “Fuzzy Joins in MapReduce:
An Experimental Study,” PVLDB, vol. 8, no. 12, pp. 1514–1517, 2015.

[20] “Apache SparkTM - Lightning-Fast Cluster Computing.” [Online].
Available: http://spark.apache.org/

