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Optimal control of averaged state of a parabolic
equation with missing boundary condition

Gisele MOPHOU * Romario Gildas FOKO TIOMELA T Ali SEIBOU *#
August 15, 2018

Abstract

We consider the optimal control of general heat governed by an oper-
ator depend on an unknown parameter and with missing boundary con-
dition. Using the notion of no-regret and low-regret control we prove that
we can bring the average of the state of our model to a desired state.
Then by means of Euler-Lagrange first order optimality condition, we ex-
pressed the optimal control in term of average of an appropriate adjoint
state that we characterize by an optimality system. The main tools are
the Lebesgue dominated convergence theorem and an appropriate Hilbert
space endowed with a norm containing the average of the state.

Key-words :No-regret control, Low-regret control, Average control, Euler-
Lagrange first order optimality condition.

AMS Subject Classification 35Q93,49J20, 93C05, 93C41.

1 Introduction

Let N € N* and Q be a bounded open subset of RY with boundary I' of class
C2%. Let w be an open non-empty subset of Q. For T' > 0, we set Q = Q2 x (0,7,
wr = w x (0,T) and ¥ = T x (0,7). We consider the following controlled
parabolic problem:
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0y

— —div(k(a,2)Vy) +agy = [f+ux, in Q,
Yy = g on X,
y(0) = o° in  Q,

where diffusivity x € C([0,1] x Q), the potential ag € L>(Q), the function
f € L*(Q) is given, v € L*(wr) is the control and x,, is the characteristic
function of the control set € . The initial condition y° is known and belongs to
L?(Q). The function g belongs to L(%).

Under the assumptions on the data, we know that system (1) has a unique
solution y(a, v, g) = y(a, x,t;v,g) € L? (Q) such that,

—/ yotp(O)d$+/ K(Oé,l‘)gaﬁdUdt—F/ Y <_3g0 —div(k(a, 2) V) —|—a0<p> dxdt
Q > al/ Q 8t

- / (f + vy )pdadt

Vo € C*(Q) such that ¢|s =0 and ¢(T) =0 in Q.

System (1) is parameter dependent system with missing boundary condition.
We want to act on this system in order to bring the average of the state to a
desired state. More precisely, we are interested by the following problem

inf J(v,g), Vg€ L*%), 2
et (v,9), Vge LX) (2)

where the cost function is given by

2

+N||U||2Lz(wT) ) (3)
L2(Q)

1
J(U7g) = ‘ / y(a,v,g)da — d
0

1
with z4 € L%(Q), N > 0 and / y(a,v,g)da € L*(Q) Vv € L*(wr) and V g €
0

LA(%).

As (2) has no sense, we will study this problem combining the notion of no-
regret and low-regret control introduce by J.L lion [2] to control problem with
incomplete data with the notion of averaged control introduce by E. Zuazua [16]
to control for parameter dependent system. So we first consider for any v > 0
the low-regret problem:

inf ( sup (J(wg)—J(O,g)—vllgIiz(m))- (4)

veL?(wr) \ geL2(%)

Then we prove that the low-regret control converge to the no-regret control
solution of the problem:

inf ( sup (J(’U,g) - J(ng))> ’ (5)

veL?(wr) \ geL2(%)



that we characterize by giving the corresponding optimality system.

The notion of no-regret and low regret control was introduced by J. L. Lions
[2] to control a parabolic equation governed with an operator free of unknown
parameter but with unknown initial condition. According to J.L. Lions, by
looking for such a control, one looks for the ”best possible control” v which do
”at least as well” and ”not much worse in the worst situation” than doing noth-
ing. This notion was then applied to control some model with incomplete data,
including model involving fractional derivative in time. We refer for instance to
[4, 10, 11, 13, 12, 14, 15]. The averaged control notion was introduced by E.
Zuazua [16] to analyse the problem of controlling parameter dependent systems.
In this notion, one is interested by the average of the state with respect to the
unknown parameter. for more literature on this topic we refer for instance to
[18, 19, 17] and the reference therein. In this paper we are concerned with the
control of a parameter dependent system with missing boundary condition. As
far as we know this problem is new.

The rest of this paper is stated as follows. In section 2, we reformulate the
low-regret and no-regret control problem (4) and (5). Section 3 is devoted to
the proof of the existence of the low-regret control and its characterization. In
Section 4, we prove that the low-regret control converges towards the no-regret
control that we characterize with an optimality system. Concluding remarks
are made in Section 5

2 Reformulation of the No regret and Low-regret
control

In this section we prove using Legendre-Fenchel transform that the inf-sup prob-
lem (4) is equivalent to a classical optimal control problem.

So, let f € L*(Q), v € L} (wr), g € L*(X), ag € L>®(Q), x € C([0,1] x Q)
and y" € L?(Q). Let also y(a,v,0), y(a, 0, g), y(a, 0,0) be respectively solutions
of:

W —div(k(a, 2)Vy(a,v,0) + agy(a,v,0) = f+ox, in Q,
y(()(, v, O) == 0 on Z,
y(0;0,0,0) = 3° in Q
dy(a,0 (6)
% —div(k(a, 7)Vy(a, 0,9) + aoy(a,0,9) = f in @,
y(Oé, 079) - on Z’ (7)
y(ovaaovg) = Z/O in Q
and
w —div(k(a, 2)Vy(a,0,0) + apy(e,0,0) = f in @,
y(,0,0) = 0 on X, (8)
y(07aa050) = yo in Q.



Then for almost every a € [0,1], the functions y(«,v,0) and y(«,0,0) belong
to L2((0,T); Hi(2)) N C([0,T]; L?(R2)) and we can prove by transposition that
y(a,0,g) belongs to L?(Q) and is such that,
0 ¢ dp .
— [ yo(0)dz + | k(a,x)g——dodt+ [ y|—— —div(k(a,z)Ve) + app | dedt
Q » ov Q ot
= / fedzdt,

Q
Y € C*(Q) such that ¢|s;, = 0 and ¢(T) =0 in Q.

1 1 1
Remark 1 Note that/ y(a, v, 0)da, / y(a, 0, g)da and/ y(a,0,0)da be-
0 0 0

long to L*(Q) because / y(a,v,g)da € L*(Q) for any v € L*(wr) and g €
0
L3(%).

Remark 2 Using Holder inequality, we have that if there exists a constant C
independent of o such that ||y||2g) < C then

‘/Oly(a,.,.)da

Lemma 2.1 For any v € L*(wr) and for any g € L*(X), we have:

( /O 1 m(a,x)acg':’“)da) gdodt, (9)

where J is the cost function given by (3) and ((a,v) = ((z,t; ,v) € Z21(Q) =:
L2((0,T); HX(Q) N HY(Q))n HY((0,T); L*(Q)) is solution of

<C.
L*(Q)

J(0,9) — J(0,9) = J(v,0) — J(0,0) + 2/Z

_8{(802, v) — div(k(a, 2)V{(a,v) + agl(a,v) = —/1 n(a,v)da in Q,
C(a,v) = 0 ’ on X,
10

with
n(a,v) = yla,v,0) —y(a,0,0). (11)

1
Remark 3 Note that in view of Remark 2, we have that/ n(a,v)da € L*(Q).
0



Proof. Observing that y(«,v,g) = y(a,v,0) + y(a,0,9) — y(«, 0,0), we have

2

1
J(v,g) / (las0.0) + y(@0.9) = yla0.0)da —za|
L2(Q

"’NHUH;(W)

1 2
= / y(a,v,O)da—Zd +NHUHiQ(u)T)
0 L2(Q)

1 1
+ (/ y(av 07 g)da - Zd) - (/ y(a, 07 O)da — Zd>
0 0 £2(Q)

+ 2/Q Mly(a,v,())da—zd] [/Ol(y(a,o,g)—y(a,070))da] dudt

1 1
2 2

= J('U,O) + || /(; y(avovg)da - Zd||L2(Q) + H -/0 y(a,ovo)da - ZdHLZ(Q)
B 2/

Q

r 1 1

s [ [ [ e —y(a,o,o»da} [ | ta.0.9 —y(a,mo»da] dudt

Q LSO 0

/Q _/Ol(y(a,O,O)da — zd)} {/Ol(y(a,O,g) — y(a,0,0))da} drdt
(v,0) +J(0,9) — J(0,0)

4 Z/Q _/Ol(y(a,v,O)—y(a,O,O))da} Uol(y(a,o,g)—y(a,o,o))da] dadt

Consequently,

2

1 1
/ y(a,0,9)da — zd} {/ y(a,0,0)da — zd} dxdt
0 0

_|_
[\

|
<

J(v,g) —1J(O,g) = J(v,0) — J(0,0)+ )
Q/Q UO (y(a,v,0) — y(a,0,0))da] [/0 (y(a,0,g) — y(a,0,0))da] ddt.

In view of Remark 3, system (10) has a unique solution ((a,v) € Z%Y(Q).
Moreover, there exists a constant C' > 0 independent of « such that

IC(a, v)|[L2¢0,7);m2(02)) < Cllvll L2 (wr)- (13)
Therefore, using the continuity of the trace operator, we have that

¢ (a,v)
< Cllvll L2 wr)- (14)
H ov L2(%) ()

We set
n(a,g9) = y(a,0,9) — y(a,0,0).



1
In view of Remark 2, we have that / m(a, g)da € L*(Q). Observing that
0

7(c, g) is solution of

or _ div(k(o, x)Vm) +apmr = 0 in Q,
= g on X,
m(0) = 0 in €,

if we multiply the first equation of (10) by fol (e, g)da and we integrate over
@, we have:

-/ I ((o,0,0) v(0,0,0)o]

_ /01 [/Q (_ 0N i, 2)VC 0, ) + aog(a,v)) W(a,g)dxdt] da

/ol(y(av 0,9) — y(a,O,O))da] dadt

ot

_ _/E(/Ol ﬁ(a,m)acg‘)‘y’”)da> gdodt

Hence,

/Q [/Ol(y(aw,O) - y(a7070))da} [/Ol(y(a,O,g) — y(a,0,0))da} dzdt

_ /Z ( /O 1n(a,x)acg‘;’“)da> gdodt. (16)

If we combine (16) and (12), we obtain that

J(v,g) — J(0,9) = J(v,0) — J(0,0) + 2/ (/01 Ko, 7) agg;: v)da) gdodt.

=

Remark 4 Ask € C([0,1]xQ), using (14), we have that KJ% is bounded in

1
L2(X) independently of a. It then follows from Remark 1 that/ k(a, ) aC(aa, v) da €
0 14

L*(X). This means that (9) has a sense.
From now on, we set

b 1
8(590;,1}) = ; /@(a,z)acgo;’v)da. (17)

Then according to (9), problem (5) is equivalent to:

inf ( sup (J(U,O) —J(0,0) + 2/ 65(;:1))gdadt>> . (18)

veL?(wr) gEL2(S) )



Consequently, the no-regret control belongs to the set

O¢(a

0= {v € L*(wr) such that T’U) is orthogonal to LQ(E)} . (19)
v

As such a control is not easy to characterize, we consider the low-regret control
problem. Using (9), problem (4) could be rewritten as

inf  (J(v,0) —J(0,0
UELH;(W)( (v,0) = J(0,0)

85(04,11) Yo o2
+2 sup /7gdc7dtff g ,
gem@( = L lgl13 sy

which by means of Legendre-Fenchel transform is equivalent to the following
problem: For any v > 0, find u” € L?(Q) such that

Jy(u?) = veLigl(fwT) Iy (v), (20)

where

¢ (e, v)
ov

Jy(v) = J(v,0) — J(0,0) + %

(21)

L2(x)

3 Existence and characterization of the low-regret
control

Our main objective in this section will be to show that the low-regret problem
(20) has a unique solution which converges to the no-regret control unique so-
lution of (18). Furthermore, we will give the equations that characterize the
low-regret control.

Remark 5 From now on, we use C(X) to denote a positive constant whose
value varies from a line to another but depends on X.

Proposition 3.1 There exists a unique low-regret control u” € L*(wr) solution

of (20).

Proof. Observing that We have:

2
/1 m(a,x)%da Vo € L*(wr),
0

1
_‘](an) < J(U7O) - '](070) + - ’
v v L2(%)

we have that the set {J,(v), J,(v) > —J(0,0), v € L?(wr)} is not empty. Con-
sequently, there exists m. such that

M~y = veggl(fw’T) J,Y(U).



Let v, € L?(wr) be a minimizing sequence such that
Iy (vp) — M. (22)

Then, y, := y(z, t; a, vy, 0) satisfies:

OYn, . .
% —div(k(a, 2)Vyn) + aoyn, = fHovnxe In @,
Yo = 0 on X, (23)
yn(0) = Y in €.

1
Let us set ¢, = C(vy) = / n(a,x)M
0 v
solution of (10).
In view of (22),there exists a constant C' > 0 independent of n and v such that
—J(0,0) < J,(vp) < C which implies:

da where ¢, = ((a,v,) is

0< J(vn, 0)+ = den < O+ J(0,0).
v || Ov
L2 (%)

Hence there exists a non negative constant C independent of n and ~ , such

that:
2

1 {196,
OSJ(vnaO)+7 ai Sca
7 2(x)
which implies that
J(v,,0) < C,
1|9 c
TN ey

Hence, using the fact that
2

1
J (00, 0) = / (0, vm, 0)der — 24
0

2
+N ||vn||L2(wT) )
L2(Q)

we deduce that

|vnllr2@ry < C, (24)

9Cn

s < OV, (25)
12(3)

IN

’ /01 yn(a, ., .)da C. (26)

In view of (23) and (24), there exists C' > 0 independent of n and + such
that

L2(Q)

ynllz2(0,m);m2(0)) < C. (27)



Hence, there exist u? € L?(wr), vy € L?((0,T); H}(2)) and subsequences ex-
tracted from (v,) and (y,) (still denoted (v,) and (y,)) such that

v, — u) weakly in L?(wr), (28)
yn — y? weakly in L*((0,T); Hy(Q2)). (29)

1

We set z,(x,t) = / Yn(a, x,t)da. Then in view of (26) there exist 27 € L?(Q)
0

such that

/an(x,t)ga(x,t)dxdt:/ol (/Q yn(m,t)ap(x,t)dxdt> —>/Qz7(x,t)g0(x,t)dacdt

Vo € L*(Q).
(30)
On the other hand, using the fact that y, is bounded independently of o and
the fact that

/yn(x,t)go(x,t)dxdt%/y’*(w,t)go(x,t)dmdt Vo € L*(Q), (31)
Q Q

it follows from the Lebesgue dominated convergence theorem that

/01 UQ yn(a,x,tw(x,t)dxdt} da/Q Mlyn(a,z,t)da] o(x, t)dzdt

converges towards

/01 [/Qy’Y(a,x,t)@(w,t)d:cdt} da:/Q [/Olywa’x’t)da} (e, )t

Therefore, from (30) and the uniqueness of the limit, we have that

/0 Y (o, x, t)da = 27 (z,t). (32)

We thus can write

1 1
// y(a,vn,O)godadxdt%// y(a,u?,0)p(z, t)dadzdt. (33)
QY0 QJo

The rest of the proof will be divided into steps.

Step 1. We prove that (u”,y") satisfies (6).

Let D(Q) being the set of functions of class C*° on @ with compact support.
Multiplying the first equation in (23) by ¢ € D(Q) and integrating by parts over
Q7

/ YUn (—8@ —div(k(a, 2) V) + amp) dzdt = / (f + vnxw)pdadt
Q ot Q



Passing this latter identity to the limit when n — oo while using (28) and (29),
we obtain that

/ Yy (_&p — div(k(a, ) V) + a0<p> dzdt = / (f +u”xo)pdxdt
Q ot Q

which after integration by parts gives over @,

N
/ <8y —div(k(a, ) VYY) + a0y7> pdzdt = / (f + v xw)pdzdt.
Q\ ot Q
Hence,we deduce that

i div(s(a, 2)Vy") + apy” = f +u 'y, in Q. (34)

Now, as, y? € L2((0,T), H}(Q)), u
This implies that y? € C([O,T],LQ( )). On the other hand y'Y € L2 and
div(k(a,x)vyY) € H71((0,T), L3(Q)). ThlS implies that y7 |y and 2 |E exist
and belong respectively to H=1((0,T); H~=(I')) and H~1((0,T); H~ (F))

Now, let ¢ € C®(Q) with ¢|x = 0 and ¢(T) = 0 in Q. If we multiply the
first equation in (23) by ¢ and we integrate over @, we obtain:

/OT/Q(f—i-vnxw)cpdmdt = /y o(x,0)dz

n / /yn (_ — div(x (a,x)vw)+ao<p> dudt,

which by passing to the limit when n — oo while using (28) and (29) gives

/OT/Q(erUVXW)gadxdt = —/ y2o(x,0)dx

_|_

Vo € C=(Q Wlthg0|g—0and<p( )=0in Q.

If we integrate the last integral in this latter identity, we obtain that

T
/0 /Q(f—ku'yxw)gad:cdt = — oy e(x,0)dz + [,y (z,0)p(z,0)dx

- (a0

+ / / ( —div(k(a, 2)vy? )+a0y7> dxdt,

Vo € C(Q Wlth@|2—0and(p( ) =0in Q.

10

using (34), we have that ayv € L?((0,T),H™
(@)

/ / <_ — div(r(a, 2)Ve) + aogo) dxdt,

HQ).

o >H 5/2((0,1); H’%(F)) H3/2((0,1); H%(F))



which in view of (34) yields

0 = [ (445 O)p(w,0)ds
Q
_ 2l ¢ (35)
<y (o), >H3/2((0,T);H§(F>),H3/2((0,T);H%(F)) ’
Y € C(Q) with ¢|s = 0 and ¢(T) =0 in Q.

If we take in addition gﬁ = 0 on X, we have /(fyo + y7(0))p(z,0)dz = 0,
v Q

which implies:
Yy (z,0) = yo(x), x € N (36)

Tt then follows from (35) that
y? =0on X. (37)

Now, combining (34), (36) and (37), we find that y” = y(a,u?,0) is solution of
(6). This means that

Y
% —div(k(a,2)Vy") +aoy” = fH+u¥xe. in Q,
v o= 0 on ¥, (38)
y7(0) = ¢° in Q.

Step 2. We show that ((a,v,) converges to (7 = ((«a,u”) which satisfies
(10).
We know that ¢, := ((z,t; a, v,,) is solution of

1
_ag;—div(m(a,x)vgn—i—ao(n = —/O(yn—y(a,O,O))da in Q,
G = 0 on X,
G(T) = 0 n 0

(39)

Therefore, using (26), we can say that there exists a positive constant C' inde-
pendent of n and ~ such that

H<n| |L2((O,T);H2(Q)) <C. (40)

And it follows from the continuity of the trace that

Haén

= <c. (41)

L2(s)

Consequently,there exists (¥ € L2((0,7T); H?(Q2)) and a subsequence extracted
from (¢(cv,vy,)) (still denoted ((c, vy,)) such that

Cn — ¢ weakly in L*((0,T); H*(2)). (42)

11



Multiplying the first equation in (39) by ¢ € D(Q) and integrating by parts
over @,

/ Ca ( P div(k(a, z)vy) +ao<p> dadt = —/Q </01(yn —y(a,0,0))da) pdadt

Passing this latter identity to the limit when n — oo while using (42), (30) and
(33), we obtain that

/ & ( _ div(r(o, 2)Vy) + aogo) dadt = —/Q (/Ol(y7 ~ (a0, 0))da) odudt

which after integration by parts gives over @,

/Q (—6;; — div(k(a,z) V() + aoC’Y> pdrdt = _/Q (/Ol(yv _ y(a,0,0))da> oddt,

Hence,we deduce that

—— —div(k(a, 2)V(") + ag¢” = —/O (y” — y(a,0,0))de in Q. (43)

Now, as (7 € L2((0,T), H*(2)), using (43), we have that 22" € L2((0,T), L*(2)).
This implies that y? € C([0,T],L?(Q2)). On the other hand, we have that
yils € L3(X).

Now, let ¢ € C*°(Q) with ¢|s, = 0 and ¢(0) = 0 in Q. If we multiply the
first equation in (23) by ¢ and we integrate over @, we obtain:

_/Q (/Ol(yn _ y(a,0,0))da) ot / / a ( _ div(x(a, ) V) + W) dudt,

which by passing to the limit when n — oo while using (42), (30) and (33)
gives

—/Q </01(y"’ — y(a,0,0))da> pdxdt = /OT /Q ¢ (aﬁf —div(k(a, z)Ve) + a0g0> dzdt,

Yo € C®(Q) with ¢|x = 0 and »(0) = 0 in Q.

If we integrate the last integral in this latter identity, we obtain that

_/Q (/Ol(y’Y — y(a,0,0))da) pdedt = [, ¢V(T)p(x,T)dx

— /(Wo (o, ) g—wdadt

/ / ——= —div(k(a,z)V(") + aOCV) dzxdt,
Vo € C(Q Wlth ¢|lx =0 and ¢(0) =0 in .

_|_

12



which in view of (43) yields

_ Op
0 = /QC’Y(T)QO(I,T)CZI/X:Cyli(()é,l‘)ayd(fdt, (44)
Vi € C(Q) with |y = 0 and ¢(0) = 0 in €.

0
If we take in addition 8780 = 0 on X, we have / ¢ (T)p(z, T)dx = 0, which
v Q

implies:

(2, T)=0, ze€q. (45)

It the follows from (44) that
¢7"=0on X. (46)

Now, combining (43), (45) and (46), we find that (7 = ((a, u?) is solution of

1
—% —div(k(a, 2)v() +agl? = —/ n(a,u)da in  Q,
=0 0 on X, (47)
¢Q(T) =0 in Q,
where as in (11),
77(04a u’y) = y(a7 u’yv O) - y(a, 0, O)
Moreover, using (41), we prove that
aacyn - 8<1/ weakly in L*(X). (48)
In view of (25), there exist 3 € L?(X) such that
% — B weakly in L*(%). (49)
v

This means that when n — oo,

1
/E(/O Ko, x) ;"da> gadadt—)/ﬁgodadt Vo € LA(%) (50)

* 1
because %n :/ A Cn
0

ov 8u
Using (41) and the fact that x € C([0, 1] x Q), we have that
/{(a,x)% Han (51)
0w |2y = Nl ow oy =

Hence it follows from (48) that

6<n 8C’Y 2
/Z(K:(oz,a:) 5 Yedodt — /E(n(a,x)ﬁ)godadt, VYo € L*(X). (52)
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Using the Lebesgue dominated convergence theorem and the uniqueness of the
limit, we deduce that

aC ! oY
5= = | wlon)Gda (53)
Step 3. We prove that «” is unique.

Using the weak lower semi-continuity of the function J,(v), (30), (32), (28),
(49) and (53), we deduce that

Jy(u7) <liminf J, (v,),
where
2
J112
+N|[u][
L* (%)

—J(0,0)+

Jy(u?) H/ (o, u”,0)dar—z4 H
! 12(@) v

(wr)*

As liminf J,(v,) = lim J,(vn) = Jilél(f )Jv (v), we obtain that u” is solution
n— oo n— 00 S wT
of (20). The strictly convexity of J, allows us to conclude that «” is unique.

]
We can now characterize the low-regret control u”.

Proposition 3.2 Let u., be the solution of (20). Then there exist p¥ € L*(Q)
and q7 € Z%1(Q) such that {y7,¢7,pY,q"} is solution to

M
e~ din(k(o,2) V) Fagy’ = frulxe in Q.
y’ = 0 on X, (54)
y(0) = o in 9,
a¢ !
—ﬁ—dw(m(a,x)vgw)—i—ao(y - _/ n(o,u)da in Q,
=0 ’ on X (55)
¢C(T) =0 in Q
ap”
ﬁ—dw(n(a x)VpT) +agp?’ = 0 in  Q,
gl
o \1[884 on X, (56)
v
7(0) = in Q
Oq" ! »
—— —div(k(a,2)Vq") + agq? = /<y7+ dao— 29 in Q,
0 din(s(on, )74 + ag (v + 2 ) da—z
77 =0 on X,
T = 0 in Q
(57)
and
1
u) = -~ q"do 1 wr, (58)

where ¢7 = ¢ (a,uY) and p¥ := p¥(a,uY).
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Proof. We have already proved in the Step 1 of Proposition 3.1 that the
the state y7 = y(a, u”,0) associate to optimal control u” satisfies (54). In Step
2, we obtain that (7 = {(«, u”) satisfies (55). To prove (56)-(58), we write the
Euler-Lagrange first order optimality condition which characterizes the optimal
control u”: " "

L 4 B0) — ()
6—0 0

=0 Vo€ L2 (wr). (59)

After some calculations

/Q (/Oly(a,m,o)da — zd> (/Oly(a,v)da> dudt
4—%/E (/01 Ii(a,x)gi(a,v)da> (/01 H(O‘>$)3€(a,u7)da) dodt

+N wodedt =0 Yove L*(wr), (60)

wT

where §(a, v) is solution to

9y _ div(k(a, 2)Vy) +apd = vx. in @,

y = 0 on %,

g0) = 0 in Q

and ((a,v) is solution to
¢ . . L .
—a—dw(ﬁz(aw)vg)—&—ao( = — [ glayv)da in Q,
_ 0
¢ =0 on X, (62)

Jr) = 0 in Q.

1
Now, if we multiply the first equation in (61) and in (62) by / q"(a,u")da € L*(Q)
0

1 1
and \7 / p” (a, u”)da respectively, then integrate by parts over ), we obtain
Y Jo

L s ([ ot o)
= /W v (/01 qv(a,u'y)da> dxdt, (63)
and
/2 H /o <"<a’””) ? (0"”>) da] [ /0 1 Maw)?ﬁ@ﬂ)m} dodt
= /Q [ /0 1 y(avv)da] [% /O 1p7da} dxdt. (64)
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Combining (60), (63) and (64), we have that

1
/ (Nu” +/ q”(a,u”)da) vdrdt =0, Yv € L*(wr), (65)
wr 0

which implies that
1
Nu” —|—/ q"(a,u”) =0 in wy. (66)
0

4 Existence and characterization of the no-regret
control

Proposition 4.1 The low-regret control u” converges in L*(Q) to the no-regret
control G, solution of (18).

Proof. From (20), we have that
J,() < 1,(0) =0, (67)

which in view of the expression of J,, given by (21) imples that

1 2 2 |12
1]o¢Y
‘ / yrdo — zq +N||uV||2LQ(wT) + - ai < J(0,0).  (68)
0 L2(Q) v v 12(%)
Hence, we deduce that
J(0,0)
w2 @wr) < TUN (69)
¢ s
‘ W < J(Ov 0)\57 (70)
L2(%)

< VJ(0,0) + ||zl L2 (g)- (71)

1
‘/ v (o, ., .)da
0

In view of (69) and (54), there exists C' > 0 independent of 7 such that

L2(Q)

Y| L2 0,7y 12 (2)) < C. (72)

Thus, there exist @ € L?(wr), § € L2((0,T); H:()) such that

weakly in L*(wr), (73)
weakly in L?((0,T); Hy(Q)). (74)

IS
Y
|

=33

<
2
l

<
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Using (73), (74) and (54), we show as in pages 9-11 that § = y(«, @, 0) satisfies

Py
9 div(k(a, 2)V)) +apy = f+idx. in Q,
g = 0 on X,
9(0) = o° in Q.

Moreover, using (71), (74) and the Lebesgue dominated convergence theorem,
we have that

1 1
/ y(a,u?,0)doa — / y(a, @, 0)da weakly in L?(Q). (76)
0 0

From (71) and (55), we prove that there exists a positive constant C' such
that
‘|<(a’UW)HL%(O,T);H?(Q)) <C (77)

Therefore the continuity of the trace allows us to write that

o¢Y
2] <e -

L2
Consequently, there exists ¢ € L2((0,T); H2(2)) such that
C(a,uY) = C weakly in  L2((0,T); H(2)). (79)

Therefore proceeding as for ¢, in pages 11-14, we prove that { = ¢ (o, @) is
solution to

aA . . 1
_aig - diV(K/(O@ J")vg) + CL()C = _/ (:0 - y(aa Oa 0))da in Q)
. 0
¢ =0 on X, (80)
{(T) = 0 in Q.
Moreover, using (78), we have the following
3 .
68% - a—i weakly in  L*(X). (81)
In view of (70),
™
a5 0 strongly in L*(X). (82)

ov ov
we have that
oc¢Y

ov

o¢ ! a¢ , —
Because — = k(a, x)—=—da. Using (78) and the fact that k € C([0, 1] x£2),
0

8 <7L
ov

<C. (83)

L2(2)

k(a, x)—=—

<c|

L2(0)

17



Hence it follows from (81) that

/E (/{(a x)aaC“*) wdodt —>/ < k(o x)gé> edodt, Vo€ L*(X). (84)

Using Lebesgue dominated convergence theorem and (82), we deduce that

1 aé
0:/0 H(a,x)%da, (85)

which in view of (19) allows to say that & € O. Therefore, we conclude that
the low-regret control u” converges to the no-regret control &. m

Proposition 4.2 The no-regret control @, solution of (5) (or equivalently (18)),
1s characterized by following optimality system.:

9
@ _ div(k(o,2)VY) +agy = [f+axe in Q,
g = 0 on X,
9(0) = y° in  Q,
aC 2 : v .
=5~ dintsla, )70+l = = [ (G- yla.0.0)da i Q
N 0
¢ 0 on X (87)
¢(T) 0 in  Q,
op . R .
% div(k(a,z)Vp) +agp = 0 in Q,
p = A on X (88)
ﬁ -0 in Q
94 . . .
—a—dw( k(a,2)V§) +agqg = y+)\2 )da — z4 in  Q,
g = () on X,
qry =0 in
(89)
and
i= L [ ida 90)
Q=g | ddain wr. (

1 !
where \; = ili}% \f;;/ and Ay = %13% \ﬁ/o p7 (e, u™)da.

Proof. we have already relations (86) and (87) ( see (75) and (80) ). The
proof of (88)- (90) is obtained by passing to the limit in (56) - (58). To this end

we will proceed in 3 steps.
Step 1. We show that p satisfies (88).
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In view of (70), we have that there exists a positive constant C' such that:

1 ¢
VY OV s
which in view of (56) allows us to say that
Hp’YHL%Q) <C. (92)

Hence, there exists A\; € L*(X) and p € L?(Q) such that:
RS

VY ov

p? — P weakly in L*(Q). (94)

— A\ weakly in L*(%), (93)

If we multiply the first equation in (56) by ¢ € D(Q), we get

op” )
0 = / (ﬁ —div(k(a, 2)Vp") 4 aop? ) pdxdt
dp
= / p? [ ——= — div(k(a, ) Vo) + agp | dzdt.
Q ot

Passing this latter identity to the limit when v — 0 while using (94), we deduce
that

0 = / D <_3<p —div(k(ao, 2) V) + amp) dzdt
0 ot

which after integration by parts gives

0 = / (({9]9 —div(k(a, ) Vp) + a0ﬁ> pdxdt,
o \ 0t

from which we get,

@ —div

Y (k(e, 2)Vp) +aop =0 in Q. (95)

Asp e L?(Q) and % € L*((0,T), H %(Q2)) we have that p € C([0, T], H~*(€2)).On
the other hand, p € L?(Q) and div(x(a, z)vp) € H1((0,T), L*(Q)). This im-
plies that that p|s and % |5 exist and belong respectively to H~*((0,T); H~2(T))
and H=1((0,7); H—2(I)).

Now, let ¢ € C*(Q) with ¢|x = 0 and ¢(T") = 0 in Q. If we multiply the
first equation in (56) by ¢ and we integrate over @, we obtain

LT e2® R B
/z\ﬁal/ /ﬁ(a,x)aydadt—i—/Qp ( ot div(k(a, )V + agp) | dedt =0
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Passing this latter identity to the limit when v — 0 while using (93) and (94),

we obtain

/ )\m(a,x)a—(p +/ P _9% div(k(a, )V + agp) | dedt = 0,
» ov Q ot

Vo € C(Q) such that |y =0 and ¢(T') = 0,

which after integration by parts yields

oo .
[ r0n a5+ (50). (00130
R dp
(B, (e, x>?{9>ﬁ—3/2<<o,T>;H*%<F>>7H3/2<<0,T>;H%<r>>+
37]1[: — div(k(a, z)VD + aop) | edxdt =0
Q _
Vo € C°(Q) such that ¢|s =0 and ¢(T) = 0.

In view of (95), we deduce that

5 (1(0), (0)) i1, 12 (2)—

. ¥ —

(a=2) w250 a0 = ooy, o2 st ) = O
Vo € C*(Q) such that ¢|s, =0 and ¢(T) = 0.

If we take in addition g—f =0 on X, we have

JROEOE
Q
which implies that

$(0) =0 in Q,
and it follows from (96) that

. dp
/E(/\l —p)n(a,x)a = 0.

This implies

]3 =\ on X.
Combining (95), (97) and (98), we have that p satisfies (88) .

Step 2. We show that ¢7 converge towards ¢ which satisfies (89).

Let ¢ and g5 be respectively solution of

dq] !
—% —div(k(a, 2)Vq]) + apq] = / yda—zg in Q,
0
q =0 on X,
@(T) = 0 in Q

20
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and

vy 1y
,88% —div(k(a, 2)Vqy) + apqy = / P i Q,
R o V7 (100)
g = 0 on X,
@) = 0 in Q.

Then ¢; + g = ¢”, solution of (57). According to (71), there exists a constant
C > 0 independent of v such

a7 || 2 ((0,1);m2(02)) < C. (101)
Therefore there exists §; € L2((0,T); H?(€2)) such that
q] — ¢ weakly in L?((0,T); H*(Q)). (102)

Proceeding as for ¢, in pages 11-14, we prove using (102) and (76) that ¢ is
solution to

6 1
—% —div(r(a,2)Vq1 + aoqr = / gda—zq in  Q,
t . 0 (103)
a = 0 on X,
@a(T) = 0 in Q.
To complete the proof of the convergence of ¢, we need to prove that prove
v
that p < C for some C' > 0 independent of ~.
o Vi 12(Q)

We COIlSldeI" the following set

£ = {<I>(v) = /01 7(a,v,0)da|v € Lz(wT)} : (104)

In view of Remark 1, £ C L?(Q). We define on € x € the inner product:

(P(v), p(w))e = /va d:vdtJr/Q (/01 g(a,v,O)da) </01 y(a,w,O)da) dxdt,

Y& (v), p(w) € E.
(105)
Then £ endowed with the norm
2

|<I)(v)||§:/Q|v|2dxdt+/Q</01y(a,v,0)da> dedt, ¥O(v) € € (106)

Is an Hilbert space. Now if we combine (60) and (64), we obtain that

/Q [/olg(a’”)da] [\% /O 1p”dou} dxdt = N » v dedt+
/Q </01 y(o,u”, 0)der — Zd> (/01 y(a,v)da> dedt v € L*(wr).
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1 !
We set T, (u) = \ﬁ/ pda. Then in view of (107),
0

/Tv(uw)q)(v)dxdt = N [pu'vdzdt
Q

+ /Q </01y(a,u7,0)da - zd> </01 g(a,v)da) dudt

Vove LQ).
(108)
Observing that there exists a constant C' independent of v such that

1 1
‘/ (/ y(a,u?,0)do — zd> </ y(a,v)da) dacdt+N/ uv dxdt‘ <
Q \JO 0 Q
1 1/2
(WAy@Mﬂﬂﬂa—%ﬁa@+AﬂWW§@J o)l < Cla)e
because of (69) and (71). We then deduce from (108) that
‘/ (u")® dxdt‘ < C|®(W)|le-

This means that

1
Il = || 5 [ e <c.
ol g \/ry N e
In particular
1 /1
— | plda <C. (109)
H \ﬁ 0 L2(Q)
This implies that
g3 112 (0,1 m2(02)) < C- (110)
Therefore there exist §o € L2((0,T); H*(Q)) A2 € L?(Q) such that
g — G2 weakly in L*((0,7T); H*(Q)), (111)
1 /1 —
— [ p’da — X9 weakly in L°(Q). (112)
V7 Jo

Proceeding as for {, in pages 11-14, we prove using (111) and (112) that s is
solution to

04
- div(k(o, £)V§2) +aoda = A2 in  Q,

ot (113)
42 = 0 on X,
G2(T) = 0 in

From (101) and (110), we have that ¢7 = ¢] + ¢J is such that

lg"lr2@) < C (114)
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for some C' > 0 independent of ~. Hence,
q" — 41 + ga = § weakly in L*(Q) (115)

and ¢ satisfies (89).
Step 3. Using Remark 2 and (114), we have that

1
’ / q"do
0

and using Lebesgue dominated convergence theorem we prove that

<C. (116)

L2(Q)

1 1
/ q"da — / qda weakly in L?(Q). (117)
0 0

Finally passing to the limits in (66) while using (73) and (117), we deduce (90).
[

5 Concluding remarks

In this paper, we proved that averaging the cost function related to our model,
the system is still controllable and gives an optimal control which does not
depends of the unknown parameter. Using the Lebesgue dominated convergence
theorem, we remark also that as v — 0, the limits of the average state is not
far from the average of the limit of the corresponding original state.
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