
HAL Id: hal-01857359
https://hal.science/hal-01857359v1

Submitted on 15 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic caching framework, an application to
FPGA-based application for IoT security monitoring

Laurent d’Orazio, Julien Lallet

To cite this version:
Laurent d’Orazio, Julien Lallet. Semantic caching framework, an application to FPGA-based appli-
cation for IoT security monitoring. Open Journal of Internet of Things, 2018. �hal-01857359�

https://hal.science/hal-01857359v1
https://hal.archives-ouvertes.fr

c© 20XX by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of XXX (OJXX)
Volume X, Issue X, 20XX

http://www.ronpub.com/ojxx
ISSN XXXX-XXXX

Semantic caching framework, an application to
FPGA-based application for IoT security

monitoring
Laurent d’Orazio 1, Julien Lallet 2

1 Univ Rennes, CNRS, IRISA, Lannion, France, laurent.dorazio@univ-rennes1.fr
2 Nokia Bell Labs, Lannion, France, julien.lallet@nokia-bell-labs.com

ABSTRACT

Security monitoring is one subdomain of cybersecurity which aims to guarantee the safety of systems, continuously
monitoring unusual events. The development of Internet Of Things leads to huge amounts of information, being
heterogeneous and requiring to be efficiently managed. Cloud Computing provides software and hardware resources
for large scale data management. However, performances for sequences of on-line queries on long term historical
data may be not compatible with the emergency security monitoring. This work aims to address this problem by
proposing a semantic caching framework and its application to acceleration hardware with FPGA for fast- and
accurate-enough logs processing for various data stores and execution engines.

TYPE OF PAPER AND KEYWORDS

Visionary paper: hardware acceleration, semantic caching, security monitoring

1 INTRODUCTION

Security monitoring is one subdomain of cybersecurity.
It aims to guarantee the safety of systems, continuously
monitoring unusual events analyzing logs. A system
in this context is very variable. It can actually be an
information system in any institution or any devices,
like a laptop, a smartphone, a smartwatch, a vehicle
(car, plane, etc.), a television, etc. Thus, the data to be
managed with a high Velocity, are Voluminous with a
high Variety. Security monitoring for Internet of Things
(IoT) can thus be seen as a concrete use case of Big Data
[1].

Cloud computing [2] and Big Data have led to the
emergence of new data management systems, as an
alternative to Relational Database Management Systems
(DBMS) : column-stores like Big Table [3] or systems
based on Massively Parallel Processing (or MPP) [4],

[5], [6], [7], especially those relying on MapReduce [8],
Spark [9] or Flink [10]. However, the performance of a
sequence of online queries on long term historical data
may be low. For example, during a potential attack an
administrator may be interested in retrieving logs for a
given user. Such a process may require some minutes.

Semantic caching [11], [12], [13], [14], [15] allows to
exploit resources in the cache and knowledge contained
in the queries themselves. It enables effective reasoning
(analysis and processing), delegating part of the compu-
tation process to the cache, reducing both data transfers
and CPU load on servers. Nevertheless, reasoning
on the cache content induces non-negligible overhead
[16]. This thus raises the challenge on providing finely-
tuned caches with appropriate analysis and processing
capability with respect to access patterns (for instance
supervisors with first coarse grain queries and then
refining researchers), performances indicators (response

1

http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojxx

Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

time, quality/freshness, energy consumption, etc.) and
hardware acceleration opportunities.

Hardware acceleration has been proved as a relevant
solution in data processing. During the last decades
some operators have been implemented on Graphic
Processing Units (GPUs) [17], [18] and more recently
Field-Programmable Gate Arrays (FPGAs) have been
used for sorting networks [19], [20]. These previous
results have shown that efficient use of FPGAs thanks to
proper computation model and related implementation.
Nevertheless, existing work do not take into account the
semantic of queries. For example, if an administrator
after a first query on HTTP accesses wants to refine his
research and retrieve logs related to a given user, he
will have to wait again for the query to be processed on
servers as for the first request, whereas the results are
included in his previous research.

This paper aims to fill in the gap between
few-expressive hardware acceleration and fine-grained
knowledge expensive query processing with a direct ap-
plication in security monitoring for IoT. On the one hand
it aims at providing a framework and its implementation
for query processing on FPGA so as to provide tunable
caching, with on the shelf solutions, for large-scale data
management environment. On the other hand, it posi-
tions existing works with respect to security supervision
so as to list research challenges.

The remainder of this paper is organized as follows.
In Section 2, we provide the background information
that is used throughout the paper. Section 3 details our
cache framework and describes our multi-layered imple-
mentation with FPGA acceleration. Finally, Section 4
concludes this paper as a list of research challenges.

2 BACKGROUND

This section introduces security monitoring and its link
with data management in cloud computing. It describes
big data technologies in cloud computing that can be
used as building blocks for a platform dedicated to logs
analysis. It then presents semantic caching as an opti-
mization opportunity, defines FPGA and describes our
motivation to enable efficient large-scale logs analysis
via FPGA-based semantic caching.

2.1 Running Example on security monitoring

The proposal will be illustrated through a security mon-
itoring example. In this context, administrators access
dashboards to analyze logs. Figure 1 presents some
examples of data, that is to say some logs for a HTTP
server.

In such a context, the monitoring tool is based on
different kinds of queries. They can consist of range

queries for instance to get the traffic for a given period
of time (for instance between 0:00:00 and 1:00:00 first
of July). They also may be interested in aggregation
queries, for instance to spot the machine with the biggest
traffic.

Security monitoring experts are directly concerned
by Big Data issues. Indeed, they have to efficiently
monitor various systems and their number is growing,
in particular due to always more increasing amount of
IoT. In addition, they are interested in collecting and
storing data for long time periods to be able to detect
sophisticated intrusions with events spread on large time
frames.

2.2 Cloud Computing and Big Data

During the last decade, many data management systems
have been proposed so as to address the specific behav-
iors of cloud computing [2] and Big Data, in particular
the scalability/elasticity to exploit resources in large
data centers. Some solutions consist in systems with a
declarative language on top of distributed file systems
like Pig [4], SCOPE [5], Hive [6] or Jaql [7]. Others
consist in a column-store like Big Table [3] or Cassandra
[21]. On top of these stores different execution engines
can be deployed such as MapReduce [8], Tez [22],
Spark [9] or Flink [10]. These tools can be seen as
interesting building blocks to manage large number of
logs in security monitoring.

2.3 Semantic caching

Semantic caching [11] [12] allows to exploit resources
in the cache and knowledge contained in the queries
themselves. As a consequence, it enables effective
reasoning, delegating part of the computation process to
the cache, reducing both data transfer and the load on
servers.

When a query is submitted to a cache, it is split into
two disjoint pieces: (1) a probe query, which retrieves the
portion of the result available in the local cache, and (2)
a remainder query, which retrieves any missing tuples in
the answer from the server. If the remainder query exists
then it is sent to the server for processing.

Example 1 Consider a semantic cache storing an entry
e date <′ 07/01/1995− 0 : 00 : 00′ and a posed query
q ip =′ 131.254.254.30′. In that case a probe query
probe is date <′ 07/01/1995 − 0 : 00 : 00′ ∧ ip =′

131.254.254.30′ can be processed in the cache while a
remainder query remainder date 6=′ 07/01/1995− 0 :
00 : 00′ ∧ ip =′ 131.254.254.30′ has to be sent to the
server.

2

Laurent d’Orazio, Julien Lallet: VLIOT18

h o s t logname t ime method u r l r e s p o n s e b y t e s r e f e r e r u s e r a g e n t
1 9 9 . 7 2 . 8 1 . 5 5 −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 0 1 −0400] ”GET / h i s t o r y / a p o l l o / HTTP / 1 . 0 ” 200 6245
unicomp6 . unicomp . n e t −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 0 6 −0400] ”GET / s h u t t l e / countdown / HTTP / 1 . 0 ” 200 3985
1 9 9 . 1 2 0 . 1 1 0 . 2 1 −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 0 9 −0400] ”GET / s h u t t l e / m i s s i o n s / s t s −73/ mis s ion−s t s −73. h tml HTTP / 1 . 0 ” 200 4085
b u r g e r . l e t t e r s . com −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 1 −0400] ”GET / s h u t t l e / countdown / l i f t o f f . h tml HTTP / 1 . 0 ” 304 0
1 9 9 . 1 2 0 . 1 1 0 . 2 1 −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 1 −0400] ”GET / s h u t t l e / m i s s i o n s / s t s −73/ s t s−73−pa tch−s m a l l . g i f HTTP / 1 . 0 ” 200 4179
b u r g e r . l e t t e r s . com −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 2 −0400] ”GET / images /NASA−l o g o s m a l l . g i f HTTP / 1 . 0 ” 304 0
b u r g e r . l e t t e r s . com −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 2 −0400] ”GET / s h u t t l e / countdown / v i d e o / l i v e v i d e o . g i f HTTP / 1 . 0 ” 200 0
2 0 5 . 2 1 2 . 1 1 5 . 1 0 6 −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 2 −0400] ”GET / s h u t t l e / countdown / countdown . h tml HTTP / 1 . 0 ” 200 3985
d104 . aa . n e t −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 3 −0400] ”GET / s h u t t l e / countdown / HTTP / 1 . 0 ” 200 3985
1 2 9 . 9 4 . 1 4 4 . 1 5 2 −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 3 −0400] ”GET / HTTP / 1 . 0 ” 200 7074
unicomp6 . unicomp . n e t −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 4 −0400] ”GET / s h u t t l e / countdown / c o u n t . g i f HTTP / 1 . 0 ” 200 40310
unicomp6 . unicomp . n e t −− [0 1 / J u l / 1 9 9 5 : 0 0 : 0 0 : 1 4 −0400] ”GET / images /NASA−l o g o s m a l l . g i f HTTP / 1 . 0 ” 200 786

Figure 1: Example of logs of a HTTP server

Semantic caching has been successfully used in var-
ious contexts: distributed databases [11] [12], mobile
environments [13], data warehouses [14], Web [15],
Peer-to-Peer systems [14], etc.

2.4 FPGA

Field-Programmable Gate Array (FPGA) is an integrated
circuit designed as a programmable device. FPGAs can
be configured to process specific applications, as this
is the case for Application Specific Integrated Circuits
(ASIC), except that FPGAs can be reprogrammed at
runtime to modify the functionality of the hardware
circuitry.

FPGAs are mainly composed of configurable logic
blocks (CLBs) and configurable Input/outputs (IOs).
The CLBs are the basic elements of the processing
resources of FPGAs and are made of two basic compo-
nents: flip-flops and lookup tables (LUTs). The LUTs
can be seen as small memories where preprocessed
results of functions are stored. The inputs of the LUT
are the function variables. The exhaustive input possible
sets are first processed off-line (synthesis) and stored in
the LUT so that the right ”address” of the LUT is selected
at runtime by the LUT inputs. If needed, flip-flops placed
after the LUTs will make the function synchronous.
Additionally, application specific functions or memories
can be added in the FPGA in order to extend and
enhanced the performances. Finally, CLBs are joined
through programmable interconnections and constitute
the whole algorithm to compute.

The well spread use of FPGAs in data centers nowa-
days allows us to consider these processing resources
as standard solutions for acceleration. Using FPGAs in
cloud infrastructures allows to fill the gap between the
processing flexibility offered by GPPs and the efficiency
which can be achieved by ASIC.

2.5 Motivation

Big Data technologies are promising for large-scale log
analytics. On one hand they can be used for long-
term storage. On the other hand they can handle data

processing on large clusters. However, they do not
address fine-grained reusability. In particular, they may
induce unnecessary query re-executions.

Middleware- or application-level semantic caching
have been successfully used to improve query execu-
tion. A semantic cache can store results and support
an interface to answer query using the cache content.
Unfortunately, the expressiveness gain is the result of
non-negligible overhead [16], especially due to the com-
plexity of query rewriting [23].

Hardware acceleration with FPGA opens new re-
search directions, with large scale logs analysis in se-
curity monitoring as an interesting use case. Indeed,
caching is relevant (in terms of response time, energy
consumption or quality of results) only if it is finely
tuned with respect to its environment. This first makes
in mandatory to provide a semantic caching framework
for FPGA as well as the associated implementation.
Then it requires to address challenges with respect to
the infrastructure environment (rewriting and optimizing
queries on FPGA) and the application (validating the
solution for security monitoring).

3 FPGA-BASED SEMANTIC CACHING

The proposed platform for historical logs analysis is
based on semantic caching deployed on FPGA and con-
figured for a given data store and execution environment.
The coarse grain vision is the one illustrated by figure 2.
Log data are stored for a long period, generating large
volume of information on a Big Data storage system
deployed over commodity hardware. This data store can
be a distributed file system-based solution (for instance
Hive), a column-store like HBase or Cassandra, a key-
value store like MongoDB, etc. This level thus consists
in large cold data with low response time.

Logs analysis may rely on different execution envi-
ronments like Dryad, MapReduce, Tez or Spark. After
logs processing, accessed data will be copied on high-
performant, yet limited, hardware namely FPGA, used as
a caching-level enabling efficient processing of hot data.

The proposal consists in two main contributions; (1)

3

Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

a cache framework to provide adaptability for not only
various kinds of storage or processing solutions but
also to define appropriate caching strategies in terms of
management, replacement or resolution; and (2) multi-
layered implementation with FPGA acceleration consist-
ing of operators for query processing (select, join, etc.).

Figure 2: Overview of the architecture

3.1 Cache framework

The main objective of the proposed cache framework
is to make available an abstract cache that will then be
finely tuned to match the requirements of the considered
application. Especially, it will enable to instantiate
semantic caches on a distributed environment for various
kinds of systems.

The proposed cache framework is based on the Sepa-
ration of Concerns (SoC) design principle [24]. It con-
sists of three components, Cache Manager, Replacement
Manager and Resolution Manager, for the main features
to take into account which are: (1) cache management,
(2) replacement and (3) resolution.

3.1.1 Cache Management

Cache management mainly consists in two aspects: ad-
dressing and searching. Addressing can be identity-

based, when a unique identifier is associated to a cache
item (for example for page caching). Addressing can
also introduce some knowledge, when a collection of
elements can be accessed through a query like in a
semantic cache. Searching is in charge of looking for
a given object in the cache. Since this is a frequent
operation it has to be efficient. Different searching
schemes can be adopted [25]: direct search, sorted table,
hash table, etc.

3.1.2 Replacement

Replacement is necessary when items have to be added
in the cache while the amount of storage allocated to it is
full. A policy is then used to determine elements to evict.
Many replacement policies exist: random, Last Recently
Used (LRU), First In First Out (FIFO), Least Frequently
Used (LFU), etc. Choosing a policy mainly depends on
the access patterns of the considered application.

3.1.3 Resolution

The resolution protocol [26] consists in the process to be
executed to retrieve missing elements. It first manages
communications with the server side. As a consequence,
different protocols enable to consider various servers/big
data management systems.

The resolution protocol can also be used to leverage
the load on sibling or father caches. Both of them try to
look for the requested elements in their own content. The
main difference between them is that a father cache must
provide the element, even it does not possess it (leading
to another resolution), while a sibling cache does not
have to.

In addition, different resolution protocols can be used
for sibling caches, for example with flooding like in the
Internet Cache Protocol (ICP) [27] or with a catalog [28].

3.2 Multi-layered implementation with FPGA
acceleration

The foreseen cache framework will have to support the
implementation of multi-layered application. The first
layer, which will be the front-end interface for queries,
will be a standard software layer. Depending on the sta-
tus of the cache management, it will have the possibility
to answer the queries as done in legacy systems, or, if
possible, benefit of the acceleration processing offered
by the second layer. The latter is the FPGA layer and will
provide efficient hardware acceleration for the software
layer. In this prospective view, software layers may run
in virtual machines or containers according to current
function implementation in data centers. The multi-
layered architecture is described figure 3. On the right
side of the picture, a server is used to host the software

4

Laurent d’Orazio, Julien Lallet: VLIOT18

Figure 3: Two layers server infrastructure

layer, while, on the left side, a FPGA board, connected
through PCIe interface will host the second layer. To
ensure the efficiency of implemented algorithms, fast
and low latency communications link will be proposed
inspired from high frequency trading FPGA infrastruc-
tures [29]. Furthermore, accelerators sharing solutions
will be designed to enhanced the flexible and parallel use
of the available FPGA resources among queries.

4 RESEARCH CHALLENGES

This paper presents a FPGA-based Semantic Caching for
big logs analysis. It has first introduced an overview
of the considered architecture. It has then described a
proposal of cache framework so as to instantiate finely
tuned cache instances. After that it has discussed a multi-
layered implementation with FPGA acceleration.

The proposed context covers domains such as
database management, parallel and distributed sys-
tems, High-Performances Computing (HPC), security or
Human-Computer Interaction (HCI). As a consequence,
it consists in a relevant use case for many research
directions. By way of conclusion, this section lists some
of them from a data management and parallel systems
perspective.

4.1 Query rewriting

Query rewriting has been extensively studied during
decades in the data base community (interesting readers
can refer to this representative survey [23]). However,
big data and client caching make it possible to tackle
the problem from a new perspective [30]. Indeed,
query processing may be so expensive that overhead due
to NP-complete problem such as satisfiability may be
beneficial. In this context, it is necessary to provide
a formal framework for semantic caching considering
Select Project Join (SPJ) queries with aggregation.

4.2 Multi-objective query processing

Multi-objective query processing has recently gained
increasing attention [31], [32], [33], [34] especially due
to the tradeoff between efficiency and expensiveness
of scalable processing in a pay-as-you-go environment.
FPGA-semantic caching makes it possible to extend the
research problem increasing heterogeneity and adding
quality as another objective, when response time may be
reduced scarifying quality (consistency) of results.

4.3 Benchmarking

Performance analysis is a well-known domain in
databases [35], [36], [37], [38]. Several benchmarks
have been developed, especially with corporation such
as TPC providing benchmarks for OLTP, integration or
Big Data systems1. Unfortunately, these benchmarks do
not take into account the specificities of cybersecurity,
being in terms of data and queries. For example some
intrusions may be subtil, with sparse events on a long
period of time. This makes it necessary to extend
current solutions to take into account these behaviors and
provide data sets and queries. This will thus provide a
reproductible environment to compare solutions in this
field.

ACKNOWLEDGEMENTS

We would like to thank members of SHAMAN team
at IRISA, Nokia Bell Labs and VLIOT reviewers for
insightful comments.

REFERENCES

[1] D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska,
P. A. Bernstein, M. J. Carey, S. Chaudhuri, J. Dean,
A. Doan, M. J. Franklin, J. Gehrke, L. M. Haas,
A. Y. Halevy, J. M. Hellerstein, Y. E. Ioanni-
dis, H. V. Jagadish, D. Kossmann, S. Madden,
S. Mehrotra, T. Milo, J. F. Naughton, R. Ramakr-
ishnan, V. Markl, C. Olston, B. C. Ooi, C. Ré,
D. Suciu, M. Stonebraker, T. Walter, and J. Widom,
“The Beckman report on database research,” Com-
munications of the ACM, vol. 59, no. 2, pp. 92–99,
2016.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Communications of the ACM,
vol. 53, no. 4, pp. 50–58, 2010.

1www.tpc.org

5

Open Journal of XXX (OJXX), Volume X, Issue X, 20XX

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber, “Bigtable: A Distributed Storage
System for Structured Data,” ACM TOCS, vol. 26,
no. 2, pp. 4:1–4:26, 2008.

[4] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins, “Pig latin: a not-so-foreign language
for data processing,” in SIGMOD, Vancouver, BC,
Canada, 2008, pp. 1099–1110.

[5] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou, “Scope: easy
and efficient parallel processing of massive data
sets,” PVLDB, vol. 1, no. 2, pp. 1265–1276, 2008.

[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy,
“Hive - a petabyte scale data warehouse using
Hadoop,” in ICDE, Long Beach, California, USA,
2010, pp. 996–1005.

[7] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin,
M. Y. Eltabakh, C.-C. Kanne, F. Özcan, and E. J.
Shekita, “Jaql: A Scripting Language for Large
Scale Semistructured Data Analysis,” PVLDB,
vol. 4, no. 12, pp. 1272–1283, 2011.

[8] J. Dean and S. Ghemawat, “MapReduce: simplified
data processing on large clusters,” Communications
of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia, “Spark sql: Relational
data processing in spark,” in SIGMOD, Melbourne,
Victoria, Australia, 2015, pp. 1383–1394.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas, “Apache Flink: Stream
and Batch Processing in a Single Engine,” IEEE
Data Engineering Bulletin, vol. 38, no. 4, pp. 28–
38, 2015.

[11] A. M. Keller and J. Basu, “A Predicate-based
Caching Scheme for Client-Server Database Archi-
tectures,” VLDBJ, vol. 5, no. 1, pp. 35–47, 1996.

[12] S. Dar, M. J. Franklin, B. b. Jónsson, D. Srivastava,
and M. Tan, “Semantic Data Caching and Replace-
ment,” in VLDB, Mumbai (Bombay), India, 1996,
pp. 330–341.

[13] K. C. K. Lee, H. V. Leong, and A. Si, “Semantic
query caching in a mobile environment,” Mobile
Computing and Communications Review, vol. 3,
no. 2, pp. 28–36, 1999.

[14] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and
K.-L. Tan, “An adaptive peer-to-peer network for
distributed caching of OLAP results,” in SIGMOD,
Madison, Wisconsin, USA, 2002, pp. 25–36.

[15] B. Chidlovskii and U. M. Borghoff, “Semantic
Caching of Web Queries,” VLDBJ, vol. 9, no. 1,
pp. 2–17, 2000.

[16] B. b. Jónsson, M. Arinbjarnar, B. \THórsson, M. J.
Franklin, and D. Srivastava, “Performance and
overhead of semantic cache management,” ACM
TIT, vol. 6, no. 3, pp. 302–331, 2006.

[17] G. Teodoro, E. Valle, N. Mariano, R. da Silva
Torres, W. M. Jr., and J. H. Saltz, “Approximate
similarity search for online multimedia services on
distributed CPU-GPU platforms,” VLDBJ, vol. 23,
no. 3, pp. 427–448, 2014.

[18] T. Karnagel, R. Müller, and G. M. Lohman, “Op-
timizing GPU-accelerated Group-By and Aggre-
gation,” in ADMS@VLDB, Kohala Coast, Hawaii,
USA, 2015, pp. 13–24.

[19] R. Müller, J. Teubner, and G. Alonso, “Sorting
networks on FPGAs,” VLDBJ, vol. 21, no. 1, pp.
1–23, 2012.

[20] L. Woods, Z. István, and G. Alonso, “Ibex - an in-
telligent storage engine with support for advanced
{sql} off-loading,” PVLDB, vol. 7, no. 11, pp. 963–
974, 2014.

[21] A. Lakshman and P. Malik, “Cassandra: a de-
centralized structured storage system,” Operating
Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[22] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. C.
Murthy, and C. Curino, “Apache Tez: A Unify-
ing Framework for Modeling and Building Data
Processing Applications,” in SIGMOD, Melbourne,
Victoria, Australia, 2015, pp. 1357–1369.

[23] A. Y. Halevy, “Answering queries using views: A
survey,” VLDBJ, vol. 10, no. 4, pp. 270–294, 2001.

[24] E. W. Dijkstra, Selected Writings on Computing: A
Personal Perspective. Springer-Verlag, 1982.

[25] W. Effelsberg and T. Härder, “Principles of
Database Buffer Management,” ACM TODS, vol. 9,
no. 4, pp. 560–595, 1984.

[26] A. Chankhunthod, P. B. Danzig, C. Neerdaels,
M. F. Schwartz, and K. J. Worrell, “A Hierarchi-
cal Internet Object Cache,” in Proceedings of the
USENIX Technical Conference, San Diego, Cali-
fornia, USA, 1996, pp. 153–164.

[27] D. Wessels and K. C. Claffy, “Icp and the squid
web cache,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 3, pp. 345–357,
1998.

[28] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder,
“Summary cache: a scalable wide-area web cache

6

Laurent d’Orazio, Julien Lallet: VLIOT18

sharing protocol,” IEEE/ACM TON, vol. 8, no. 3,
pp. 281–293, 2000.

[29] C. Leber, B. Geib, and H. Litz, “High frequency
trading acceleration using fpgas,” in International
Conference on Field Programmable Logic and Ap-
plications, 2011.

[30] I. Elghandour and A. Aboulnaga, “ReStore:
reusing results of MapReduce jobs in pig,” in
SIGMOD, Scottsdale, AZ, USA, 2012, pp. 701–
704.

[31] I. Trummer and C. Koch, “Multi-objective para-
metric query optimization,” VLDBJ, vol. 26, no. 1,
pp. 107–124, 2017.

[32] ——, “A Fast Randomized Algorithm for Multi-
Objective Query Optimization,” in SIGMOD, San
Francisco, CA, USA, 2016, pp. 1737–1752.

[33] ——, “An Incremental Anytime Algorithm for
Multi-Objective Query Optimization,” in SIG-
MOD, Melbourne, Victoria, Australia, 2015, pp.
1941–1953.

[34] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. E.
Ioannidis, “Schedule optimization for data pro-
cessing flows on the cloud,” in SIGMOD, Athens,
Greece, 2011, pp. 289–300.

[35] C. Düntgen, T. Behr, and R. H. Güting, “Berlin-
MOD: a benchmark for moving object databases,”
VLDBJ, vol. 18, no. 6, pp. 1335–1368, 2009.

[36] O. Erling, A. Averbuch, J.-L. Larriba-Pey, H. Chafi,
A. Gubichev, A. Prat-Pérez, M.-D. Pham, and P. A.
Boncz, “The LDBC Social Network Benchmark:
Interactive Workload,” in SIGMOD, Melbourne,
Victoria, Australia, 2015, pp. 619–630.

[37] L. Gu, M. Zhou, Z. Zhang, M.-C. Shan, A. Zhou,
and M. Winslett, “Chronos: An elastic parallel
framework for stream benchmark generation and
simulation,” in ICDE, Seoul, South Korea, 2015,
pp. 101–112.

[38] R. Ulbricht, C. Hartmann, M. Hahmann,
H. Donker, and W. Lehner, “Web-based
Benchmarks for Forecasting Systems: The
ECAST Platform,” in SIGMOD, San Francisco,
CA, USA, 2016, pp. 2169–2172.

AUTHOR BIOGRAPHIES

Laurent d’Orazio has been
a Professor at Univ Rennes,
CNRS, IRISA since 2016.
He received his PhD degree
in computer science from
Grenoble National Polytechnic
Institute in 2007. He was a
Associate Professor at Blaise
Pascal University and LIMOS
CNRS, Clermont-Ferrand from
2008 to 2016. His research
interests include (big) data
algorithms and architectures,

distributed and parallel databases. He has published
papers in Information Systems, Sigmod Record,
Concurrency and Computation Practice and Experience.
He served in Program Committees in BPM, workshops
affiliated to VLDB, EDBT, etc. and Reviewing
Commitees in Transactions on Parallel and Distributed
Systems, Concurrency and Computation: Practice and
Experience. He is or has been involved (sometimes
as a coordinator) in research projects such as the NSF
MOCCAD project (since 2013), the ANR SYSEO
project (797 000 euros funding, 2010-2015) and the
STIC ASIA GOD project (30 000 euros funding,
2013-2015).

Julien Lallet joined the company
Alcatel-Lucent in 2011 and is
currently a research engineer at
Nokia Bell-Labs since 2016. He
received his PhD degree in elec-
trical engineering from the Uni-
versity of Rennes in 2008. He
was a Post-doctoral fellow at the
University of Bielefeld in Ger-
many from 2009 to 2010. His
research interests include effi-
cient processing in the context of
cloud computing and hardware

acceleration on FPGA. He has published papers in com-
puting architectures and FPGA systems.

7

	Introduction
	Background
	Running Example on security monitoring
	Cloud Computing and Big Data
	Semantic caching
	FPGA
	Motivation

	FPGA-based Semantic Caching
	Cache framework
	Cache Management
	Replacement
	Resolution

	Multi-layered implementation with FPGA acceleration

	Research Challenges
	Query rewriting
	Multi-objective query processing
	Benchmarking

