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Fault-Tolerant Metric Dimension of Gear, Anti-Web Gear and Anti-web Graphs

Concept of resolving set and metric basis has enjoyed a lot of success because of multi-purpose applications both in computer and mathematical sciences. A system in which failure of any single unit, another chain of units not containing the faulty unit can replace the originally used chain is called fault-tolerant self-stable system. Recent research reveal that the problem of finding metric dimension is NPhard and problem of computing the exact values of fault tolerant metric dimension seems to be even harder although some bounds can be computed rather easily. In the present article we compute closed formulas for the fault-tolerant metric dimension of gear, anti-web gear and anti-web graphs. We conclude that out of these only anti-web graph has constant fault-tolerant metric dimension.

Introduction

Computer networks are graphs with vertices representing hosts, servers or hubs and edges as connecting medium between them. Vertex is actually a possible location to find fault or some damaged devices in a computer network. This idea somehow created urge in Slater and independently in Harary and Meletr in [START_REF] Harary | On the metric dimension of a graph[END_REF] to uniquely recognize each vertex of a graph in a network so that fault could be controlled in an efficient way. Thus basis for notion of locating sets and locating number of graphs came into existence. Since then, the resolving sets have been investigated a lot [START_REF] Buczkowski | On k-dimensional graphs and their bases[END_REF][START_REF] Slater | Fault-Tolerant Locating-Dominating Sets[END_REF][START_REF] Caceres | On the metric dimension of some families of graphs[END_REF][START_REF] Hayes | A graph model for Fault-tolerant computer systems[END_REF][START_REF] Shabbir | Fault-tolerant designs in triangular lattice networks[END_REF]. The resolving set contributes in various areas such as network discovery [START_REF] Khuller | Location in graphs[END_REF][START_REF] Khuller | Landmarks in graphs[END_REF], connected joins in graphs, strategies for the mastermind games [START_REF] Chvatal | [END_REF], applications of pattern recognition, combinatorial optimization, image processing [START_REF] Melter | Metric bases in digital geometry[END_REF], pharmaceutical chemistry and game theory [START_REF] Slater | Dominating and reference sets in graphs[END_REF]. A moving point in a graph may be located by finding the distance from the point to the collection of sonar stations which have been properly positioned in the graph see [START_REF] Khuller | Landmarks in graphs[END_REF]. Thus finding a minimal sufficiently large set of labeled vertices such that robot can find its position is a problem known as robot navigation, already well studied in [START_REF] Khuller | Location in graphs[END_REF]. This sufficiently large set of labeled vertices is a resolving set of the graph space and the corresponding cardinality is the metric dimension. Similarly on another node, a real world problem is the study of networks whose structure has not been imposed by a central authority but arisen from local and distributed processes. It is very difficult and costly to obtain a map of all nodes and the links between them. A commonly used technique is to obtain local view of network from various locations and combine them to obtain a good approximation for the real network. Metric dimension also has some applications in this respect as well.

Consider a simple, connected graph G, and metric

d G : V (G) × V (G) → N ∪ {0}
, where N is the set of positive integers and d G (x, y) is the minimum number of edges in any path between x and y. Let W = {w 1 , w 2 , ..., w k } be an ordered set of vertices of G and let v be a vertex of G. The representation r(v|W

) of v with respect to W is the k-tuple (d(v, w 1 ), d(v, w 2 ), ..., d(v, w k )).
If distinct vertices of G have distinct representation with respect to W , then W is called a resolving set of G, see [START_REF] Buczkowski | On k-dimensional graphs and their bases[END_REF]. Such a resolving set with minimum cardinality is a basis of G and metric dimension of G, denoted by β(G) is its cardinality.

Buczkowski et. al. established metric dimension of wheel W n to be 2n+2 5

for n ≥ 7 [1], Caceres et. al. [START_REF] Caceres | On the metric dimension of some families of graphs[END_REF] found that the metric dimension of fan to be 2n+2 5 for n ≥ 7 and Tomescu et. al. [START_REF] Tomescu | On the metric dimension of the Jahangir graph[END_REF] determined dimension of Jahangir grphs J 2n to be 2n 3 for all n ≥ 4. A particular metric-feature of the family of graph is independence of metric dimension on the particular element of the family. A connected graph has constant metric dimension if β(G) = k where k ∈ Z + is fixed. This feature has been presented in [START_REF] Imran | Families of plane Grapghs with constant metric dimension[END_REF]. In [START_REF] Imran | RiasatOn metric dimension of flower graphs fn,m, and convex polytopes[END_REF], authors computed metric dimension of flower graph and some families of convex polytopes. In [START_REF] Buczkowski | On k-dimensional graphs and their bases[END_REF], Chartrand et al. proved that a graph has constant metric dimension 1 iff it is a path. Kasif et. al. computed partial results of metric dimension of Mobius ladder in [START_REF] Ali | On the metric dimension of Möbius ladders[END_REF] whereas Munir et.al. computed exact and complete results for metric dimension of Mobius Ladders in [START_REF] Munir | On the metric dimension of Möbius Ladder[END_REF]. C. Poisson et.al. computed metric dimension of unicyclic graphs in [START_REF] Poisson | The metric dimension of unicyclic graphs[END_REF].

Recent development in this context has paved way for a new related concept known as fault-tolerance in metric dimension. Suppose that, in a network, n processing units are interlinked, and of these units, forming a chain of maximal length, are used to solve some task. To have a fault-tolerant selfstable system, it is necessary that in case of failure of any single unit, another chain of units not containing the faulty unit can replace the originally used chain. So a fault-tolerant design enables a system to continue its intended operation, possibly at a reduced level, rather than failing completely. One uses graphs to represent the units and the links, see [START_REF] Slater | Fault-Tolerant Locating-Dominating Sets[END_REF]. A resolving set Ś is considered as fault-tolerant if Ś \ {v} is also a resolving set, for each v ∈ Ś, and the fault-tolerant metric dimension, β (G), is the minimum cardinality of such Ś. A family G of connected graphs is said to have constant fault-tolerant metric dimension if it is independent of any choice of member of that family. Fault-tolerant designs are widely used in engineering and computer sciences [START_REF] Hayes | A graph model for Fault-tolerant computer systems[END_REF]. Slater in [START_REF] Slater | Fault-Tolerant Locating-Dominating Sets[END_REF] introduced the study of fault-tolerant locating-dominating sets. Hernando et.al. introduced the idea of a single fault-tolerant metric dimension in [START_REF] Hernando | Wood Fault-tolerant metric dimension of graphs[END_REF]. They discussed single fault-tolerant metric dimension of trees. They also proved that fault-tolerant metric dimension is bounded by a function of the metric dimension irrespective of the choice of graph given be β(G) ≤ β(G)(1 + 2.5 β(G)-1 ). Javed et. al. discussed fault-tolerance in resolvability [START_REF] Javaid | Fault-Tolerance in Resolvability[END_REF] and computed fault tolerant metric dimension of some graphs [START_REF] Chaudhry | Fault-Tolerant metric and partition dimension of graphs[END_REF]. It is easy to gather that, β(G) ≥ β(G) + 1, [START_REF] Chaudhry | Fault-Tolerant metric and partition dimension of graphs[END_REF]. Shabbir et. al. discussed fault-tolerance in triangular lattice networks [START_REF] Shabbir | Fault-tolerant designs in triangular lattice networks[END_REF].

In the present article we discuss fault-tolerance metric dimension of some families of convex polytopes. A convex Polytope is the convex-hull of finite set in any Eucleadian space [START_REF] Grnbaum | Convex Polytopes[END_REF]. These are important families of graphs and have been consistently under serious discussion. For instance, Baca in [START_REF] Baca | Labellings of two classes of convex polytopes[END_REF] computed labelings of two important families of convex polytopes , and discussed magic labeling of convex polytopes in [START_REF] Baca | On magic Labellings of convex polytopes[END_REF]. Nazeer et. al. computed the closed formulae for the center, eccentricity, periphery and average eccentricity for the convex polytopes in [START_REF] Nazeer | On Center, Periphery and Average Eccentricity for the Convex Polytopes[END_REF]. In [START_REF] Imran | RiasatOn metric dimension of flower graphs fn,m, and convex polytopes[END_REF], Imran, et. al. proved that the convex polytopes S n and T n have constant metric dimension and in [START_REF] Imran | Families of plane Grapghs with constant metric dimension[END_REF] they proved that Q n and D n also have constant metric dimension. Recently in [START_REF] Raza | On the fault-tolerant metric dimension of convex polytopes[END_REF], authors computed bounds for the fault tolerant metric dimension of six families of convex polytopes. In this article we compute fault-tolerant metric dimension of gear graph and anti-web gear graphs. It is important to point out that we explicitly derive closed formulas and not the bounds as has been done in [START_REF] Raza | On the fault-tolerant metric dimension of convex polytopes[END_REF] for the case of convex polytopes.

Main Results

In this part we give our main results. At first we compute fault-tolerant metric dimension of gear graphs and anti-web gear graphs.

Definition 2.1. Gap in resolving set

If B is a resolving set of a graph G which contains two or more vertices of G and we suppose that vertices of B = {v j1 , v j2 , ..., v jr } so that j 1 < j 2 < ... < j r . We shall say that the vertices v ja , v ja+1 for 1 ≤ a ≤ r -1 and v ir , v i1 are neighboring vertices. Now the vertices lying between these neighboring vertices are referred to as gap of B and the number of vertices in a gap will be referred to as size of gap. If | B | = t: then it means that we have t gaps, some of which may be empty.

Fault-tolerant metric dimension of Gear graph

Definition 2.2. The gear graph G n is defined as follows: consider an even cycle

C 2n : v 1 , v 2 , • • • , v 2n , v 1 , where n ≥ 2 and a new vertex v 0 adjacent to n vertices of C 2n : v 1 , v 3 , • • • , v 2n-1 .
G n has order 2n + 1 and size 3n and can be obtained from the wheel W 2n by alternately deleting n spokes.

The Following figure 1 is an instance of gear graph. We referred vertices of G n having degree 3 with odd numbering and degree 2 with even numbering. In this part, we want to compute fault-tolerant metric dimension of gear graph G n . In [START_REF] Tomescu | On the metric dimension of the Jahangir graph[END_REF] the gear graph was denoted by J 2n and it was proved that β(J 2n ) = 2n 3 for n ≥ 4. Now suppose that B be any fault-tolerant metric basis of G n . We make following observations. Lemma 2.3. If there is no empty gap then every gap of B (fault-tolerant metric basis) contains exactly one vertex.

v 4 v 8 v 7 v 10 v 5 v 1 v 9 v 6 v 3 v 2 v 0
Proof. Suppose on contrary, there exists a gap which contains two vertices. Then there exists vertices {v i , v i+1 , v i+2 , v i+3 , v j } (where v j is neighboring vertex of v i+3 and one of the neighboring gaps of v j contain one vertex), such that v i , v i+3 , v j , ∈ B . Then by B \ {v j } we have r(v i+2 /B ) = r(v i+4 /B ) = (2, 1, 2, ..., 2) which is a contradiction. Proof. Suppose on contrary, two neighboring gaps of B (fault-tolerant metric basis) are empty and at least one of their neighboring gaps contain one vertex. Then there exists vertices

v i , v i+1 , v i+2 , v i+3 , v i+4 , v i+5 , v i+6 , v i+7 , such that v i , v i+3 , v i+4 , v i+5 , v i+7 ∈ B . Then by B \ {v i+5 } we have r(v i+6 /B ) = r(v i+8 /B ) = (2, 1, 2, ..., 2) which is a contradiction. Lemma 2.5. The resolving set of G n of the type B = {v 1 , v 3 , v 5 , ......v n-1 } or B = {v 1 , v 4 , v 5 , v 6 , v 9 , v 11 , v 13 , ......v n-1 } is fault-tolerant metric basis.
Proof. We see from lemma 2.3 and 2.4 that B can be a fault-tolerant resolving set because for each v in B , the set B \ {v} is a resolving set. Now we see that the set B \ {v i , v j } where v i , v j ∈ B is not a resolving set. Hence B is a fault-tolerant metric basis. After the above observations we reach at the following main result of this part.

Theorem 2.6. If n ≥ 4, then we have β (G n ) = n.
Proof. In [START_REF] Tomescu | On the metric dimension of the Jahangir graph[END_REF] it was proved that the central vertex v 0 of G n is not included in B . For a gear graph, denoted by (G n ), the fault-tolerant metric dimension for n = 3 is 4 and 

B = {v 1 , v 2 , v 3 , v 4 }. Now we may write n = k 2 , where k ≥ 8 and k is even, then β (G n ) = n = k 2 . since B = {V 2i , 1 ≤ i ≤ 2n} is a fault-tolerant

Fault-tolerant metric dimension of Anti web graph

Definition 2.7. The Anti web graph AW n is defined as follows: consider an even cycle C 2n : v 1 , v 2 ,... ,v 2n , v 1 , where n ≥ 4 and is even. Edges are obtained by joining the vertices of cycle and by v i , v i+2 where 1 ≤ i ≤ n. AW n has order n and size 2n.

The Following figure 2 is an instance of anti-web graph. In this section, we want to compute fault-tolerant metric dimension of anti web AW n . Now suppose that B be any fault-tolerant metric basis of AW n . We observe the following key points Lemma 2.8. The resolving set of AW n contain at least three vertices.

v 4 v 8 v 7 v 10 v 5 v 1 v 9 v 6 v 3 v 2
Proof. One can easily check the following.

• Suppose on contrary, there exists a resolving set which contain one vertex v i in AW n , then there exists vertices v j , v k belong to AW n such that we have r(

v j /B ) = r(v k /B ) = (1) or (2) or.....( n+2 
4
) which is a contradiction.

• Now again suppose on contrary, there exists a resolving set which contain two vertices v i and v j in AW n , we have r

(v k /B ) = r(v r /B ) = (1, 1) or (2, 2) or.....( n+2 
) which is a contradiction. we referred vertices of AW G n having degree 5 with odd numbering and degree 4 with even numbering. So we have four types of gaps 5-5, 4-4, 5-4 and 4-5. In this section, we computed the fault-tolerant metric dimension of anti web-gear graphs. In [START_REF] Afzal | Computing the metric dimension of Wheel related graph[END_REF] anti web-gear graph was denoted by AW J 2n and it was proved that β(AW J 2n ) = n+1 3 for n ≥ 15. Now suppose that B be any fault-tolerant metric basis of G n . We observe that if AW G n for n ≥ 3, then the central vertex v 0 does not belong to any fault-tolerant basis. Since diam(AW G n ) = 4, if v 0 belongs to any fault-tolerant metric basis, say B , then there must exist two distinct vertices v i and v j , for 1 ≤ i = j ≤ n such that r(v i /B ) = r(v j /B ). Consequently, the fault-tolerant basis vertices belong to the rim vertices of AW G n only. We also obtain the following

Figure 1 :

 1 Figure 1: A graph of (G 5 ) gear graph.We referred vertices of G n having degree 3 with odd numbering and degree 2 with even numbering. In this part, we want to compute fault-tolerant metric dimension of gear graph G n . In[START_REF] Tomescu | On the metric dimension of the Jahangir graph[END_REF] the gear graph was denoted by J 2n and it was proved that β(J 2n ) = 2n

Lemma 2 . 4 .

 24 If two neighboring gaps of B (fault-tolerant metric basis) are empty then each of their neighboring gaps contain two vertices.

  resolving set as it satisfies lemma 2.3. It follows from above discussion that β (G n ) ≤ n. Now we prove that β (G n ) ≥ n. Let B be a fault-tolerant metric basis of G n , so we have two cases case 1: when every gap contains one vertex (lemma 2.3). Now if | B |= m. Then it means that there are m vertices in fault-tolerant metric basis and hence there exists m gaps all of them contain one vertex. So the number of vertices belonging to the gaps of B will be at most m. Hence 2n -m ≤ m. Therefore | B |= m ≥ n. case 2: When two neighboring gaps are empty and each of their neighboring gaps contain two vertices (lemma 2.4). Now if | B |= m. Then it means that there are m vertices in fault-tolerant metric basis and hence there exists m gaps and the number of vertices belonging to the gaps of B will be at most m. Hence 2n -m ≤ m. Therefore | B |= m ≥ n.

Figure 2 :

 2 Figure 2: A graph of (AW 10 ) anti web graph.

Figure 3 :

 3 Figure 3: A graph of (AW G 5 ) anti web-gear graph.

  Theorem 2.9. If n ≥ 4, then we have β (AW n ) = 4.Proof. Consider the resolving set of AW n of the type B = {v 2 , v 4 , }∪{v i+2 , v Hence B is a fault-tolerant metric basis and its cardinality is 4. Hence β (AW n ) = 4.2.3. Fault-tolerant metric dimension of Anti web-gear graphDefinition 2.10. A anti web-gear graph denoted by AW G n can be obtained as join of an anti web AW n and a gear graph denoted by G n . We haveV (AW G n ) = V (G n ) and E(AW G n ) = E(G n ) ∪ {v i v i+2 :0 ≤ i ≤ n},where the indices are taken modulo n. AW G n has order 2n + 1 and size 3n.The Following figure1is an instance of anti-web gear graph.

i+4 , i = n (if n is even ) or n-1 ( if n is odd )}. We see that B is a fault-tolerant resolving set because for each v in B , the set B \ {v} is a resolving set. Now we see that the set B \ {v 2 , v 4 } or B \ {v i+2 , v i+4 } is not a resolving set, which is a contradiction. Now by lemma 2.8 any resolving set of AW n contain at least three vertices.
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Lemma 2.11. If B is a fault-tolerant metric basis of AW G n and n ≥ 8, then every gap of B contain three vertices and is of the type 5-5 or 4-4, except one gap which contains one vertex when n is odd.

Proof.

• Suppose on contrary, there exists a gap of the type 5-4. Then there exists vertices v i , v i+1 , v i+2 , v i+3 , v i+4 , v i+5 , v j ( we take gap between v i+5 and v j at least 3 in order to keep cardinality minimum ) where

• Suppose on contrary, there exists a gap of the type 4-5. Then there exists vertices v j , v i , v i+1 , v i+2 , v i+3 , v i+4 , v i+5 ( we take gap between v i+5 and v j at least 3 in order to keep cardinality minimum ) where

Proof. We see from lemma 2.11 that B can be a fault-tolerant resolving set because for each v in B , the set B \ {v} is a resolving set. Now we see that the set B \ {v i , v j } where v i , v j ∈ B is not a resolving set. Hence B is a fault-tolerant metric basis. Theorem 2.13. If n ≥ 8, then we have β (AW G n ) = n 2 . Proof. For an Anti web-gear graph, denoted by (AW G n ),the fault-tolerant metric dimension for 2 ≤ n < 8 are β (AW G n ) = 4. case 1: when n is even, then we may write 2n = k, ( where n ≥ 8 and is even ) then

It is a fault-tolerant resolving set as it satisfies lemma 2.11 and 2.12. case 2: when n is odd, then we may write 2n = k, (where n ≥ 8 and is odd ) and

It is a fault-tolerant resolving set as it satisfies lemma 2.11 and 2.12. It follows from above discussion that β

Then it means that there are m vertices in fault-tolerant metric basis and hence there exists m gaps all of them contain three vertices except one gap which possibly contain one vertex. So the number of vertices belonging to the gaps of B will be at most 3m. Hence 2n -m ≤ 3m. Therefore | B |= m ≥ n 2 .

Conclusions

In this article we computed fault-tolerant metric dimension of graphs of three families of wheel related graphs. We conclude that anti-web graph has constant fault-tolerant metric dimension. If we keep all the notations of the second section intact, then we arrive at the main main results 
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