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Fault-Tolerant Metric Dimension of Wheel
related Graphs

Zafar Hussain, Mobeen Munir, Imtiaz Ali, Ashfaq
Ahmed and Shin Min Kang

Abstract. Concept of resolving set and metric basis has enjoyed a lot
of success because of multi-purpose applications both in computer and
mathematical sciences. A system in which failure of any single unit,
another chain of units not containing the faulty unit can replace the
originally used chain is called fault-tolerant self-stable system. Recent
research reveal that the problem of finding metric dimension is NP-
hard and problem of computing the exact values of fault tolerant metric
dimension seems to be even harder although some bounds can be com-
puted rather easily. In the present article we compute closed formulas for
the fault-tolerant metric dimension of gear, anti-web gear and anti-web
graphs. We conclude that out of these only anti-web graph has constant
fault-tolerant metric dimension.

Keywords. Metric dimension, Fault-tolerant metric dimension, gear graph,
anti-web gear graph.
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1. Introduction

Computer networks are graphs with vertices representing hosts, servers or
hubs and edges as connecting medium between them. Vertex is actually a
possible location to find fault or some damaged devices in a computer net-
work. This idea somehow created urge in Slater and independently in Harary
and Meletr in [7] to uniquely recognize each vertex of a graph in a network so
that fault could be controlled in an efficient way. Thus basis for notion of lo-
cating sets and locating number of graphs came into existence. Since then, the
resolving sets have been investigated a lot [1-5]. The resolving set contributes
in various areas such as network discovery [9-10], connected joins in graphs,
strategies for the mastermind games [23], applications of pattern recognition,
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combinatorial optimization, image processing[11], pharmaceutical chemistry
and game theory [15]. A moving point in a graph may be located by finding
the distance from the point to the collection of sonar stations which have
been properly positioned in the graph see [10]. Thus finding a minimal suf-
ficiently large set of labeled vertices such that robot can find its position is
a problem known as robot navigation, already well studied in [9]. This suffi-
ciently large set of labeled vertices is a resolving set of the graph space and
the corresponding cardinality is the metric dimension. Similarly on another
node, a real world problem is the study of networks whose structure has not
been imposed by a central authority but arisen from local and distributed
processes. It is very difficult and costly to obtain a map of all nodes and the
links between them. A commonly used technique is to obtain local view of
network from various locations and combine them to obtain a good approxi-
mation for the real network. Metric dimension also has some applications in
this respect as well.

Consider a simple, connected graph G, and metric dG : V (G)×V (G)→
N ∪ {0}, where N is the set of positive integers and dG(x, y) is the minimum
number of edges in any path between x and y. Let W = {w1, w2, ..., wk} be
an ordered set of vertices of G and let v be a vertex of G. The representation
r(v|W ) of v with respect to W is the k−tuple (d(v, w1), d(v, w2), ..., d(v, wk)).
If distinct vertices of G have distinct representation with respect to W , then
W is called a resolving set of G, see [1]. Such a resolving set with minimum
cardinality is a basis of G and metric dimension of G, denoted by β(G) is its
cardinality.

Buczkowski et. al. established metric dimension of wheel Wn to be
b 2n+2

5 c for n ≥ 7 [1], Caceres et. al. [3] found that the metric dimension

of fan to be b 2n+2
5 c for n ≥ 7 and Tomescu et. al. [16] determined dimension

of Jahangir grphs J2n to be b 2n
3 c for all n ≥ 4.

A particular metric-feature of the family of graph is independence of
metric dimension on the particular element of the family. A connected graph
has constant metric dimension if β(G) = k where k ∈ Z+ is fixed. This fea-
ture has been presented in [26]. In [28], authors computed metric dimension
of flower graph and some families of convex polytopes. In [1], Chartrand et
al. proved that a graph has constant metric dimension 1 iff it is a path. Kasif
et. al. computed partial results of metric dimension of Mobius ladder in [12]
whereas Munir et.al. computed exact and complete results for metric dimen-
sion of Mobius Ladders in [22]. C. Poisson et.al. computed metric dimension
of unicyclic graphs in [13].

Recent development in this context has paved way for a new related
concept known as fault-tolerance in metric dimension. Suppose that, in a net-
work, n processing units are interlinked, and of these units, forming a chain
of maximal length, are used to solve some task. To have a fault-tolerant self-
stable system, it is necessary that in case of failure of any single unit, another
chain of units not containing the faulty unit can replace the originally used
chain. So a fault-tolerant design enables a system to continue its intended
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operation, possibly at a reduced level, rather than failing completely. One
uses graphs to represent the units and the links, see [2]. A resolving set Ś is

considered as fault-tolerant if Ś \ {v} is also a resolving set, for each v ∈ Ś,
and the fault-tolerant metric dimension, β′(G), is the minimum cardinality of

such Ś. A family G of connected graphs is said to have constant fault-tolerant
metric dimension if it is independent of any choice of member of that family.
Fault-tolerant designs are widely used in engineering and computer sciences
[4]. Slater in [2] introduced the study of fault-tolerant locating-dominating
sets. Hernando et.al. introduced the idea of a single fault-tolerant metric
dimension in [30]. They discussed single fault-tolerant metric dimension of
trees. They also proved that fault-tolerant metric dimension is bounded by
a function of the metric dimension irrespective of the choice of graph given

be ´β(G) ≤ β(G)(1 + 2.5β(G)−1). Javed et. al. discussed fault-tolerance in re-
solvability [19] and computed fault tolerant metric dimension of some graphs

[18]. It is easy to gather that, ´β(G) ≥ β(G)+1, [18]. Shabbir et. al. discussed
fault-tolerance in triangular lattice networks [5].

A convex Polytope is the convex-hull of finite set in any Eucleadian
space [29]. These are important families of graphs and have been consistently
under serious discussion. For instance, Baca in [24] computed labelings of
two important families of convex polytopes , and discussed magic labeling
of convex polytopes in [25]. Nazeer et. al. computed the closed formulae for
the center, eccentricity, periphery and average eccentricity for the convex
polytopes in [21]. In [28], Imran, et. al. proved that the convex polytopes
Sn and Tn have constant metric dimension and in [26] they proved that
Qn and Dn also have constant metric dimension. Recently in [31], authors
computed bounds for the fault tolerant metric dimension of six families of
convex polytopes.

In the present article we discuss fault-tolerance metric dimension of
some wheel related graphs. These graphs can be obtained from wheel graph
by slight modifications. In fact we compute fault-tolerant metric dimension of
gear graph, anti-web and anti-web gear graphs. It is important to point out
that we explicitly derive closed formulas and not the bounds as has been done
in [31] for the case of convex polytopes. Metric dimension of these graphs has
been discussed in [32].

2. Main Results

In this part we give our main results. At first we compute fault-tolerant metric
dimension of gear graphs and anti-web gear graphs.

Definition 2.1. Gap in resolving set
If B′ is a resolving set of a graph G which contains two or more vertices

of G and we suppose that vertices of B′ = {vj1 , vj2 , ..., vjr} so that j1 < j2 <
... < jr. We shall say that the vertices vja , vja+1

for 1 ≤ a ≤ r−1 and vir , vi1
are neighboring vertices. Now the vertices lying between these neighboring
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vertices are referred to as gap of B′ and the number of vertices in a gap will
be referred to as size of gap. If | B′ | = t: then it means that we have t gaps,
some of which may be empty.

2.1. Fault-tolerant metric dimension of Gear graph

Definition 2.2. The gear graph Gn is defined as follows: consider an even
cycle C2n : v1, v2, · · · , v2n, v1, where n ≥ 2 and a new vertex v0 adjacent to
n vertices of C2n : v1, v3, · · · , v2n−1. Gn has order 2n + 1 and size 3n and
can be obtained from the wheel W2n by alternately deleting n spokes.
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v7

v10

v5

v1

v9

v6

v3

v2

v0

Figure 1: Gear graph (G5)

We referred vertices of Gn having degree 3 with odd numbering and degree 2
with even numbering. In this part, we want to compute fault-tolerant metric
dimension of gear graph Gn. In [16] the gear graph was denoted by J2n and
it was proved that β(J2n) = b 2n

3 c for n ≥ 4. Now suppose that B′ be any
fault-tolerant metric basis of Gn. We make following observations.

Lemma 2.3. If there is no empty gap then every gap of B′ (fault-tolerant
metric basis) contains exactly one vertex.

Proof. Suppose on contrary, there exists a gap which contains two vertices.
Then there exists vertices {vi, vi+1, vi+2, vi+3, vj} (where vj is neighboring
vertex of vi+3 and one of the neighboring gaps of vj contain one vertex), such
that vi, vi+3, vj , ∈ B′. Then by B′\ {vj} we have r(vi+2/B

′) = r(vi+4/B
′)

= (2, 1, 2, ..., 2) which is a contradiction. �
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Lemma 2.4. If two neighboring gaps of B′ (fault-tolerant metric basis) are
empty then each of their neighboring gaps contain two vertices.

Proof. Suppose on contrary, two neighboring gaps of B′ (fault-tolerant metric
basis) are empty and at least one of their neighboring gaps contain one ver-
tex. Then there exists vertices vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6, vi+7, such
that vi, vi+3, vi+4, vi+5, vi+7 ∈ B′. Then by B′\ {vi+5} we have r(vi+6/B

′) =
r(vi+8/B

′) = (2, 1, 2, ..., 2) which is a contradiction. �

Lemma 2.5. The resolving set of Gn of the type B′ = {v1, v3, v5, ......vn−1} or
B′ = {v1, v4, v5, v6, v9, v11, v13, ......vn−1} is fault-tolerant metric basis.

Proof. We see from lemma 2.3 and 2.4 that B′ can be a fault-tolerant resolv-
ing set because for each v in B′, the set B′\ {v} is a resolving set. Now we
see that the set B′\ {vi, vj} where vi, vj ∈ B′ is not a resolving set. Hence B′

is a fault-tolerant metric basis. After the above observations we reach at the
following main result of this part.

�

Theorem 2.6. If n ≥ 4, then we have β′(Gn) = n.

Proof. In [16] it was proved that the central vertex v0 of Gn is not included in
B′. For a gear graph, denoted by (Gn), the fault-tolerant metric dimension
for n = 3 is 4 and B′ = {v1, v2, v3, v4}. Now we may write n = k

2 , where

k ≥ 8 and k is even, then β′(Gn) = n = k
2 . since B′ = {V2i, 1 ≤ i ≤ 2n} is a

fault-tolerant resolving set as it satisfies lemma 2.3.
It follows from above discussion that β′(Gn) ≤ n.
Now we prove that β′(Gn) ≥ n. Let B′ be a fault-tolerant metric basis of
Gn, so we have two cases
Case 1: when every gap contains one vertex (lemma 2.3). Now if | B′ |= m.
Then it means that there are m vertices in fault-tolerant metric basis and
hence there exists m gaps all of them contain one vertex. So the number of
vertices belonging to the gaps of B′ will be at most m. Hence 2n−m ≤ m.
Therefore | B′ |= m ≥ n.
Case 2: When two neighboring gaps are empty and each of their neighboring
gaps contain two vertices (lemma 2.4). Now if | B′ |= m. Then it means that
there are m vertices in fault-tolerant metric basis and hence there exists m
gaps and the number of vertices belonging to the gaps of B′ will be at most
m. Hence 2n−m ≤ m. Therefore | B′ |= m ≥ n. �

2.2. Fault-tolerant metric dimension of Anti-web graph

Definition 2.7. The Anti-web graph AWn is defined as follows: consider an
even cycle C2n : v1, v2,... ,v2n, v1, where n ≥ 4 and is even. Edges are obtained
by joining the vertices of cycle and by vi, vi+2 where 1 ≤ i ≤ n. AWn has
order n and size 2n.
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Figure 2: A graph of (AW10) anti-web graph.

In this section, we want to compute fault-tolerant metric dimension of anti
web AWn. Now suppose that B′ be any fault-tolerant metric basis of AWn.
We observe the following key points

Lemma 2.8. The resolving set of AWn contain at least three vertices.

Proof. One can easily check the following.

• Suppose on contrary, there exists a resolving set which contain one ver-
tex vi in AWn, then there exists vertices vj , vk belong to AWn such
that we have r(vj/B

′) = r(vk/B
′) = (1) or (2) or.....(bn+2

4 c) which is a
contradiction.
• Now again suppose on contrary, there exists a resolving set which con-

tain two vertices vi and vj in AWn, we have r(vk/B
′) = r(vr/B

′) = (1,
1) or (2, 2) or.....(bn+2

4 c) which is a contradiction.

�

Theorem 2.9. If n ≥ 4 , then we have β′(AWn) = 4.

Proof. Consider the resolving set ofAWn of the typeB′ = {v2, v4, }∪{vi+2, vi+4, i =
}. We see that B′ is a fault-tolerant resolving set because for each v in B′,
the set B′\ {v} is a resolving set. Now we see that the set B′\ {v2, v4} or
B′\ {vi+2, vi+4} is not a resolving set, which is a contradiction. Now by lem-
ma 2.8 any resolving set of AWn contain at least three vertices. Hence B′ is
a fault-tolerant metric basis and its cardinality is 4. Hence β′(AWn) = 4. �
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2.3. Fault-tolerant metric dimension of Anti-web gear graph

Definition 2.10. A anti-web gear graph denoted by AWGn can be obtained as
join of an anti-web AWn and a gear graph denoted byGn. We have V (AWGn)
= V (Gn) and E(AWGn) = E(Gn) ∪ {vivi+2 :0 ≤ i ≤ n}, where the indices
are taken modulo n. AWGn has order 2n+ 1 and size 3n.
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v0

Figure 3: Anti-web gear graph (AWG5)

In this section, we compute the fault-tolerant metric dimension of anti web-
gear graphs. In [32] anti-web gear graph was denoted by AWJ2n and it was
proved that β(AWJ2n) = dn+1

3 e for n ≥ 15. Now suppose that B′ be any
fault-tolerant metric basis of Gn. We observe that if AWGn for n ≥ 3,
then the central vertex v0 does not belong to any fault-tolerant basis. S-
ince diam(AWGn) = 4, if v0 belongs to any fault-tolerant metric basis, say
B′, then there must exist two distinct vertices vi and vj , for 1 ≤ i 6= j ≤ n
such that r(vi/B

′) = r(vj/B
′). Consequently, the fault-tolerant basis vertices

belong to the rim vertices of AWGn only. We also obtain the following

Lemma 2.11. If B′ is a fault-tolerant metric basis of AWGn and n ≥ 8, then
every gap of B′ contain three vertices and is of the type 5-5 or 4-4, except
one gap which contains one vertex when n is odd.

Proof. • Suppose on contrary, there exists a gap of the type 5-4. Then
there exists vertices vi, vi+1, vi+2,
vi+3, vi+4, vi+5, vj ( we take gap between vi+5 and vj at least 3 in order
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to keep cardinality minimum ) where vi, vi+5, vj ∈ B′. Now r(vi+4/B
′)

= r(vi+6/B
′) by B′\ {vj} which is a contradiction.

• Suppose on contrary, there exists a gap of the type 4-5. Then there
exists vertices vj , vi, vi+1, vi+2, vi+3,
vi+4, vi+5 ( we take gap between vi+5 and vj at least 3 in order to
keep cardinality minimum ) where vi, vi+5, vj ∈ B′. Now r(vi−1/B

′) =
r(vi+1/B

′) by B′\ {vj} which is a contradiction.
�

Lemma 2.12. If n is even, then resolving set of AWGn of the type B′ =
{v4i+1, 0 ≤ i ≤ n−2

2 } or B′ = {V4i+2, 0 ≤ i ≤ n−2
2 } is fault-tolerant metric

basis.

Proof. We see from lemma 2.11 that B′ can be a fault-tolerant resolving set
because for each v in B′, the set B′\ {v} is a resolving set. Now we see that
the set B′\ {vi, vj} where vi, vj ∈ B′ is not a resolving set. Hence B′ is a
fault-tolerant metric basis.

�

Theorem 2.13. If n ≥ 8, then we have β′(AWGn) = dn2 e.

Proof. For an Anti-web gear graph, denoted by (AWGn), the fault-tolerant
metric dimension for 2 ≤ n < 8 are β′(AWGn) = 4.
Case 1: When n is even, then we may write 2n = k, ( where n ≥ 8 and
is even ) then β′(AWGn) = n

2 = k
4 . since B′ = {v4i+1, 0 ≤ i ≤ n−2

2 } or

B′ = {V4i+2, 0 ≤ i ≤ n−2
2 }. It is a fault-tolerant resolving set as it satisfies

lemma 2.11 and 2.12.
Case 2: When n is odd, then we may write 2n = k, (where n ≥ 8 and is
odd ) and β′(AWGn) = dn2 e = dk4 e. since B′ = {v1, v3, v4i+3, 1 ≤ i ≤ n−3

2 }
or B′ = {v2, v4, v4i, 2 ≤ i ≤ n−1

2 }. It is a fault-tolerant resolving set as it
satisfies lemma 2.11 and 2.12.
It follows from above discussion that β′(AWGn) ≤ dn2 e.
Now we prove that β′(AWGn) ≥ dn2 e. Let B′ be a fault-tolerant metric basis
of AWGn.
If | B′ |= m. Then it means that there are m vertices in fault-tolerant metric
basis and hence there exists m gaps all of them contain three vertices except
one gap which possibly contain one vertex. So the number of vertices belong-
ing to the gaps of B′ will be at most 3m. Hence 2n − m ≤ 3m. Therefore
| B′ |= m ≥ dn2 e.

�

3. Conclusions

In this article we computed fault-tolerant metric dimension of graphs of three
families of wheel related graphs. We conclude that anti-web graph has con-
stant fault-tolerant metric dimension. If we keep all the notations of the
second section intact, then we arrive at the following main results
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Theorem 3.1. If n ≥ 4 , then we have β′(Gn) = n.

Theorem 3.2. If n ≥ 4 , then we have β′(AWn) = 4.

Theorem 3.3. If n ≥ 8, then we have β′(AWGn) = dn2 e.
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