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Abstract

The aim of this article is to develop a model able to investigate the interest to consider general
relativistic effects when analyzing the structure of spiral galaxies. It is stressed that the aim is
not to explain the flat rotation curve of spiral galaxies without dark matter.

With respect to the usual approach, which consists in relying on the Newton’s law of
gravitation, the main difference is the fact that this new model uses the theory of general
relativity. In particular, we determine the analytical stationary solution of an axisymmetric
rotating pressureless fluid for the linearized equations of the theory of general relativity.The
development of this new model is motivated by the fact that since the Newton’s law of gravitation
is a coarser approximation of general relativity than its linear approximation, we may hope that
the new model will allow to have a better understanding of the physics of spiral galaxies.

We demonstrate that the model leads to some constraints on the rotation curve. In particular,
the positiveness of the density imposes the rotation curve to be flat in the regions where the
density and general relativistic effects are small, such as in the disk region. So by considering a
general relativistic model, we show that the expected profile in the disk region is a flat rotation
curve, and not the Keplerian profile.

1. Introduction

When galaxies have been discovered at the beginning of the twentieth century, rapidly the question
of their structure has been raised. For spiral galaxies, two main measurements were carried out to
answer this question: the luminosity distribution and the rotation curve, i.e., the velocity profile of
the stars along the radius of the galactic plane. Comparing the results obtained by both methods
led to a still unsolved issue: when applying the classical Newton’s laws, the stars in the disk of the
galaxies seem to have velocities that are too large with respect to the mass distribution evidenced
by the luminosity measurements. While Newton’s laws predict, in a first approximation, that
stellar rotation velocities in the disk should decrease with distance from the bulge region with an
almost Keplerian profile, it is instead observed that they remain constant, up to large distances.
Until now, two main distinct ways have been followed to try to solve this mystery.

The first way, initially proposed by [9] and [10], consists in postulating the existence of
significant unseen matter, called dark matter, of which the distribution would be such that it
would explain the abnormal high velocities of the stars in the disk region, and this on the basis of
a simple application of Newton’s laws. Despite the apparent simplicity of this assumption, this
leads to postulate the existence of very large quantities of a possibly new kind of matter.

The second way consists in modifying Newton’s laws, in order to avoid postulating the
existence of very large quantities of matter which have never directly been observed. A well-
known theory proposed in this way is the Modified Newton Dynamics (MOND), established by
[8].

Recently, a third way has emerged, which consists in using the theory of general relativity from
which the Newton’s gravitation law is a coarse approximation. Up to now, this way has not been
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explored very much, and the few tentatives to convince the scientific community of the relevance
of this way were unsuccessful. It is indeed largely agreed that the possible effects which would
appear by applying the laws of general relativity are so insignificantly small, especially in the disk
region, that the Newton’s gravitational law is believed appropriate to study the structure of a spiral
galaxy. Without being exhaustive, let us cite the following examples. [3] used the theory of general
relativity to establish in the weak approximation one linear and one nonlinear equation relating
the angular velocity to the fluid density. It was then shown on some examples that the rotation
curves are consistent with the mass density distributions of the visible matter concentrated in the
disk. This article has however been the object of severe criticisms of most of the articles which
refer to it (see, for example, [4] and [5]). Following this study, [1] studied exact stationary axially
symmetric solutions of the 4-dimensional Einstein equations with co-rotating pressureless perfect
fluid sources and showed that the Newtonian approach could over-estimate the amount of matter
needed to explain rotation curves by more than 30%. More recently, [6] proposed to explain the
rotation curve by taking into account the general relativistic effects developed by large structures
of the universe such as clusters of galaxies.

The first of these three ways is currently the preferred one by most of the scientific community.
In this article, we will not call into question the hypothesis of dark matter: dark matter is
considered to be necessary to explain the flatness of the rotation curve of spiral galaxies. However,
at this stage, there are still several unexplained facts related to this hypothesis. In particular,
postulating a distribution of matter for a specific spiral galaxy can help us to understand the
rotation curve it exhibits, but it does not explain the physical reason for which matter is distributed
as such. Indeed, postulating dark matter explains why the rotation curve does not follow an
almost Keplerian profile, but it is not sufficient in itself to explain why the dark matter distribution
is such that it generally implies a flat rotation curve in the disk region, and does not follow any
other profile. For example, a continuously rising profile of the rotation curve would also require
the existence of dark matter, but we don’t know why such a profile is not encountered in practice.

In order to have a better understanding of a spiral galaxy’s structure, and to answer the
previous question, we develop in this article a new model. With respect to the usual approach,
which consists in relying on the Newton’s law of gravitation, the main difference is the fact that this
new model uses the linear approximation of the theory of general relativity. Since the Newton’s
law of gravitation is a coarser approximation of general relativity than its linear approximation,
we may hope that the new model will provide ’better results’, in the sense that they could be
closer to reality, and that they could provide a better understanding of the physics (such hope is
for example illustrated by the case of the precession of the perihelion of Mercury). In our case,
we may of course wonder if the Newtonian approximation is not sufficient, and if it is necessary
or justified to add the complexity of the linear approximation of general relativity to analyze the
structure of spiral galaxies. Will we really learn more by considering general relativistic effects? In
this article, a first positive answer will be given to that question. As already stressed, however,
the consideration of general relativistic effects will not explain the flatness of the rotation curve
without dark matter.

In section 2 we briefly introduce the linearized approximation of the theory of general relativity.
This will constitute the set of equations that we will use in the analysis of section 3, whose aim is
to establish the stationary state of an axisymmetric rotating pressureless fluid. This stationary state
will be found to be defined by two differential equations and several algebraic equations. Amongst
all the possible mathematical solutions to these equations, only some of them are acceptable on a
physical point of view. In section 4 we identify the most important physical constraints that an
acceptable solution must satisfy. We then deduce some structural characteristics of spiral galaxies.
In particular, we will demonstrate that the rotation curve of spiral galaxies necessarily tends to
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a constant profile in the disk region if adequate hypotheses (consistent with the observations or
expectations) are made. General relativistic effects will not explain the flatness of the rotation
curve (and will therefore not contradict the dark matter hypothesis), but their consideration will
prove to be very helpful, if not required, in our analysis.

2. The linear approximation of general relativity

In order to analyze the structure of spiral galaxies, we will first establish the stationary state for a
rotating fluid assumed to be representative of a spiral galaxy. More details about the hypotheses
we will make about this representative rotating fluid are given in section 3. With this in mind, it
appears that we cannot use the classical Newton’s law of gravitation to establish the stationary
state. If the orbital motion of the stars and other masses can explain the stationary state in the
two dimensions of the galactic plane, it is difficult to explain why the galaxy does not collapse in
the third (axial) dimension. By considering a pressureless fluid, and in the absence of centrifugal
force in this last dimension, the gravitational field as predicted by Newton will indeed attract all
the masses towards the symmetry plane of the galaxy. This difficulty disappears if one considers
the theory of general relativity. For this last one, the forces which act on the masses present new
components which in some cases can produce a repulsive contribution able to counteract the
attractive gravitation. It will however not be necessary to use the complete theory of general
relativity. For the specific situation we will study, its linear approximation will appear to be
sufficient.

The linearized equations of general relativity, whose derivation can be found in several
textbooks on general relativity, are obtained by assuming that the metric gµν can be written as

gµν = ηµν + hµν , (1)

where ηµν is the flat space Minkowski metric and hµν is such that |hµν| � 1. Using the Lorentz
gauge, it can be shown that the general relativity equations are then approximated by

∂µ h̄µν = 0 , (2)

�h̄µν = −2
8πG

c4 Tµν , (3)

where G is the universal gravitational constant, c is the speed of light, T is the stress-energy tensor
and

h̄µν = hµν − 1
2

ηµνh ,

h = hσ
σ ,

hµ
ν = ηµσhσν . (4)

In the approximation of a source term having a low velocity, the stress-energy tensor becomes

T00 = ρc2 ; T0i = cρvi ; Tij = ρvivj , (5)

where ρ is the local density, and vi is the ith-component of the fluid velocity. If we consider the
stationary case, and if we define the scalar potential Φ and the vector potential Hi such that

h̄00 =
4Φ
c2 ; h̄0i =

4Hi

c
; h̄ij = 0 , (6)
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the Eq. (2) and (3) can be written in the following manner:

∆Φ = 4πGρ , (7)

∆Hi =
4πG

c2 ρvi =
4π

K
ρvi , (8)

where we have defined a new constant:

K =
c2

G
. (9)

We then define the fields g and k as

g = −∇Φ , (10)

k = ∇×H . (11)

The Eq. (7) and (8) can then be obtained from the following relations:

∇× k = −4π

K
J , (12)

∇ · k = 0 , (13)

∇× g = 0 , (14)

∇ · g = −4πGρ , (15)

where J = ρv. In analogy with electromagnetism which has a similar set of equations, we define g
and k as being the gravitoelectric and the gravitomagnetic fields, respectively. More details about
gravitoelectromagnetism can be found, for example, in [7]. Note however that in this reference,
the gravitoelectric and gravitomagnetic fields have been defined in a slightly different way.

Also, in the linear approximation of general relativity, the equations of the geodesics become

d2x
dt2 = g + 4v× k . (16)

The aim now is to find a solution to the Eq. (12) to (16) for a rotating fluid representative of a
spiral galaxy.

3. The stationary state of a spiral galaxy

We will model a galaxy in an idealized manner, using more particularly the following assumptions:

1. The galaxy presents a cylindrical symmetry, as well as a symmetry plane through its height,
corresponding to the galactic plane. We will therefore use a reference frame expressed
in cylindrical coordinates (r, θ, z) such that its origin lies at the center of the galaxy, the
symmetry axis corresponds to r = 0 and the symmetry plane corresponds to z = 0. The
basis vectors are denoted er, eθ and ez. The cylindrical symmetry means that the variables
such as the density and the velocity do not depend on the polar coordinate θ.

2. The matter inside the galaxy is considered as a pressureless fluid, having a well defined
density ρ and velocity v at each point.

3. The motion of the fluid in the galaxy follows a perfect circle. This means that

J = 0 · er + Jθ · eθ + 0 · ez , (17)

where Jθ = ρv, and v is the magnitude of the velocity.
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On the basis of the assumptions we made, the Eq. (12) to (15) can thus be written as

∂kθ

∂z
= 0 , (18)

∂kr

∂z
− ∂kz

∂r
= −4π

K
ρv , (19)

∂(rkθ)

∂r
= 0 , (20)

∂kr

∂r
+

kr

r
+

∂kz

∂z
= 0 , (21)

∂gθ

∂z
= 0 , (22)

∂gr

∂z
− ∂gz

∂r
= 0 , (23)

∂(rgθ)

∂r
= 0 , (24)

∂gr

∂r
+

gr

r
+

∂gz

∂z
= −4πGρ , (25)

where we used the notation g = (gr, gθ , gz) and k = (kr, kθ , kz). Also, Eq. (16) becomes

−v2

r
= gr + 4vkz , (26)

0 = gθ , (27)

0 = gz − 4vkr . (28)

We thus have a set of 11 equations (8 differential equations and 3 algebraic equations) for the
unknowns kθ , kr, kz, gθ , gr, gz, v and ρ.

It is important to emphasize that the Eq. (18) to (25) are valid in the whole space, whereas
the Eq. (26) to (28) are only valid in the regions where an equilibrium state can exist. Inside the
galaxy, an equilibrium state has necessarily been reached (otherwise masses could not be present
there), but outside of it, such an equilibrium state will generally not exist. This is explained by
the fact that outside of the galaxy, where the density is zero, the equilibrium state is determined
by an over-constrained system of equations (by imposing ρ = 0 we lost a degree of freedom).
Indeed, the velocity has to verify two equations, namely the Eq. (26) and (28), in which the
gravitoelectromagnetic fields have, at some point, values that are fixed for a specific galaxy. Given
these values, the Eq. (26) and (28) will in general admit no solution for v, except at very specific
locations. The relations we will develop below are thus only valid inside the galaxy, and not
elsewhere.

The part of the symmetry plane outside of the galaxy is one of these very specific locations
where the Eq. (26) and (28) have a solution. Indeed, as we will see, on this plane gz = kr = 0.
Hence Eq. (28) is automatically verified, and the velocity at equilibrium is only defined by Eq.
(26). So an equilibrium could theoretically be defined there, and matter could be present on the
whole symmetry plane, even outside the galaxy. But this part of the symmetry plane constitutes a
singularity, because out of it, the system of equations becomes over-constrained again. This means
that the relations we will develop below will not be valid on the symmetry plane outside of the
galaxy neither. In fact, this also explains why these relations and the conclusions we will draw
from them do not apply for structures such as the solar system.
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3.1. Derivation of the gravitoelectromagnetic fields

From Eq. (18) we deduce that kθ does not depend on z, and from Eq. (20) we find that

kθ =
k1

r
, (29)

where k1 is a constant of integration. For physical reasons however (kθ can only be zero at r = 0),
k1 is necessarily zero, and kθ = 0 everywhere.

From Eq. (28) we deduce that

∂gz

∂r
= 4

∂v
∂r

kr + 4v
∂kr

∂r
, (30)

∂gz

∂z
= 4

∂v
∂z

kr + 4v
∂kr

∂z
. (31)

In a similar way, from Eq. (26) we have

gr = −
v2

r
− 4vkz , (32)

which implies

∂gr

∂r
=

v2

r2 − 2
v
r

∂v
∂r
− 4

∂v
∂r

kz − 4v
∂kz

∂r
, (33)

∂gr

∂z
= −2

v
r

∂v
∂z
− 4

∂v
∂z

kz − 4v
∂kz

∂z
. (34)

Firstly, by inserting the Eq. (30) and (34) in Eq. (23) we obtain

v
r

∂v
∂z

+ 2
∂v
∂z

kz + 2v
(

∂kr

∂r
+

∂kz

∂z

)
+ 2

∂v
∂r

kr = 0 . (35)

Using then Eq. (21) to replace the terms in parentheses, we may write Eq. (35) as

v
r

∂v
∂z

+ 2
∂v
∂z

kz + 2kr

(
∂v
∂r
− v

r

)
= 0 . (36)

Let us multiply this relation by (∂v/∂r + v/r):

v
r

∂v
∂z

(
∂v
∂r

+
v
r

)
+ 2

∂v
∂z

kz

(
∂v
∂r

+
v
r

)
+ 2kr

((
∂v
∂r

)2
−
(v

r

)2
)

= 0 . (37)

Secondly, by inserting the Eq. (31), (32) and (33) in Eq. (25) we obtain

−v
r

∂v
∂r
− 2kz

(
∂v
∂r

+
v
r

)
+ 2v

(
∂kr

∂z
− ∂kz

∂r

)
+ 2

∂v
∂z

kr = −2πGρ . (38)

Using Eq. (19) in order to replace (∂kr/∂z− ∂kz/∂r), this can be simplified in the form

−v
r

∂v
∂r
− 2kz

(
∂v
∂r

+
v
r

)
+ 2

∂v
∂z

kr = −
2πρ

K

(
KG− 4v2

)
. (39)

It will be useful to multiply this relation by ∂v/∂z:

−v
r

∂v
∂r

∂v
∂z
− 2kz

(
∂v
∂r

+
v
r

)
∂v
∂z

+ 2
(

∂v
∂z

)2
kr = −

2πρ

K

(
KG− 4v2

) ∂v
∂z

. (40)
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If we then sum the Eq. (37) and (40), and isolate kr, we obtain

kr =
1
2

∂v
∂z

 2πρ
K
(
KG− 4v2)+ ( v

r
)2( v

r
)2 −

(
∂v
∂r

)2
−
(

∂v
∂z

)2

 . (41)

If ∂v/∂z 6= 0, by using Eq. (41) in Eq. (36) we deduce that

kz = −
1
2

v
r
− 1

2

(
∂v
∂r
− v

r

) 2πρ
K
(
KG− 4v2)+ ( v

r
)2( v

r
)2 −

(
∂v
∂r

)2
−
(

∂v
∂z

)2

 . (42)

In fact, using Eq. (39), we may convince us that Eq. (42) is valid even if ∂v/∂z = 0.
We have been able to express kr and kz in function of ρ, v and its derivatives. It can be shown

in an equivalent way that gθ = 0 and that we have very similar expressions for gr and gz. More
particularly, we have:

gz = 2v
∂v
∂z

 2πρ
K
(
KG− 4v2)+ ( v

r
)2( v

r
)2 −

(
∂v
∂r

)2
−
(

∂v
∂z

)2

 (43)

and

gr =
v2

r
− 2v

(
v
r
− ∂v

∂r

) 2πρ
K
(
KG− 4v2)+ ( v

r
)2( v

r
)2 −

(
∂v
∂r

)2
−
(

∂v
∂z

)2

 . (44)

3.2. The density field

For practical reasons, we define the non-dimensional variable F as being

F =
2πρ

K
(
KG− 4v2)+ ( v

r
)2( v

r
)2 −

(
∂v
∂r

)2
−
(

∂v
∂z

)2 , (45)

We may then write the expressions of the fields kr, kz, gr and gz established above in the following
form:

kr =
1
2

∂v
∂z

F , (46)

kz = −1
2

v
r
− 1

2

(
∂v
∂r
− v

r

)
F , (47)

gz = 2v
∂v
∂z

F , (48)

gr =
v2

r
+ 2v

(
∂v
∂r
− v

r

)
F . (49)

The density ρ is obtained by inverting Eq. (45):

ρ =
K

2π

F
(( v

r
)2 −

(
∂v
∂r

)2
−
(

∂v
∂z

)2
)
−
( v

r
)2

KG− 4v2 . (50)

Hence, the fields kr, kz, gr, gz and ρ are expressed now in terms of F and v.
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3.3. The velocity field and the F-field

From the 11 independent equations (18) to (28), 4 have been used to establish the gravitomagnetic
field, and 5 have been used to establish the gravitoelectric field (in fact for this latter one, 3
equations were really useful, and 2 equations were redundant). Hence, we still have 2 independent
equations for the fields F and v.

Taking the derivatives of kr and kz with respect to r and z in the Eq. (46) and (47), and inserting
the results in Eq. (21), we obtain

1
r

∂v
∂z

(
2Fr + r2 ∂F

∂r
− r

2

)
= r2 ∂

∂r

(v
r

) ∂F
∂z

. (51)

Since r is independent from z, we obtain after some rearrangement

∂
∂r

((
F− 1

4

)
r2
)

∂
∂z

((
F− 1

4

)
r2
) =

∂
∂r
( v

r
)

∂
∂z
( v

r
) . (52)

This means that F can be expressed in the form

F =
1
4
+

F̂( v
r )

r2 , (53)

where F̂ is at this stage an unknown function depending on v/r. If we could define this function,
all fields could be expressed in terms of the velocity and its derivatives only.

Then, still using the expressions of the derivatives of kr and kz with respect to r and z obtained
from the Eq. (46) and (47), and inserting them in Eq. (19), we get

∂

∂z

(
1
2

∂v
∂z

F
)
+

∂

∂r

[
1
2

v
r
+

1
2

(
∂v
∂r
− v

r

)
F
]
= 2v

( v
r
)2 − F

(( v
r
)2 −

(
∂v
∂r

)2
−
(

∂v
∂z

)2
)

KG− 4v2 . (54)

This is a complex elliptical non linear partial differential equation for v. If we could define F
(or F̂) and give appropriate boundary conditions, we would be able to solve it, and afterwards,
completely determine the fields ρ, kr, kz, gr and gz. This is out of the scope of this article.

4. Qualitative analysis of the structure of a spiral galaxy

We have developed the relations that must be verified by a stationary rotating pressureless fluid.
Several mathematical solutions could exist to these relations, but all are not necessarily acceptable,
because some physical constraints have to be verified. In particular, we expect that spiral galaxies
are submitted to the two following constraints.

Firstly, in the upper half of the domain (z > 0), we expect that the z component of the
gravitoelectric field points towards the symmetry plane of the galaxy, in other words that gz < 0.
By symmetry we expect that gz > 0 in the lower half of the domain (z < 0). On the symmetry
plane we have gz = 0. If we consider the case for which v > 0, Eq. (46) and (48) show that kr has
the same sign as gz. So in the upper half of the domain we have kr < 0 whereas in the lower half
we have kr > 0.

Secondly, we expect the density to be everywhere positive. This assumption could seem
obvious, but if it is admitted that some unknown matter (called dark matter) could explain the
rotation curve, we may not exclude theoretically that other kinds of matter, having negative
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Figure 1: Qualitative illustration of the current lines of the gravitomagnetic field developed by a spiral galaxy.

masses, could also exist. Negative masses have already been studied in the past (see [2]), and it
was concluded that the theory of general relativity does not exclude it, even if it leads to negative
energies. We will not consider such a possibility in this analysis, and we will impose the density
to be positive.

We have typically 4v2 < KG = c2. For example, the maximum value of the velocity in the
Milky Way is about 250 km s−1, and for this case 4v2/c2 ≈ 2.8× 10−6. Since 4v2 < KG, the
denominator of Eq. (50) is positive, and in order to have a positive density, the numerator should
also be positive:

F

((v
r

)2
−
(

∂v
∂r

)2
−
(

∂v
∂z

)2
)
−
(v

r

)2
> 0 . (55)

Form these two physical constraints, we will now deduce some characteristics of a typical spiral
galaxy’s structure. With this in mind, it will be helpful to sketch a picture of the gravitomagnetic
field that would be expected for a spiral galaxy.

By analogy with electromagnetism, whose field equations are identical at the exception of
the physical constants, a spiral galaxy can be considered as an assembly of successive concentric
current loops having different radii, in which the masses are the equivalent of the electric charges.
Conceptually, the gravitomagnetic field developed by a spiral galaxy will not be very different
from the one of the classical magnetic field around a current loop, albeit a little bit different in its
shape due to the fact that the galaxy is more complex than a single current loop. Typical current
lines of the gravitomagnetic field developed by a spiral galaxy are qualitatively illustrated in Fig.
1. Due to the vanishing divergence of k, the current lines of this field must be closed, as for the
classical magnetic field. Since, as shown above for the case v > 0, we have kr < 0 in the upper
half of the domain (and inversely kr > 0 in the lower half), we know that these current lines turn
in an anticlockwise way. Note that the gravitomagnetic field could be a little bit more complex
than the one sketched in Fig. 1, especially for intermediate radii, but the important point is that
typically, kz < 0 in a region around the symmetry axis, while kz > 0 in the farthest region from
the symmetry axis.

We expect thus to have kz > 0 for large radii, and, in particular, in a more or less large part of
the disk region. Considering Eq. (26), we deduce that in this latter region, the gravitomagnetic
field leads to lower the rotation velocity with respect to what it would be in the presence of the
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r

v A

Figure 2: Typical rotation curve of a spiral galaxy.

single classical gravitational field, indicating that it certainly cannot explain its flatness (with
respect to a Keplerian profile, the gravitomagnetic field would have to increase the rotation velocity
to reach a non zero constant profile). On the other hand, in the central region of the bulge, we
have kz < 0, meaning that the gravitomagnetic field leads to increase the rotation velocity with
respect to what it would be in the presence of the single classical gravitational field.

On the basis of some typical rotation curves, we may convince us that the region in which
kz < 0 is very narrow with respect to the characteristic dimensions of a spiral galaxy. Let us
indeed consider the rotation curve illustrated in Fig. 2, which is qualitatively representative of
typical rotation curves. On this figure, point A is characterized by the fact that ∂v/∂r = 0, and on
the galactic plane where gz = 0 we also have ∂v/∂z = 0. The positiveness of the density (see Eq.
55) then implies that F > 1. Using also Eq. (47), we show that at this point kz = (F− 1) v/r. Since
F > 1, this means that kz > 0 at point A, and thus that the region in which kz < 0 must lie closer
to the origin.

Concerning the orders of magnitude, we expect large values of kr in the bulge. This is justified
by the fact that the large densities observed in this region suggest us that we have a significant
gravitoelectric field gz, and in order to avoid the collapse in the axial direction, Eq. (28) requires
therefore a significant gravitomagnetic field kr, especially if the velocity is small. On the other
hand, in the disk region, we expect a much smaller gravitoelectric field gz, and Eq. (28) requires
at equilibrium a smaller gravitomagnetic field kr as well.

Also, we may probably not neglect kz in the region around the symmetry axis. Indeed, as
already sketched, a spiral galaxy can be considered as an assembly of successive concentric current
loops. In some places, these current loops develop gravitomagnetic fields which for some of them
combine in a destructive manner (meaning that they cancel each other), and for the others combine
in a constructive manner (meaning that they enforce each other). But the more we approach the
center of the galaxy, the more these current loops combine in an overall constructive manner. In
particular, in the very central region, kz will probably reach significant values. This is justified by
the fact that, as illustrated above, the region in which kz < 0 is probably very narrow. Since the
flux trough this region has to be identical in magnitude to the flux trough the whole region where
kz > 0, which expands over quite large distances, we may expect that the flux density be large in
the former region, hence that kz be significant there.

On the other hand, we do not expect significant values of kz in the disk region. This assumption
will moreover be justified by the fact that it is part of the explanation of the flatness of the rotation
curve, as we will now see.
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In a rough approximation, we generally represent a spiral galaxy as a central bulge region
in which the density is quite high, and a disk region, in which we assume that the density is
negligible. With such a configuration, the application of the classical Newton’s laws implies
that the velocity presents a Keplerian profile in the disk region, at least if we suppose that the
contribution of the masses outside of the bulge to the gravitational field are insignificant. We
demonstrate here that the general relativistic approach leads to another conclusion, i.e., that the
velocity profile necessarily presents a constant profile, in accordance with the observations. As
already generally admitted, this then requires the existence of larger quantities of matter than
observed, confirming thus the existence of the halo. This demonstration will be given on the
galactic plane, where ∂v/∂z = 0.

As explained above, we expect the gravitomagnetic field to be negligible in the disk region.
Regarding Eq. (26), the smallness of kz means that the last term is small in comparison with the
two other terms. In particular:

|kz| �
1
4

v
r

. (56)

In this case, Eq. (26) tends to the classical Newtonian law:

gr ≈ −
v2

r
. (57)

The fact that the density is negligible in the disk region implies that the local masses do not
influence significantly the local gravitoelectric field, and thus that the term related to the density
in Eq. (25) is small in comparison with gr:

4πGρr � |gr| . (58)

Taking into account Eq. (57) this latter inequality becomes

πGρ� 1
4

v2

r2 . (59)

Let us now examine the expression of the density, Eq. (50). Since typically KG = c2 � 4v2, we
will admit that KG− 4v2 ≈ c2. Reminding that we consider the galactic plane (∂v/∂z = 0), we
may then write

ρπG ≈ 1
2

F

((v
r

)2
−
(

∂v
∂r

)2
)
− v2

2r2 . (60)

Considering also Eq. (47), this last relation can be written as

ρπG ≈
(

1
2

v
r
+ kz

)(
v
r
+

∂v
∂r

)
− v2

2r2 =
∂v
∂r

(
1
2

v
r
+ kz

)
+ kz

v
r

. (61)

Using this expression in the inequality (59) leads to

∂v
∂r

(
1
2

v
r
+ kz

)
+ kz

v
r
� 1

4
v2

r2 . (62)

Since |kz| � v/(4r) < v/(2r), we deduce that

∂v
∂r
� 1

2
v
r

. (63)
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We may thus neglect ∂v/∂r in front of v/r. Doing so in Eq. (47) and neglecting here also kz in
front of v/(2r), we conclude that in the disk region F ≈ 1. With this value of F, the constraint (55)
on the density imposes then that ∂v/∂r vanishes:

∂v
∂r
≈ 0 . (64)

A vanishing density field and a negligible gravitomagnetic field are necessarily associated with an
almost constant velocity profile along the radius. In the disk region, the velocity will thus keep the
value it has reached at the border of the bulge. This indicates that the model we have developed
on the basis of the linearized equations of general relativity is able to explain the reason for which
the rotation curve of spiral galaxies systematically reaches a constant profile in the disk region.
How this flat profile is reached is explained by the dark matter hypothesis.

Note finally that we may also reason in the opposite way: a constant velocity profile and
the assumption of a negligible gravitomagnetic field are necessarily associated with a vanishing
density field. Indeed, on the basis of Eq. (47) these assumptions lead to F ≈ 1, which then implies
according to Eq. (50) that the density vanishes.

5. Conclusion

We have established the stationary solution of a rotating pressureless fluid for the linearized
approximation of the theory of general relativity. On the basis of the positiveness of the density,
we have demonstrated that this solution necessarily implies a constant velocity profile in the
regions where the density and the gravitomagnetic fields are negligible, such as in the disk region
of a spiral galaxy. This result is in contradiction with the Keplerian behavior which is commonly
presented as the expected one in the disk region of spiral galaxies, at least if we suppose that
the contribution of the masses outside of the bulge to the gravitational field are insignificant.
Paradoxically, general relativistic effects do not explain the flatness of the rotation curve, but their
consideration proved to be very helpful, if not required, in the understanding of this property.
Dark matter is still required to explain how this flat rotation curve can be reached in the disk
region. Although the model is able to predict a correct profile in the disk region, the model should
be further investigated to confirm its adequacy for the study of spiral galaxies.
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