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Abstract

The ability of viscoplastic fluids to self-select their flow geometry through
the formation of unyielded dead zones has important consequences for flows
in wavy channels, flows over obstacles, etc. Yet, the mechanisms controlling
the formation and dimensions of the dead zones remain poorly understood.
We present a detailed cross-comparison of experimental and numerical results
concerning channel flows of a viscoplastic fluid over a rectangular cavity filled
by the same material. In all the configurations studied, which correspond to
moderate values of the Bingham number, a continuous dead zone forms in-
side the cavity. Both numerical and experimental data reveal that, unlike at
high Bingham numbers, the shear-rate profiles above the dead zone display
an asymmetric shape. Accordingly, two different flow zones can be distin-
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guished: a Poiseuille-like zone, in which the velocity profile is similar to that
over a rigid wall, and a boundary layer ensuring the transition with the dead
zone below. It is shown that the effective boundary condition felt by the
Poiseuille-like layer is essentially controlled by incoming flow characteristics,
such that the thickness of this layer does not obey simple relations with cavity
length. Interestingly, however, the thickness of the boundary layer appears
to follow a generalized Oldroyd’s scaling with cavity length.

Keywords: Bingham rheology, Herschel-Bulkley rheology, viscoplastic
boundary layer, extended Oldroyd scaling, particle image velocimetry,
numerical simulations, Augmented Lagrangian method
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1. Introduction

In this article, we study the flow of viscoplastic fluids in expansion – con-
traction confined domains. A striking feature of such configurations is the
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self-selection of the flowing region through the formation of fully unyielded20

dead zones and moving plugs [1]. Detailed numerical investigations have
shown that various topologies of unyielded zones can occur, depending on
incoming flow and channel characteristics [2, 3, 4]. However, understanding
the mechanisms that govern the location of the yield interfaces remains an
open issue. In real yield-stress fluids, further complexity can also be intro-25

duced by additional rheological trends of the materials, such as viscoelasticity
or thixotropy, that may also play an influence on the formation of unyielded
zones [5, 6]. In this article, we want to shed light on the flow properties in the
vicinity of the yield interfaces, with the objective to exhibit possible generic
scaling relations. We consider more specifically the configuration of a lon-30

gitudinal parallel flow over a rectangular cavity [7, 8] and, through detailed
cross-comparisons between numerical simulations and physical experiments,
focus on features induced by genuine viscoplasticity only.

Depending on whether numerical or experimental results are concerned,
we will consider the Bingham or the Herschel-Bulkley (HB) constitutive law
for the deviatoric stress tensor τ :

D(u) 6= 0⇔


τ =2ηD(u) + τy

D(u)

|D(u)|
(Bingham: simulations) or

τ =2K|D(u)|n−1D(u) + τy
D(u)

|D(u)|
(HB: experiments)

D(u) = 0⇔ |τ | 6 τy,

(1)

where τy is the yield stress (in Pa), η and K are respectively the Bingham
viscosity and HB consistency (resp. in Pa·s and Pa·sn), n is a power-law
index, u is the velocity, and D(u) = (∇u +∇uT )/2 is the strain rate tensor.
We adopt the following convention for the tensor norms:

|T |2 =
1

2

∑
i,j

T 2
i,j.

Clearly, Bingham law corresponds to a particular case of Herschel-Bulkley
law for n = 1 (and K = η). In the following, we assume that the Reynolds
number (Re) is low, so that the flows are only controlled either by the Bing-
ham B or by the Herschel-Bulkley number Hb, commonly referred to as
viscoplastic numbers, defined as:

B =
τy
η

L
U

and Hb =
τy
K

(
L
U

)n

, (2)
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where L and U denote characteristic length and velocity scales, respectively.
Note that various choices for the characteristic scales L and U will be con-35

sidered in the following, leading to different definitions of the viscoplastic
numbers B and Hb (specified by different subscripts).

Recently, compelling analytical predictions for the location of yield inter-
faces in viscoplastic flows over a cavity were obtained by Balmforth et al. [4]
in the limit of high Bingham numbers. In this regime, these authors show40

that the sheared flow layer developing between the unyielded zones behaves
as a viscoplastic boundary layer. The theory of viscoplastic boundary layers
goes back to Oldroyd [9], who studied analytically different flow configura-
tions including a jet intrusion of Bingham fluid in an infinite half-plane and
a moving knife in an infinite plane. Oldroyd derived an asymptotic approxi-45

mation of the momentum conservation equation for high Bingham numbers,
and obtained similarity solutions for the velocity profile in the yielded zones,
dubbed boundary layers. The width of these boundary layers evolves ac-
cording to B

−1/3
` `, where ` denotes the abscissa and B` corresponds here to a

local Bingham number defined on the basis of `. This problem has then been50

studied in other configurations, e.g. the flow around an obstacle where an
alternative scaling in O(B−1/2) was proposed [10], or in a Hele-Shaw cell [11].
Through asymptotic analysis and numerical simulations, Balmforth et al. [4]
revisited Oldroyd’s viscoplastic boundary layer theory in various configura-
tions and provided a rationalization of the apparently incompatible scalings55

previously proposed. In short, both scalings in O(B−1/3) and O(B−1/2) can
occur, depending on whether the zone bounding the viscoplastic boundary
layer is an unyielded layer or a wall. In the case of the flow over a cavity,
they showed that the thickness of the boundary layer obeys Oldroyd’s scal-
ing in B

−1/3
D D, where D denotes the length of the cavity. Noteworthy for60

the following is the fact that Balmforth et al.’s analysis assumes shear-rate
profiles in the flow layer that are symmetrical with respect to the center of
the layer.

In this paper, we investigate whether the results of [4] concerning the case
of cavity flow can be extended to the case of moderate viscoplastic numbers,65

i.e. outside of the a priori domain of validity of the asymptotic approxima-
tion but for a range of parameters that is more relevant of applications. The
work is based on a re-analysis of the experimental results described in [8]
through comparisons with highly-resolved numerical simulations. Section 2
briefly recalls the experimental and numerical methods, which are described70

in full details in [8] and [3], respectively. In section 3, we highlight the
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common features and trends observed in experiments and simulations, and
show that the location of the yield interfaces cannot be predicted through
Oldroyd’s scaling in our case. Section 4 shows that a sub-layer of the shear
zone does nevertheless behave as a viscoplastic boundary layer, and that the75

thickness of this layer indeed obeys a generalized Oldroyd’s scaling in both
simulations and experiments. Lastly, section 5 presents final remarks.

2. Methods

2.1. Experimental setup

h

D

(a) (b)

1 mm

y

x

g

Figure 1: (a) Experimental setup (bottom) and streamlines for an experiment with D =
1.5 cm, h = 3 cm, fluid F3 and flow rate Q = 6.4 cm3/s. The pattern of streamlines is
visualized by computing the standard deviation of local pixel gray levels over a 1-minute
image sequence (2723 images). (b) Numerical simulation for the same geometry and fluid,
for Q = 8 cm3/s. The unyielded plug and dead zones are colored darker. We also sketch
the location of the coordinate system, with y = 0, corresponding to cavity top.

The experimental setup was described in [8]. As shown in Figure 1(a), it80

consists of a closed rectangular channel with a height H = 6.5 cm, a length
of 30 cm, and a width of 8 cm. Two steps are placed in the cell to form a
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central cavity of height h (equal to 1.5 or 3 cm). The cavity length D is equal
to 1.5, 3 or 6 cm. In the following, the x axis corresponds to the longitudinal
direction of the cell, while y denotes the cross-stream vertical direction. Note85

that y is oriented upwards, with y = 0 corresponding to the top of the cavity.
Stationary laminar flows are generated by connecting the cell to a pump

imposing a constant flow rate Q. We use a transparent model yield-stress
fluid, namely Carbopol micro-gel solutions, whose rheological behaviour is
well described, in steady state, by a Herschel-Bulkley law [12, 13]. Note90

however that this material also features viscoelastic properties that can in-
duce additional complexity to the flows [14, 7].

Using reflective tracers (hollow spheres) illuminated with a laser sheet,
velocity fields u within the flow are reconstructed through particle image
velocimetry (PIV). The local shear rate D(u) is computed by direct differen-95

tiation of the velocity field, and stress fields are then derived by application
of Herschel-Bulkley constitutive law. Figure 1(a) presents a visualization of
the streamlines obtained in a typical experiment. Note that in the vicinity
of the cavity center (denoted by x = x1/2 in the following), the flow can be
considered as quasi-longitudinal, i.e. vertical velocity components are negli-100

gible. We can therefore spatially average PIV measurements in this region, to
obtain cross-section profiles of longitudinal velocity with a higher accuracy.
For more details, we refer to [15, 8].

2.2. Numerical simulations

As already mentioned, we assume Re� 1 and neglect inertia terms. We
thus solve numerically the following viscoplastic Stokes system (where p de-
notes a modified fluid pressure accounting for the hydrostatic contribution):

∂xp = ∂xτxx + ∂yτxy,

∂yp = ∂xτxy + ∂yτyy,

div(u) = 0.

(3)

A Bingham rheology is considered in the simulations. The computations105

are performed with a parallel 2D code (implemented with F90 and MUMPS
(MPI)) based on Augmented Lagrangian methods. It shall be noted that
fine meshes are used, together with demanding convergence criteria of the
Augmented Lagrangian iterations, leading to very well defined and sharp
localization of the yielded / unyielded material interfaces. As a consequence,110

strain rates and stresses are computed with high accuracy. For more details,
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we refer to [3], where the code was validated and compared to the physical
experiments of [16] and [15]. We recall that the simulated configuration is
a full expansion-contraction, so that the flow conditions on the upper half
of the domain are not exactly the same in the experiments (plane upper115

wall as shown in Fig. 1(a, down)) and in the simulations (symmetric cavity
facing downwards; this full geometry is shown in [3]-Fig. 2)). It was checked
that, in spite of this difference, the same bottom-half analytic viscoplastic
Poiseuille profiles are recovered in both the entry and exit channels (see [3]
for more details). It was also shown that the simulations are able to retrieve120

several non-trivial qualitative features of the experiments. In particular, as
illustrated in Figure 1b, the overall simulated flow pattern in the bottom-half
of the domain above the cavity indeed appears in good qualitative agreement
with the experimental observations. Based on these first comparisons, we
argue that the differences in rheological model and geometrical configuration125

between the simulations and the experiments shall not constitute an obstacle
to the comparison of both data sets, at least as long as the focus remains on
main trends and qualitative features.

2.3. Fluid rheological parameters and flow regimes

The Herschel-Bulkley rheological parameters of the five Carbopol samples130

used in the physical experiments are recalled in Table 1. Note that while the
yield stress τy and consistency K of the different fluids vary, the exponent n
remains close to 0.4 in all cases. As the numerical simulations are performed
with a Bingham model, we adapted the rheological parameters considered
in the computations to obtain comparable flow configurations. To do so,135

for a given experiment, we needed to adjust two parameters in the code,
namely the Bingham viscosity η and the ”driving pressure” term. These
two parameters are fixed through the two following constraints: (i) the plug
velocity (i.e. the maximum velocity) in the center of the channel is the same
as in the experiment, and (ii) the viscosity η is computed from K and the140

estimated maximal strain rate in the middle of the cavity (at x = x1/2)
obtained in the experiment. The yield stress τy is taken identical to the
experimental value. These adjustments guarantee that shear-rate values are
on the same order in both simulations and experiments (within a factor of
3, typically), and that the two underlying constitutive laws are reasonably145

close to each other in the considered shear-rate range.
For the sake of clarity, Table 2 summarizes the different definitions of

Bingham and Herschel-Bulkley viscoplastic numbers that will be used in the
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Symbol Fluid τy (Pa) K (Pa·sn) n

9 F1 0.2 1.1 0.45
4 F2 0.8 1.4 0.44
© F3 3.8 3.0 0.41
� F4 15.3 7.1 0.40
♦ F5 21.3 9.6 0.40

Table 1: Herschel-Bulkley rheological parameters for the five Carbopol samples used in
the experiments: yield stress τy, consistency K, power index n. The symbols indicate the
glyphs used in all subsequent figures.
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Figure 2: Colors legend used, in the following figures of the article, for the various geome-
tries of the cavity.

following. The numbers Bup and Hbup, defined on the basis of maximum flow
velocity Uup at cavity entrance and upward channel width (H − h)/2, char-150

acterize the incoming viscoplastic flow upward of the cavity. The numbers
BD and HbD, defined on the basis of Uup and cavity length D, correspond to
those involved in classical Oldroyd’s scaling. Lastly, we will also introduce
the numbers Bcav and Hbcav based on an internal flow velocity above the
cavity Us and cavity length D (see section 4.2). The configurations investi-155

gated in this study correspond to moderate values of the upward viscoplastic
numbers Bup and Hbup: the range of Hbup investigated in the experiments is
0.2–5, while the corresponding range of Bup in the simulations is 0.5–40.

Table 2: Characteristic length and velocity scales L and U (see Eq. (2)) used to define the
different Bingham and Herschel-Bulkley viscoplastic numbers introduced in this study.

Simul./Exp. L U
Bup/Hbup (H − h)/2 Uup

BD/HbD D Uup

Bcav/Hbcav D Us
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3. First flow features by cross-comparison experiments/simulations

In this part, we perform a first characterization of common flow features160

observed in both experiments and numerical simulations. We focus in partic-
ular on the geometry of the dead zone in the cavity and a so-called boundary
layer in the yielded zone.

3.1. Stress fields and dead zone

Upstream of the cavity, the incoming channel flow corresponds to a clas-165

sical stationary viscoplastic Poiseuille flow [8, 3]. Hence, shear stress is max-
imum at the wall, and linearly decreases away from it. An unyielded moving
plug is present in the center of the channel.

Figures 3 and 4 show the typical patterns of stress fields and unyielded
zones observed inside the cavity. In spite of the noise present on experimen-170

tal data, the similarities between the results obtained in simulations and in
experiments are evident. In both cases, the shear stress τxy presents a max-
imum that generally follows a slightly curved path close to the top of the
cavity (indicated by the black curve in Fig. 3), while the normal stress τxx
shows a distinct pattern below or above the maximum of τxy. In particu-175

lar, the sign of ∂xτxx is opposite in the two regions. A continuous unyielded
plug is observed in the center of the channel, while a static unyielded dead
zone forms at the bottom of the cavity. In the simulations, thanks to the
high accuracy of the numerical scheme, the two yield surfaces, denoted by
y = yint(x) (interface with lower dead zone) and y = yplug(x) (interface with180

the plug), are easily identified as the positions where the values of strain
rate vanish. In experiments, the location of the dead zone yint(x) can be
determined precisely from the images (see Fig. 1). The determination of the
upper plug yplug(x) is more difficult, as it is strongly sensitive to the errors on
velocity measurements. Reliable values of yplug could be obtained only at cav-185

ity center x1/2 (through a fit of the longitudinally-averaged velocity profile),
such that the position of the upper plug in Figure 4 is only indicative.

To compare quantitatively the shape of the dead zone formed in the
cavity in simulations and in experiments, we computed the shape factor
Φ = Atot/(D|yint(x1/2)|), where Atot =

∫ D

0
|yint(x)|dx is the area of yielded190

material in the cavity and yint(x1/2) corresponds to the deepest position of
the solid-liquid interface. As shown in Figure 5, it is observed that Φ is
essentially constant for all the configurations studied, in both experiments
and simulations. This is indicative of a shape-invariance property of the yield
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Figure 3: Numerical simulations: colormaps of normal and shear stress τxx and τxy (case
D = 1.5 cm, h = 3 cm for fluid F4). Colorbar values in Pa. The thick black curve
represents the location of the maximum of τxy or, equivalently, the upper limit of the
boundary layer ys(x) (see text). The gray areas correspond to the unyielded zones. Note
that the maps represent a zoom-in view of the viscoplastic boundary layer above the cavity.
The lower and upper channel walls are not shown.

25

20

15

3

0

-3

2

1
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Figure 4: Experiments: same as Fig. 3 (case D = 1.5 cm, h = 3 cm with fluid F4 and a
flow rate Q = 15.3 cm3/s). The upper unyielded zone has been traced on the basis of the
determination of yplug at cavity center x1/2 and is only indicative. As in Fig. 3, the maps
represent a zoomed-view of the viscoplastic boundary layer above the cavity.

interface, independently of cavity length and depth. Note that this result is195

necessarily restricted to the case of relatively small cavity lengths, for which
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the yield interface does not reach cavity bottom. For very long cavities, we
expect yint(x1/2) → h, and thus Φ → 1. In addition, it is observed that
the values of Φ are comprised within the same range (0.7− 0.8 typically) in
numerical and experimental results (Fig. 5), thereby showing the similarity200

of the interface shape in both cases.

0 5 10 15 20 25 30
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0.5

0.6
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(|y
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t|D

)

0 1 2 3 4 5

Hbup
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0.6

0.7

0.8

Φ

Figure 5: Shape factor of the solid-liquid interface Φ (see definition in text) as a function
of viscoplastic numbers Bup or Hbup. Glyphs correspond to Table 1, while colors legend
are indicated in Figure 2. Left: simulations. Right: experiments.

3.2. Flow zones

Figure 6 presents typical profiles of longitudinal velocity u and shear rate
|D(u)| at x = x1/2 in the simulations. Note that |D(u)| = |∂yu| at this loca-
tion. By symmetry, only the first half of the profiles is shown. Qualitatively,205

these profiles were found to display similar features in all the simulations
performed. The velocity profile shows a characteristic sigmoidal shape, in-
creasing from 0 at the interface with the lower dead zone to a maximum in
the upper plug zone. The shear-rate profile is bell-shaped, with a well-defined
maximum in between. Remark that the profile is generally non-symmetric210

with respect to its maximum. The location of the shear rate maximum is
denoted by ys. Similarly, to simplify the notations, the positions of the lower
and upper yield surface at x1/2 will henceforth be denoted by yint and yplug,
respectively (Fig. 6). Lastly, the velocity at (x1/2, ys) is denoted by Us

1.

1The s index is reminiscent of the ”slip” nomenclature used in [15]. We remind that
this nomenclature is not related to the slipline theory for plastic solids (as described in
[17]).
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Figure 6: Numerical simulations: Typical cross-section profiles of longitudinal velocity u
(top, in cm.s−1) and shear rate |D(u)| (bottom, in s−1) at x = x1/2, the middle of the
cavity (y in m) (fluid F3, same parameters as in Fig. 7). By symmetry (see section 2.2
for details on the geometrical configuration of the simulations), only the lower halves of
the profiles are shown. Note the sharpness of |D(u)| at the interfaces between the yielded
and unyielded zones, indicative of the high-quality numerical resolution.

Based on these profiles and the observation of stress fields (see section215

3.1), we distinguish between three different zones in the flow:

• a zone of width δBL between yint and ys, which we will refer to as the
boundary layer,

• a zone of width δPL between ys and yplug, which we will refer to as the
Poiseuille-like layer,220

• the moving plug zone above y = yplug.

Note that the definition of boundary layer introduced here is slightly differ-
ent from that used in [9, 4, 16], where this terminology referred to the whole
yielded zone. Instead, as will be discussed later, we found it relevant in our
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case to limit the boundary layer to the zone in which the shear rate, and con-225

sequently the shear stress, increase. The terminology of Poiseuille-like layer
for the stress-decrease zone situated above, comes from the observation of a
quasi-linear decrease of shear stress in this zone, exactly as in the incoming
Poiseuille flow upstream of the cavity [8].

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

y (cm)

0.00
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1
)
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0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
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1
)

ysyint yplug

δys
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unsmoothed

Figure 7: Experiments: Typical vertical profiles of longitudinal velocity u (top) and shear
rate |D(u)| (bottom) at x = x1/2, the middle of the cavity (fluid F3 with D = 1.5 cm,
h = 1.5 cm and Q = 6.4 cm.s−1, like in Fig. 6). The location ys of the maximum of |D(u)|
is determined on the smoothed profile (dashed curve, see text), while the corresponding
uncertainty δys accounts for the difference with the maximum of the unsmoothed values
(symbols).

As shown in Figure 7, velocity and shear-rate profiles at x = x1/2 obtained230

in the experiments present similar shapes, such that similar flow zones can
be defined. When the shear rate is computed from measured velocity profiles
through a simple finite-difference scheme, the peak in the shear rate profile
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is sometimes less marked than in the simulations, with the existence of an
apparent plateau around the maximum (well visible in Fig. 7). However,235

if a smoothing procedure is applied on velocity profiles prior to computing
the derivative (3rd-order polynomial fit over moving windows of 21 points),
a single shear rate maximum is retrieved. Observe that the smoothed shear-
rate profile remains consistent with unsmoothed data points if error bars are
taken into account. As explained in [8], plateaus in unsmoothed shear-rate240

profiles were generally observed for the largest cavity lengths D. Whether
these plateaus represent a true physical feature, or are due to measurement
errors, remains to be elucidated. In [8] possible correlations between the
width of these plateaus and viscoelastic rheological properties of Carbopol
were investigated, but no definitive conclusion could be drawn. In the present245

study, since the numerical simulations (which account for a genuine viscoplas-
tic rheology) never exhibit such plateaus, we decided to base our analyses
of experimental data on the smoothed shear-rate profiles. This allows us to
uniquely determine ys and Us (Fig. 7) and directly compare these quantities
to their numerical counterparts. Error bars associated to these quantities250

are determined to reflect the differences with the non-smoothed case (and
hence the robustness of the values with respect to the smoothing procedure
adopted).

Finally we note that even though later analyses will mostly focus on quan-
tities defined at x1/2, the zoning introduced above can be defined along the255

whole length of the cavity. In numerical simulations, the position y = ys(x)
of maximum shear rate, or equivalently of maximum shear stress, can be
determined for all values of x (accounting in this case for the complete ex-
pression of |D(u)|). A typical example is shown in Figure 3 (see also Fig. 14).
The boundary layer, comprised between yint(x) and ys(x), generally presents260

a lentil shape, with a thickness progressively vanishing at cavity edges. Inter-
esting also is that yplug(x) seems to follow the shape of the boundary layer. In
experiments, the precise determination of ys(x) all along the cavity is more
difficult, due to the relatively large noise level on |D(u)|-values as soon as
spatial averaging cannot be applied. Remark nevertheless that the overall265

shape of the boundary layer appears qualitatively similar to that observed
in the simulations (see Fig. 4).

3.3. Dead zone interface

Figure 8 shows the evolution of dead zone interface depth yint in simula-
tions and in experiments. In both cases, it is observed that yint significantly270
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decreases with cavity length D (Fig. 8 - insets). Furthermore, as shown in the
main panels, the ratio |yint|/D appears to roughly follow power-law trends
with the viscoplastic numbers BD or HbD defined on the basis of incoming
flow velocity Uup and cavity length D (see Tab. 2). In the simulations, the

trend is consistent with Oldroyd’s scaling, namely |yint|/D ∝ B
−1/3
D . Simi-275

larly, in experiments, the power-law trend is consistent with an exponent of
−1/(n+ 2) corresponding to the Herschel-Bulkley version of Oldroyd’s scal-
ing [4]. We remark nevertheless that the dispersion of data points around
these main trends remains significant, particularly in the experimental case.
Even in numerical results, variations of |yint|/D of more than 50% can be280

observed for a given value of BD or HbD. Hence, although correctly describ-
ing the main trend, Oldroyd’s scaling is insufficient to quantitatively capture
the location of the yield interface in the configurations studied here. Note
also that the larger deviations observed in the experimental case could be
due to more complex rheological features of Carbopol. In particular, these285

deviations may be related to the slight asymmetry of the interface shape,
presumably due to viscoelasticity, reported in [8].
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Figure 8: Dead zone interface scaled by cavity length |yint|/D as a function of viscoplastic
numbers BD or HbD in log scales (insets: yint as a function of D). Beware of the slightly
different vertical scales on both plots. Glyphs correspond to Table 1, while colors legend

are indicated in Figure 2. Left: simulations. Dashed line indicates the power law B
−1/3
D .

Right: experiments. Dashed line indicates the power law Hb
−1/(n+2)
D , with n = 0.4.

3.4. Flow characteristics at the boundary layer interface

We recall that the boundary layer denotes in our case the zone of stress
increase observed in the cavity between the dead zone and the quasi-Poiseuille290
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flow zone above (see Fig. 6). As shown in Figure 9, a linear relation is found,
both in experiments and in simulations, between the velocity Us measured at
the boundary layer interface and the plug velocity in the incoming channel
Uup. Interestingly, the slope of this linear relation appears to be close to
0.4 in both cases. The velocity at boundary layer interface Us thus appears295

to be essentially controlled by the incoming flow, independently of cavity
characteristics.
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Figure 9: Flow velocity at boundary layer interface Us versus plug velocity in the incoming
channel flow Uup. Glyphs correspond to Table 1, while colors legend are indicated in Figure
2. Left: simulations (dashed line of slope ≈ 0.39). Right: experiments (dashed line of
slope ≈ 0.44).

Similarly the maximum stress τm, which is measured on the boundary
layer interface, appears to be directly related to incoming flow characteristics.
Figure 10 shows the existence of a linear relation between τm and the stress on300

the wall τw in the incoming channel. In both experiments and simulations,
the data appear to follow τm ≈ 0.8τw. Furthermore, since the incoming
flow obeys a viscoplastic Poiseuille equation, the ratio τw/τy is itself directly
related to the incoming viscoplastic number Bup or Hbup. Accordingly, a
good correlation is also observed between τm/τy and Bup or Hbup in both305

simulations and experiments (Fig. 10).

3.5. First conclusions

The results shown above confirm the agreement between the numerical
simulations and the experiments, despite the different viscoplastic constitu-
tive laws considered in the two cases. In particular, comparison of the two310
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Figure 10: Top: Shear stress at boundary layer interface τm as a function of wall shear
stress τw in the incoming channel. Dashed lines represent the relation τm = 0.8τw. Bottom:
Ratio τm/τy as a function of the viscoplastic number Bup or Hbup, with additional log-log
representation in inset. Left: simulations. Right: experiments. Glyphs correspondence is
indicated in Table 1. For the colors legend, see Figure 2.

data sets allows us to exhibit consistent trends that appear to be characteris-
tic of the flow configuration under study. First, in the range of moderate vis-
coplastic numbers investigated here, a zoning of the flow in the cavity can be
defined by distinguishing between the stress-increase and the stress-decrease
layers. Unlike the situation at high values of the viscoplastic number, the315

shear-rate and shear-stress profiles in these two zones are not symmetric.
The stress-decrease zone corresponds to a Poiseuille-like flow layer, while the
stress-increase zone delimits a boundary layer in the vicinity of the dead zone.
As a further evidence of the asymmetry between these two layers, Figure 11
shows that the thickness of the Poiseuille-like zone δPL (measured at x1/2)320
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is generally significantly larger than the thickness of the boundary layer δBL

(except for the longest cavities), again in both experiments and simulations.
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Figure 11: Ratio of Poiseuille-like zone thickness over boundary layer thickness, δPL/δBL

as a function of viscoplastic number Bup or Hbup. Left: simulations. Right: experiments.
Glyphs correspondence is indicated in Table 1. For the colors legend, see Figure 2.

Second, the location of the dead zone interface yint appears to be only
poorly captured by Oldroyd’s scaling, which is expected to hold at high values
of the viscoplastic numbers (see section 1). Even if global power-law trends325

with BD and HbD are visible in the data, a large dispersion is present in
both simulations and experiments. Interestingly, however, good correlations
are observed between flow velocity and shear stress at the interface of the
boundary layer and the characteristics of incoming channel flow (in particular
Bup and Hbup). Hence, the effective boundary condition felt by the Poiseuille-330

like flow layer appears to be essentially controlled by the incoming flow,
independently of cavity characteristics. In the following, we shall focus in
more details on the properties of the boundary layer, with the objective to
better identify the factors controlling its extension.

4. Extended scaling for the boundary layer335

4.1. Boundary layer equation

Following the detailed analysis of Balmforth et al. [4], we studied whether
Oldroyd’s viscoplastic boundary layer equation is verified, at least approxi-
mately, in the flow configurations studied here. In the geometry under con-
sideration, Oldroyd’s equation writes:

2∂xτxx + ∂yτxy = 0. (4)
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Thanks to the high resolution of our simulations, we can numerically study
the derivatives of the stress fields and check how precisely Eq. (4) is verified
in the yielded zones. Spatial fields of both terms of Eq. (4) are shown in
Figure 12 for a typical example. It is indeed observed that Oldroyd’s equation340

seems to be verified within a few percents in the whole flow zone, and in
particular for the profile at the center of the cavity x1/2 (bottom-right of
Fig. 12).
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Figure 12: Assessment of Oldroyd’s equation from the results of numerical simulations
(case D = 1.5 cm and h = 3 cm for fluid F4): colormaps of the different terms of the
equation, and vertical profiles at x1/2.

More quantitatively, we systematically compared the L1 averages of the
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terms of Eq. (4), namely:345

L1
Old =

1

yplug − yint

∫ yplug

yint

|2∂xτxx + ∂yτxy| (x1/2, y)dy, (5)

L1
Txx =

1

yplug − yint

∫ yplug

yint

|∂xτxx|(x1/2, y)dy, (6)

for all the flow configurations simulated. These averages are shown in Fig-
ure 13 as a function of the incoming flow viscoplastic number Bup. As ex-
pected, L1

Old decreases when Bup increases. Observe however that L1
Old re-

mains always significantly smaller than L1
Txx, and reasonably close to zero,

for all the simulations performed. It can thus be concluded that Oldroyd’s350

equation is reasonably verified even in the regimes of moderate Bingham
number considered in this study.
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Figure 13: L1 averages defined in Eqs. (5) and (6), nondimensionalized by D/τy, as a
function of Bingham number Bup for all simulations performed: L1

Txx (with empty glyphs)
and L1

Old (with filled glyphs).

4.2. Generalized scaling for boundary layer thickness

Previous section showed that the flow zone above the cavity obeys a vis-
coplastic boundary layer equation even at moderate values of the viscoplastic
number. Yet recall that, unlike at high viscoplastic numbers [4], the location
of the yield interface yint is only poorly captured by an Oldroyd’s scaling
in our results (see Fig. 8). We hypothesize that this apparent paradox is
due to the absence of symmetry of the shear-rate and shear-stress profiles in
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Figure 14: Sketch recalling the definition of the boundary layer considered in this study
and the associated characteristic variables used for the new scaling proposed (see text).
The upper limit of the boundary layer corresponds to the maximum of the shear stress
(black curve). The colormap is the same as in Figure 12(bottom-left): magnitude of the
stress derivatives involved in Oldroyd’s boundary layer Eq. (4).

the flow zone. We thus checked whether a more consistent scaling emerges
when considering only the stress-increase zone, namely the boundary layer
defined in our case. Assuming that the proper velocity scale for this layer
is the value Us at boundary layer interface (Fig. 14), we defined yet another
Bingham number, Bcav, based on Us and cavity length D (see Tab. 2). As
shown in Figure 15, the normalized thickness δBL/D does indeed appear to
be univocally related to Bcav. All simulated points nicely collapse on a single
trend consistent with a generalized Oldroyd’s scaling:

δBL

D
∝ B−1/3

cav . (7)

Recall that Us was shown to be correlated to incoming flow velocity Uup

(Fig. 9). Accordingly, from the above relation between δBL and Bcav, we355

could also expect the existence of a relation between δBL and the classical
Bingham number BD defined on the base of Uup [4]. In practice, however, it
appears that the correlation of δBL/D with BD (not shown) is far less good
than with Bcav, suggesting that the observed relation between Us and Uup is
only approximate. The Bingham number Bcav appears to represent the best360

control variable for the boundary layer thickness in our case.
Similarly Figure 16 shows that, in spite of a larger dispersion due to

measurement errors, a good correlation is observed in experimental results
between δBL/D and the Herschel-Bulkley number Hbcav defined on the basis
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Figure 15: Numerical simulations: evolution of normalized boundary layer thickness

δBL/D as a function of Bingham number Bcav (left) and B
−1/3
cav (right). Dashed line

has a slope of ≈ 0.52. Glyphs correspondence is indicated in Table 1. For the colors
legend, see Figure 2.

of Us and D (Tab. 2). Here also, all the data are consistent with Herschel-
Bulkley version of Oldroyd’s scaling, which writes:

δBL

D
∝ Hb−1/(n+2)

cav . (8)

These results justify a posteriori the appellation of boundary layer for the
stress-increase zone in our results. Recall that this boundary layer is bounded
by an unyielded zone on only one of its sides, and thus typically corresponds
to half of the boundary layer defined in [4].365

Finally, Figure 17 shows that, unlike δBL, the thickness of the Poiseuille-
like layer δPL does not seem to follow an Oldroyd’s scaling. Correlations
between δPL/D and Bcav or Hbcav are relatively poor in both simulation
and experimental results. This confirms that, although Oldroyd’s equation
is also verified, the Poiseuille-like layer does not behave as a boundary layer370

in the flow regime studied here. Observe nevertheless that correlations be-
tween δPL/D and Bcav or Hbcav seem to improve for the largest values of

the viscoplastic numbers investigated (hence the lowest values of B
−1/3
cav and

Hb
−1/(n+2)
cav ), which may be indicative of a progressive transition towards the
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asymptotic regime in which the whole flow zone behaves as a viscoplastic375

boundary layer.

5. Final remarks

The results obtained in this study lead to generalize the notion of vis-
coplastic boundary layer previously introduced at high values of the vis-
coplastic numbers to describe the flow layer forming between two unyielded380

zones. We show that, at moderate values of the viscoplastic numbers, only
the portion of the flow layer in which the shear rate and shear stress increase
(see Fig. 14), effectively behaves as a boundary layer. In this case, this
boundary layer ensures the transition between the unyielded dead zone that
forms in the cavity and the fully-developed, Poiseuille-like flow zone above.385

Interestingly however, the thickness of this boundary layer is found to follow
the same Oldroyd’s scaling as that obtained in the asymptotic regime, pro-
viding adapted definitions of the viscoplastic numbers are introduced. Note
also that this boundary layer actually corresponds to the so-called shear band
introduced in [16], with the difference that we provided here a detailed de-390

scription of the dynamics (velocity and shear-rate profiles) inside this layer.
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Figure 17: Evolution of normalized Poiseuille-like layer thickness δPL/D as a function of
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These results call for an extension of viscoplastic boundary layer theory
at smaller values of the viscoplastic numbers B and Hb. Since the same
boundary layer equation appears to be verified, the main difference with the
situation at high viscoplastic numbers appears to be the lack of symmetry395

of the shear-rate profiles in the flow zone. A more accurate description of
the velocity and shear-rate profiles would therefore need to be worked out in
order to adapt the developments performed in [4]. A proper investigation of
the transition towards the asymptotic regime, in which symmetric shear-rate
profiles are recovered and the whole flow zone behaves as a boundary layer,400

also represents an interesting prospect for future work.
Finally, we want to stress that the detailed cross-comparison between ex-

perimental and numerical results performed here, constituted a fruitful ap-
proach to exhibit features and trends that can be regarded as characteristic
of the viscoplastic rheology. In experiments, real yield-stress fluid frequently405

present additional rheological properties (e.g. viscoelasticity in the case of
Carbopol), which, combined with measurement errors, tend to add dispersion
to data and blur the trends. Numerical simulations based on finely-resolved
meshes and non-regularized schemes do not suffer from this limitation, and
provide insights into variables (e.g., stress fields) that are difficult to access410

24



experimentally. Since the simulations are based on specific viscoplastic con-
stitutive laws, comparisons with experiments remains nevertheless necessary
to ensure that the features highlighted numerically, e.g. here the viscoplastic
boundary layer, are also visible in the physical world. We argue that such an
intertwined dialog between experimental and numerical results represents a415

promising venue to advance knowledge on the flow of yield-stress materials
in complex configurations, notably when coexistence between yielded and
unyielded zones is involved.
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