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THE PARADOX OF VITO VOLTERRA'S

PREDATOR-PREY MODEL

JEAN-MARC GINOUX1,2

This article is dedicated to the late Giorgio Israel.

Résumé. The aim of this article is to propose on the one hand a brief history
of modeling starting from the works of Fibonacci, Robert Malthus, Pierre
Francis Verhulst and then Vito Volterra and, on the other hand, to present
the main hypotheses of the very famous but very little known predator-prey
model elaborated in the 1920s by Volterra in order to solve a problem posed
by his son-in-law, Umberto D'Ancona. It is thus shown that, contrary to a
widely-held notion, Volterra�s model is realistic and his seminal work laid
the groundwork for modern population dynamics and mathematical ecology,
including seasonality, migration, pollution and more.

1. A short history of modeling

1.1. The Malthusian model. If the �rst scienti�c view of population growth
seems to be that of Leonardo Fibonacci [2], also called Leonardo of Pisa, whose
famous sequence of numbers was presented in his Liber abaci (1202) as a solution
to a population growth problem, the modern foundations of population dynamics 1

clearly date from Thomas Robert Malthus [20]. Considering an �ideal� population 2

consisting of a single homogeneous animal species, that is, neglecting the variations
in age, size and any periodicity for birth or mortality, and which lives alone in
an invariable environment or coexists with other species without any direct or
indirect in�uence, he founded in 1798, with his celebrated claim �Population, when
unchecked, increases in a geometrical ratio�, the paradigm of exponential growth.
This consists in assuming that the increase of the number N (t) of individuals of this
population, during a short interval of time, is proportional to N (t). This translates
to the following di�erential equation :

(1)
dN (t)

dt
= εN (t)

where ε is a constant factor of proportionality that represents the growth coe�-

cient or growth rate. By integrating (1) we obtain the law of exponential growth or
law of Malthusian growth (see Fig. 1). This law, which does not take into account
the limits imposed by the environment on growth and which is in disagreement
with the actual facts, had a profound in�uence on Charles Darwin's work on natu-
ral selection. Indeed, Darwin [1] founded the idea of �survival of the �ttest� on the

1. According to Frontier and Pichod-Viale [3] the correct terminology should be population
�kinetics�, since the interaction between species cannot be represented by forces.

2. A population is de�ned as the set of individuals of the same species living on the same
territory and able to reproduce among themselves.
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impossibility of an inde�nite population growth. He illustrated this impossibility by
a superb parabola describing the descendants of a pair of elephants that, under op-
timal conditions, would cover the surface of the Earth in a few centuries 3. However,
in laboratory experiments, the predictions of the Malthusian law remain correct on
small numbers, while there is divergence for high values of the population. Thus,
we are led to conclude that the exponential law remains valid as long as the density
of the population does not saturate the environment.
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Figure 1. Malthus's model of exponential growth.

1.2. P.F. Verhulst's model. It was on the basis of these considerations that the
Belgian biologist Pierre-François Verhulst [28] proposed in 1837 a model that took
into account the limitation imposed by the increasing population size :

(2)
dN (t)

dt
= εN (t)− λN2 (t) = εN (t)

(
1− 1

K
N (t)

)
where ε represents the growth rate. The second coe�cient λ = ε/K originates in a

�mechanistic� interpretation of the phenomenon. Indeed, it is assumed that growth
is limited by a kind of interior �friction� within the population, that is, the resources
remaining the same, the higher the number of individuals, the more di�cult it is for
them to feed themselves and then to grow. This is a struggle between individuals
for the existence, and so an intra speci�c competition for food. The factor K, called
carrying capacity, corresponds to the capacity of the environment to support the
population growth and represents the population limit beyond which it can no longer

3. An example of this impossibility is also shown in the �lm by V.A. Kostitzin and J. Pain-
levé titled : �Images mathématiques de la lutte pour la vie�, 1937, Médiatèque du Palais de la
Découverte, Paris.
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grow. This law, which Verhulst called logistic equation, is radically di�erent from
Malthus's, since it imposes a limiting value on the population (see Fig. 2, where
exponential growth is represented in blue and logistic growth in red). It has been
successfully applied to many real life situations, such as population growth in the
United States between 1790 and 1950 (see Pearl and Reed [22]) or in experiments
conducted by the Russian biologist Georgii Frantsevich Gause [4] on the growth of
a protozoan, Paramecium caudatum. Independently of these two archetypes, other
growth models have been developed : let us mention, for instance, the model by B.
Gompertz [9] aimed at evaluating the growth rate of a tumour.
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Figure 2. Verhulst's model of logistic growth (in red).

1.3. Volterra's �predator-prey� model. In the �rst half of the twentieth cen-
tury, the study of the dynamics of several interacting species developed considerably.
It was at this time, called �the golden age of theoretical ecology� [26], that the �rst
models based on competition-type behaviours and predator-prey relationships were
developed. The paternity of the �rst model used to transcribe this kind of interac-
tions was the subject of a quarrel between Alfred J. Lotka [18] and Vito Volterra 4,
which is described in the work of Giorgio Israel [13, 14, 15, 16]. It has been esta-
blished that the merit of the development of the �rst model of predator-prey type
applied to a biological situation is Volterra's. Indeed, Volterra's interest in problems
of equilibria between animal species in ecosystems was prompted by his son-in-law,
zoologist Umberto D'Ancona, who for some years had been dealing with statistics
on �shing in the northern Adriatic Sea. These data involved the percentage of pre-
datory �sh (Selachians) caught in three Italian ports, Trieste, Fiume (now Rijeka)
and Venice, during the period 1905-1923. They proved that during the period 1915-
1920, when �shing was less intense because of the war, there had been a relative

4. For more about the dispute over priority, see [10], pp. 146-147.
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increase in the Selachians. According to D'Ancona's hypothesis, �shing disturbed
the natural balance between species. It favoured a relative increase in �prey� species,
that is, �sh that feed only on plankton, and a decrease in �predatory� species, that
is, �sh that feed on other �sh. The decline in �shing due to World War I had thus
restored, at least in part, the natural balance. D'Ancona turned to Volterra, asking
him to �nd a mathematical proof of his hypothesis. In 1926 Volterra published
a reply in Italian [29] which took the form of the famous �predator-prey� model,
reproduced below. He then presented his results in English and, in more detailed
and complete form, in French [30, 31, 32]. In the �rst chapter of his �Leçons sur la
théorie mathématique de la lutte pour la vie� [32], Volterra studies the coexistence
of �two species, one of which devours the other�. Considering two species, the �rst,
the prey N1 (t), would undergo a Malthusian growth if it were alone. The second,
the predator N2 (t), feeds exclusively on the �rst and in the absence of prey will
gradually wear out and disappear. The formulation of the equation representing
the predation is based on the méthode des rencontres (�method of encounters�) and
on the hypothèse des équivalents (�hypothesis of equivalents�) due to Volterra [32].
The former assumes that for predation to occur between a predatory species and a
prey species, it is �rst necessary to have encounters between these two species and
that the number of encounters between them is proportional to the product of the
number of individuals composing them, that is, N1 (t)N2 (t), the coe�cient of pro-
portionality being equal to the probability of an encounter. The second hypothesis
consists in assuming that �there is a constant ratio between the disappearances and
appearances of individuals caused by the encounters�, that is, that predation of the
preys is equivalent to increase of the predators. At the beginning, Volterra considers
this increase as immediate 5. This led him to the system :

(3)


dN1

dt
= ε1N1 − γ1N1N2 = N1 (ε1 − γ1N2)

dN2

dt
= −ε2N2 + γ2N1N2 = −N2 (ε2 − γ2N1)

where ε1 represents the prey's growth rate in the absence of the predator ; γ1 the
predation rate of the predator on the prey ; ε1 the predator's mortality rate in the
absence of prey ; and γ2 the growth rate of the predator due to its predation. From
this model, Volterra was able to state the law of the disturbance of the averages :

If an attempt is made to destroy the individuals of the two species
uniformly and in proportion to their number, the average of the
number of individuals of the species that is eaten increases and that
of the individuals of the species feeding upon the other diminishes

[31, p. 20]

To establish this result, Volterra assumes that, for a time interval dt, we destroy
αλN1dt preys and βλN2dt predators. He then proves that the average values of
prey and predators, which were previously equal to ε2/γ2 and ε1/γ1, respectively,
become, after this destruction, (ε2 + βλ)/γ2 and (ε1 − αλ)/γ1. The phenomenon
observed by D'Ancona is thus explained : the increase in the number of predators

5. This means that predation is immediately transcribed in terms of growth of the predator
species, whereas its e�ect naturally occurs with some delay. It will be seen below that Volterra
also took this delay into account.
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and the reduction in the number of prey resulted from the decline in �shing, which
before the war had changed the natural balance of this �biological association�.
A decrease in �shing favours the more voracious species at the expense of the
other. This deterministic model, which constitutes the archetype of the trophic
network, aims at transcribing di�erent types of animal behaviour into mathematical
functions. Two types of behaviour are represented : those related to increase and
those related to decrease. Natality and predation are related to increase, whereas
natural mortality andmortality by predation correspond to a decrease in the number
of individuals. Each of these behaviours has a mathematical form, called a functional
response.

1.4. Di�erent types of functional responses. Since the mid-1920s, these func-
tional responses have been the subject of numerous studies and developments aimed
at making the representation of animal behaviour by a mathematical function more
realistic. Natural growth, that is by natality, of the prey, represented by a functional
response of Malthus type [20] was later modi�ed by Verhulst [28] to account for
its being bounded. The decrease by natural mortality was initially considered in a
way symmetrical to that of natural growth, that is, by substituting in the equations
(1) and (2) the growth rate ε with a natural mortality rate −ε. It is important to
emphasise that this functional response, sometimes called closure relation, was later
the subject of special studies aimed at transcribing the speci�c behaviour of certain
species, for instance cannibalism. All these functional responses are summarized in
Table 1.

natural increase natural mortalitity

Malthus εN (t) −εN (t)

Verhulst εN (t)

(
1− N (t)

K

)
−εN (t)

(
1 +

N (t)

K

)
Table 1. Functional responses for natural increase and decrease.

The functional response proposed by Volterra [32] to describe predation and
which was based on the principle of encounters was proportional to the product
of the number of individuals of each species : N1 (t)N2 (t). In other words, the
predation rate was a �linear function� of the prey, that is, N1 (t). A few years
later, Gause [4, 5], who was one of the �rst to make �experimental veri�cations of
the mathematical theory of the struggle for life�, proposed another type of functional
response to describe predation, a �nonlinear� one, aimed at transcribing a certain
�satiety� of the predator with respect to its prey : Ng

1 (t)N2 (t) with 0 < g 6 1.
In this case, the predation rate becomes indeed a �nonlinear function� of the prey,
that is, Ng

1 (t) (see Fig. 3).
In the late 1950s, entomologist Crawford Stanley Holling [11, 12] developed, from

the celebrated �disc equation� two new functional responses for predation, also in-
tended to describe a certain satiety of the predator with respect to its prey : Holling
function of type II and Holling function of type III. This formulation assumes that
the predator divides its time between two kinds of activities : the search for its prey,
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Figure 3. Gause's functional response

and its capture, which includes the time spent hunting, killing, devouring and di-
gesting it. Holling's type II (see 4) is a functional response in which the predator�s
�attack� rate increases when the prey number is low and then becomes constant
when the predator reaches satiety. In other words, the predator causes maximum
mortality at low prey densities. Thus, type II functional responses are typical of
predators specializing in attacking one or few prey. In this case the mortality of the
prey decreases with their density. Holling's type II is represented by :

(4)
N1 (t)

h+N1 (t)
N2 (t)

where h represents half-saturation, that is, the value of the prey density N1 (t) =
h for which the predation level reaches a value equal to half its maximum.

Holling's type III (see Fig. 5 where Holling's type II is represented in blue and
Holling's type III in red) is a functional response in which the attack rate of the
predator �rst increases when the prey number is low and then slows down when the
predator reaches satiety. In other words, the predator increases its research activity
when prey density increases. Thus, type III functional responses are typical of
generalist predators moving from one species of prey to another and concentrating
their activities in areas where resources are abundant. In this case, the mortality
of the prey initially increases with their density and then decreases. Holling's type
III is represented by :

(5)
N2

1 (t)

h2 +N2
1 (t)

N2 (t)

where h represents half-saturation, as above.
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Figure 4. Functional response of Holling's type II.
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Figure 5. Functional response of Holling�s type III (in red).

Contrary to what one might think, Holling did not deduce his two functional
responses from the observation of a natural environment, but, as he himself wrote
in his article, by concocting an arti�cial predatory-prey situation :
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In the �rst arti�cial situation devised the �prey� were sandpaper
discs four centimetres in diameter thumb-tacked to a three-foot
square table. A blindfolded subject, the �predator�, stood in front
of the table and searched for the discs for one minute by tapping
with her �nger. As each disc was found, it was removed, set to one
side and searching continued. Each experiment was replicated eight
times at densities of discs ranging from four to 256 per nine sq. ft.
The results of one such experiment are shown in Fig. 1 [see Fig.
4 here], where it can be seen that the number of discs picked up
increased at a progressively decreasing rate as the density of discs
rose. [12, p. 385]

Mathematically, it has been proved by Real [24] that the functional responses of
Holling type II and III are analogous to the function developed in 1913 by Leonor
Michaelis and Maud Menten [21] to describe the kinetics of enzymatic reactions.
All these functional responses are summarized Table 2.

Volterra Gause Holling type II Holling type III

N1 (t)N2 (t) Ng
1 (t)N2 (t)

N1 (t)

h+N1 (t)
N2 (t)

N2
1 (t)

h2 +N2
1 (t)

N2 (t)

Table 2. Functional responses for predation

2. The origin of the paradox

According to Yuri A. Kuznetsov [17], in the context of a Volterra predator-prey
model, the functional responses that limit growth (see Table 1) have a stabilizing
e�ect for the prey whereas the functional responses that limit predation (see Table
2) have a destabilizing e�ect for predators. Thus, in the Volterra predator-prey mo-
del 3, by restricting the growth of the prey N1(t) by a Verhulst functional response
and the growth of the predator N2(t) by a functional response of Holling type II,
we obtain the celebrated Rosenzweig-MacArthur model [25] :

(6)


dN1

dt
= ε1N1 − λN2

1 − γ1
N1

h+N1
N2

dN2

dt
= −ε2N2 + γ2

N1

h+N1
N2

where ε1 represents the prey�s growth rate in the absence of the predator, γ1
the predator�s predation rate on the prey, ε2 the predator�s mortality rate in
the absence of prey, and γ2 the predator�s growth rate due to its predation. The
combination of these two e�ects then leads to the existence of a periodic solution.
Henri Poincaré [23] named this solution, or more exactly this periodic oscillation,
limit cycle. This terminology derives from the fact that in the phase space (N1, N2),
in this case the prey-predator space, it takes the form of a cycle towards which every
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solution converges asymptotically. Thus, the solution of the Rosenzweig-MacArthur
model (6) is periodic, like that of the Volterra model (3). Nevertheless, there is a
fundamental di�erence in that it is totally independent of the initial conditions,
that is, of the initial density of prey and predators, which is consistent with reality.
Indeed, in nature, the amplitude and period of the periodic oscillations of prey
and predators cannot depend on their initial densities considered at a given time
arbitrarily taken as the origin of the time [6, 7, 8].

3. Discussion

Volterra's model, which in the study of nonlinear dynamic systems has become
a kind of paradigm, has been the subject of many books and articles criticizing
it for its lack of realism. The main �aws of this model are considered to be the
absence of limitation in the growth of prey and predator, the fact of not having
taken into account seasonality (that is, having considered the growth rate of prey
and predator as constant), and �nally having proposed an ideal, simpli�ed model by
limiting it to two species. The analysis of these �aws will shed light on the �paradox�
of Volterra�s model. In the �rst place, it should be recalled that even today it is
impossible to formulate a simple expression of the periodic solutions of Volterra's
model (3), that is, an expression that uses only elementary functions. Consequently,
criticizing Volterra for having proposed an ideal, simpli�ed model is inadmissible.
Indeed, it is precisely thanks to the simplicity of his model that Volterra was able to
solve the problem posed by D'Ancona and explain the phenomenon by establishing
the law of perturbation of means. In fact, Volterra was well aware of the limitations
of the model and the assumptions attached to it, including the one assuming the
environment as invariable and without in�uence on the growth rate and the one that
considers the homogeneity of the individuals of each species. Indeed, in [32] Volterra
laid the foundations for what would be much later called �population dynamics�
and considered all the aspects of the problem : the in�uence of environment or
pollution, the heterogeneity of individuals or age groups (on hereditary actions [32,
p. 141]), di�usion or migration (contribution of a small number of individuals [32,
p. 118]), seasonality (variation of exterior conditions with time, [32, p. 131]). In the
introduction, he writes :

Certainly there exist periodic circumstances relating to environ-
ment, as would be those, for example, which depend upon the chan-
ging of the seasons, which produce forced oscillations of an external
character in the number of individuals of the various species. These
actions of external periodic nature were those which were specially
studied from the statistical point of view, but are there others of
internal character, having periods of their own which add their ac-
tion to these external causes and would exist even if these were
withdrawn ? [32, p. 5].

Then, he adds :

Later, it will be observed that it is closer to reality to suppose
that the growth coe�cients depend not only, at each moment, on
the current values of the quantities Ni (characterizing the species
i), but also on past values up to a more or less remote period. It
will no longer be su�cient to consider them as functions of the
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Ni, but as �functionals�, and this will lead us to integro-di�erential
equations that we will approach from the equations we are led to
in the so-called �hereditary� mechanics [32, p. 5].

It is in this context that he invents the famous Volterra equations of the �rst
and second type. With regard to the limitation to a two-species model of predator-
prey type, in chapter II of [32] Volterra presents the �study of the coexistence of
any number of species�. Moreover, the chapter ends with the analysis of a �very
remarkable case : that of three species of which the �rst feeds on the second and
this on the third�. Di�erent types of interactions between species are also considered
outside of predation, including competition, cooperation and migration. Regarding
the absence of limitation in the growth of prey and predators, Volterra proposes
in chapter III of [32] to study a model of n coexisting species having reciprocal
actions, in which he replaces the Malthusian growth by a Verhulst logistic growth.
Thus, Italian or French authors who claim that Volterra's model is unrealistic have
obviously not read Volterra's texts [30, 31, 32] and this is clearly one of the origins
of this paradox. Indeed, it seems that Volterra's model and criticisms of it are
known worldwide, but his work has not even been read by his detractors ! For
authors who only read English, this paradox is rooted in another problem. While
the original Italian version of Volterra's study [29] comprised 84 pages, the very
�rst English translation published in the prestigious journal Nature [30] was only
two pages long 6. It is easy to understand that for many Volterra's study may have
seemed very limited given the conciseness of this summary, which did not allow
the exposition of analytical developments and considerably reduced the scope of
Volterra's results. Nevertheless, and this is again a paradox, even though by 1928
there was an integral English translation of the original Italian text by Volterra [31],
it seems to have been almost totally ignored by English-speaking authors. Thus,
Volterra's work is perhaps the most quoted and the most criticized in the world
while being the least read and studied.

From 1926, Volterra's publications intensi�ed in the �eld of population dynamics.
It was in 1931 that his work entitled Leçons sur la théorie mathématique de la lutte

pour la vie [32] was published in French 7, following a series of lectures at the Institut
Henri Poincaré where Volterra had been invited by Borel. Compiled by Marcel
Brelot, this book contains Volterra's entire memoir on biological �uctuations [29]
as well as a part about the case where heredity plays a role. From 1936, Volterra
questioned the validity of his model and the possibility of experimental veri�cation.
The experiments of Gause (1910-1989) seemed to con�rm the �rst law, and he
showed Volterra his acceptance of the model's forecasts. But what followed was
disappointing because they could not �nd irrefutable cases of a cyclic behaviour in
predator-prey ecosystems. Moreover, voiced by biologists Karl Pearson (1857-1936)
and Friedrich Simon Bodenheimer (1897-1959), objections multiplied to the point
of questioning the interpretation of D'Ancona's statistics, which led to D'Ancona
himself coming to doubt their merits. At present, the only example of a predator-
prey ecosystem showing a cyclic evolution is the famous set of statistics by Hudson's
Bay Company about hares and lynxes in Canada. According to Giorgio Israel, it is
thus important to note that unlike Van der Pol's model [27] :

6. Under the same title, in a later issue of the same journal, two letters were published, one by
Lotka and one by Volterra himself [19, 30].

7. To the best of our knowledge, this book has never been translated into English.
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Volterra's model is not deduced from an analogy but from a more
traditional approach that consists in starting from the analysis of
a real phenomenon, making some abstraction of the accessory as-
pects such as friction, determining the state variables, formulate a
mathematical hypothesis concerning the pace of the phenomenon.
. . . For Volterra's model, the problem of the experimental veri�ca-
tion consists in �nding empirical evidence directly verifying the laws
deduced from the model and not justifying its validity in an indi-
rect way, that is, from the e�ectiveness of some of its consequences.
Thus, for Volterra, the justi�cation of D'Ancona's hypothesis on
the e�ects of �shing was not su�cient to prove the empirical vali-
dity of the model. It is because of this conviction that he sought
for the rest of his life a direct empirical proof of the validity of the
�rst law according to which the evolution of populations presents
periodic oscillations [27].

Thus, if Volterra sought to make his mathematical research work at the service of
biological sciences, it seems that it always was with the aim of explaining phenomena
and describing reality as faithfully as possible :

� . . . the hypotheses will be seen to become more and more complex
in order to get closer to reality . . . �

Translated from the French by Daniele A. Gewurz
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