
HAL Id: hal-01857016
https://hal.science/hal-01857016v7

Submitted on 21 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deformable Kernel Networks for Joint Image Filtering
Beomjun Kim, Jean Ponce, Bumsub Ham

To cite this version:
Beomjun Kim, Jean Ponce, Bumsub Ham. Deformable Kernel Networks for Joint Image Filtering.
International Journal of Computer Vision, 2020, �10.1007/s11263-020-01386-z�. �hal-01857016v7�

https://hal.science/hal-01857016v7
https://hal.archives-ouvertes.fr

International Journal of Computer Vision
https://doi.org/10.1007/s11263-018-1074-6

Deformable Kernel Networks for Joint Image Filtering

Beomjun Kim1 · Jean Ponce2 · Bumsub Ham1

Abstract Joint image filters are used to transfer structural
details from a guidance picture used as a prior to a target
image, in tasks such as enhancing spatial resolution and sup-
pressing noise. Previous methods based on convolutional
neural networks (CNNs) combine nonlinear activations of
spatially-invariant kernels to estimate structural details and
regress the filtering result. In this paper, we instead learn
explicitly sparse and spatially-variant kernels. We propose
a CNN architecture and its efficient implementation, called
the deformable kernel network (DKN), that outputs sets of
neighbors and the corresponding weights adaptively for each
pixel. The filtering result is then computed as a weighted
average. We also propose a fast version of DKN that runs
about seventeen times faster for an image of size 640× 480.
We demonstrate the effectiveness and flexibility of our mod-
els on the tasks of depth map upsampling, saliency map
upsampling, cross-modality image restoration, texture re-
moval, and semantic segmentation. In particular, we show
that the weighted averaging process with sparsely sampled
3×3 kernels outperforms the state of the art by a significant
margin in all cases.

Keywords Joint filtering, convolutional neural networks,
depth map upsampling, cross-modality image restoration,
texture removal, semantic segmentation

Beomjun Kim
E-mail: beomjun.kim@yonsei.ac.kr

Jean Ponce
E-mail: jean.ponce@inria.fr

Bumsub Ham (Corresponding author)
E-mail: bumsub.ham@yonsei.ac.kr
1 School of Electrical and Electronic Engineering, Yonsei University,
Seoul, Korea.
2 Inria and DI-ENS, Département d’Informatique de l’ENS, CNRS,
PSL University, Paris, France.

1 Introduction
Image filtering with a guidance signal, a process called
guided or joint filtering, has been used in a variety of com-
puter vision and graphics tasks, including depth map up-
sampling (Yang et al. 2007; Park et al. 2011; Ferstl et al.
2013; Kopf et al. 2007; Li et al. 2016; Ham et al. 2018),
cross-modality image restoration (He et al. 2013; Shen et al.
2015; Yan et al. 2013), texture removal (Ham et al. 2018;
Xu et al. 2012; Zhang et al. 2014; Karacan et al. 2013),
scale-space filtering (Ham et al. 2018), dense correspon-
dence (Ham et al. 2016; Hosni et al. 2013) and semantic
segmentation (Barron and Poole 2016). For example, high-
resolution color images can be used as guidance to enhance
the spatial resolution of depth maps (Kopf et al. 2007). The
basic idea behind joint image filtering is to transfer struc-
tural details from the guidance image to the target one, typ-
ically by estimating spatially-variant kernels from the guid-
ance. Concretely, given the target image f and the guidance
image g, the filtering output f̂ at position p = (x, y) is ex-
pressed as a weighted average (He et al. 2013; Kopf et al.
2007; Tomasi and Manduchi 1998):

f̂p =
!

q∈N (p)

Wpq(f, g)fq, (1)

where we denote by N (p) a set of neighbors (defined on a
discrete regular grid) near the position p. The filter kernel W
is a function of the guidance image g (Park et al. 2011; Ferstl
et al. 2013; Kopf et al. 2007; He et al. 2013), the target image
f itself (Zhang et al. 2014; Tomasi and Manduchi 1998), or
both (Li et al. 2016; Ham et al. 2018), normalized so that
!

q∈N (p)

Wpq(f, g) = 1. (2)

Classical approaches to joint image filtering mainly fo-
cus on designing the filter kernels W and the set of neigh-
bors N (i.e., sampling locations q). They use hand-crafted

2 International Journal of Computer Vision

(a) RGB image. (b) Depth image. (c) GF. (d) SDF. (e) DJFR. (f) Ours (DKN).

Fig. 1 Qualitative comparison of the state of the art and our model on depth map upsampling (16×). Given (a) a high-resolution color image and (b)
a low-resolution depth image from the Sintel dataset (Butler et al. 2012), we upsample the depth image using (c) GF (He et al. 2013), (d) SDF (Ham
et al. 2018), (e) DJFR (Li et al. 2019) and (f) our method. The filtering results for GF and our model are obtained by the weighted average in (1).
We use filter kernels W of size 3× 3 and 17× 17 in our model and GF, respectively. We can see that our method using sparsely sampled 3× 3
kernels outperforms GF and even the state of the art including the optimization-based SDF method (Ham et al. 2018) and CNN-based one (Li et al.
2019). Note that applying GF with 3× 3 kernels does not recover fine details. (Best viewed in color.)

kernels and sets of neighbors without learning (He et al.
2013; Kopf et al. 2007; Tomasi and Manduchi 1998). For ex-
ample, the bilateral filter (Tomasi and Manduchi 1998) uses
spatially-variant Gaussian kernels to encode local structures
from the guidance image. The guided filter (He et al. 2013)
also leverages the local structure of the guidance image,
but uses matting Laplacian kernels (Levin et al. 2008), en-
abling a constant processing time. These filters use regu-
larly sampled neighbors for aggregating pixels, and do not
handle inconsistent structures in the guidance and target
images (Ham et al. 2018). This causes texture-copying ar-
tifacts, especially in the case of data from different sen-
sors (Ferstl et al. 2013). To address this problem, the SD
filter (Ham et al. 2018) constructs spatially-variant kernels
from both guidance and target images to exploit common
structures, and formulates joint image filtering as an opti-
mization problem. The DG filter (Gu et al. 2017) uses a
task-driven learning method to obtain the optimized guid-
ance images tailored to depth upsampling. This type of ap-
proaches (e.g., (Ferstl et al. 2013; Xu et al. 2012; Farbman
et al. 2008)) computes a filtering output by optimizing an
objective function that involves solving a large linear sys-
tem. This is equivalent to filtering an image by an inverse
matrix (He et al. 2013), whose rows correspond to a filter
kernel, leveraging global structures in the guidance image.
Optimization-based methods can be considered as implicit
weighted-average filters. Learning-based approaches using
convolutional neural networks (CNNs) (Li et al. 2016; Hui
et al. 2016; Xu et al. 2015) are also becoming increasingly
popular. The networks are trained using large quantities of
data, reflecting natural image priors and often outperforming
traditional methods by large margins. These methods do not
use a weighted averaging process with spatially-variant ker-
nels as in (1). They combine instead nonlinear activations of
spatially-invariant kernels learned from the networks. That
is, they approximate spatially-variant kernels by mixing the

activations of spatially-invariant ones nonlinearly (e.g., via
the ReLU function (Krizhevsky et al. 2012)).

In this paper, we revisit the guided weighted average
framework in (1) for joint image filtering. We argue that
leveraging spatially-invariant kernels in CNN-based meth-
ods (Li et al. 2016; Hui et al. 2016; Xu et al. 2015) is lim-
ited to encoding structural details from guidance and tar-
get images that typically change with image location. We
exploit instead spatially-variant kernels explicitly, as in the
classical approaches using the weighted average, but learn
the kernel weights (W) and the set of neighbors (N) in a
completely data-driven way, building an adaptive and sparse
neighborhood system for each pixel, which may be diffi-
cult to design by hand. To implement this idea, we propose
a CNN architecture and its efficient implementation, called
a deformable kernel network (DKN), for learning sampling
locations of the neighboring pixels and their corresponding
kernel weights at every pixel. We also propose a fast version
of DKN (FDKN), achieving a 17× speed-up compared to
the plain DKN for an image of size 640 × 480, while re-
taining its superior performance. We show that the weighted
averaging process using sparsely sampled 3 × 3 kernels is
sufficient to obtain a new state of the art in a variety of ap-
plications, including depth map upsampling (Figs. 1 and 6),
saliency map upsampling (Fig. 10), cross-modality image
restoration (Fig. 11), texture removal (Fig. 12), and seman-
tic segmentation (Fig. 13).
Contributions. The main contributions of this paper can be
summarized as follows:

• We introduce a novel variant of the classical guided
weighted averaging process for joint image filtering and
its implementation, the DKN, that computes the set of
nonlocal neighbors and their corresponding weights adap-
tively for individual pixels (Section 3).

• We propose a fast version of DKN (FDKN) that runs
about seventeen times faster than the DKN while retain-
ing its superior performance (Section 3).

Deformable Kernel Networks for Joint Image Filtering 3

• We achieve a new state of the art on several tasks, clearly
demonstrating the advantage of our approach to learning
both kernel weights and sampling locations (Section 4).
We also provide an extensive experimental analysis to in-
vestigate the influence of all the components and parame-
ters of our model (Section 5).

To encourage comparison and future work, our code and
models are available at our project webpage1.

2 Related work
Here we briefly describe the context of our approach, and
review representative works related to ours.

2.1 Joint image filtering

We categorize joint image filtering into explicit/implicit
weighted-average methods and learning-based ones.

First, explicit joint filters compute the output at each
pixel by a weighted average of neighboring pixels in the tar-
get image, where the weights are estimated from the guid-
ance and/or target image (Kopf et al. 2007; He et al. 2013;
Zhang et al. 2014). The bilateral (Tomasi and Manduchi
1998) and guided (He et al. 2013) filters are representa-
tive methods that have been successfully adapted to joint
image filtering. They use hand-crafted kernels to transfer
fine-grained structures from the guidance image. It is, how-
ever, difficult to manually adapt the kernels to new tasks,
and these methods may transfer erroneous structures to the
target image (Li et al. 2016).

Second, implicit weighted-average methods formulate
joint filtering as an optimization problem, and minimize an
objective function that usually involves fidelity and regular-
ization terms (Park et al. 2011; Ferstl et al. 2013; Ham et al.
2018; Xu et al. 2012; Farbman et al. 2008; Xu et al. 2011).
The fidelity term encourages the filtering output to be close
to the target image, and the regularization term, typically
modeled using a weighted L2 norm (Farbman et al. 2008),
gives the output having a structure similar to that of the guid-
ance image. Although, unlike explicit ones, implicit joint
filters exploit global structures in the guidance image, hand-
crafted regularizers may not reflect structural priors in the
guidance image. Moreover, optimizing the objective func-
tion involves solving a large linear system, which is time
consuming, even with preconditioning (Szeliski 2006) or
multigrid methods (Farbman et al. 2008).

Finally, learning-based methods can further be cat-
egorized into dictionary- and CNN-based approaches.
Dictionary-based methods exploit the relationship between
paired target patches (e.g., low- and high-resolution patches
for upsampling), additionally coupled with the guidance im-
age (Yang et al. 2010; Ferstl et al. 2015). In CNN-based

1 https://cvlab.yonsei.ac.kr/projects/dkn

methods (Hui et al. 2016; Li et al. 2016, 2019), an encoder-
decoder architecture is used to learn features from the tar-
get and guidance images, and the filtering output is then
regressed directly from the network. Learning-based tech-
niques require a large number of ground-truth images for
training. Other methods (Riegler et al. 2016a,b) integrate a
variational optimization into CNNs by unrolling the opti-
mization steps of the primal-dual algorithm, which requires
two stages in training and a number of iterations in test-
ing. Similar to implicit weighted-average methods, they use
hand-crafted regularizers, which may not capture structural
priors.

Our method borrows from both explicit weighted-
average methods and CNN-based ones. Unlike existing ex-
plicit weighted-average methods (He et al. 2013; Kopf et al.
2007), that use hand-crafted kernels and neighbors defined
on a fixed regular grid, we leverage CNNs to learn the set of
sparsely chosen neighbors and their corresponding weights
adaptively. Our method differs from previous CNN-based
ones (Hui et al. 2016; Li et al. 2016, 2019) in that we learn
sparse and spatially-variant kernels for each pixel to ob-
tain upsampling results as a weighted average. The bucket-
ing stretch in single image super-resolution (Getreuer et al.
2018; Romano et al. 2017) can be seen as a non-learning-
based approach to filter selection. It assigns a single filter by
solving a least-squares problem for a set of similar patches
(buckets). In contrast, our model learns different filters us-
ing CNNs even for similar RGB patches, since we learn
them from a set of multi-modal images (i.e., pairs of RGB/D
images).

2.2 Variants of the spatial transformer

Recent works introduce more flexible and effective CNN ar-
chitectures. Jaderberg et al. propose a novel learnable mod-
ule, the spatial transformer (Jaderberg et al. 2015), that
outputs the parameters of the desired spatial transforma-
tion (e.g., affine or thin plate spline) given a feature map
or an input image. The spatial transformer makes a standard
CNN network for classification invariant to a set of geomet-
ric transformation, but it has a limited capability of handling
local transformations. Choy et al. introduce a convolutional
version of the spatial transformer (Choy et al. 2016). They
learn local transformation parameters for normalizing orien-
tation and scale in feature matching.

Most similar to ours are the dynamic filter network (Jia
et al. 2016) and its variants (the adaptive convolution net-
work (Niklaus et al. 2017) and the kernel prediction net-
works (Bako et al. 2017; Mildenhall et al. 2018; Vogels
et al. 2018)), where a set of local transformation parame-
ters is generated adaptively conditioned on the input image.
The main differences between our model and these works
are three-fold. First, our network is not limited to learning
spatially-variant kernels, but it also learns the sampling lo-

https://cvlab.yonsei.ac.kr/projects/dkn

4 International Journal of Computer Vision

Sampler

Joint Network1

!

Δ#

$%(')

Weighted averageWeight & offset
regression

Feature extraction

$) $*

Weight

Offset

+,×1×1

2+,×1×1

+,×1×1

2+,×1×1 +,×1×1

2+,×1×1

Sampling
neighboring pixels

$0*

G
uidance

Target

-0.12 -0.32 0.17

-0.15 0.16 0.13

-0.16 0.07 0.35

Weight

: Reshape
: Residual connection
: Sigmoid
: Mean subtraction

Fig. 2 The DKN architecture. We learn the kernel weights K and the spatial sampling offsets ∆q from the feature maps of guidance and target
images. To obtain the residual image f̂p − fp, we then compute the weighted average with the kernel weights K and image values fs(q) sampled
at offset locations ∆q from the neighbors ft. Finally, the result is combined with the target image fp to obtain the filtering result f̂p. Our model
is fully convolutional and is learned end-to-end. We denote by ⊚ and ⊙ element-wise multiplication and dot product, respectively. The reshaping
operator and residual connection are drawn in dotted and dashed lines, respectively. See Table 1 for the detailed description of the network structure.
(Best viewed in color.)

cations of neighbors. This allows us to aggregate sparse but
highly related samples only, enabling an efficient implemen-
tation in terms of speed and memory and achieving state-of-
the-art results even with kernels of size 3×3 on several tasks.
For comparison, the adaptive convolution and kernel predic-
tion networks require much larger neighbors (e.g., 21 × 21

in (Bako et al. 2017; Vogels et al. 2018), 41×41 in (Niklaus
et al. 2017), and 8×5×5 in (Mildenhall et al. 2018)). As will
be seen in our experiments, learning sampling locations of
neighbors clearly boosts the performance significantly com-
pared to learning kernel weights only. Second, our model
is generic and generalizes well to other tasks. It can handle
multi-modal images (e.g., RGB/D images in depth map up-
sampling and an RGB image/a cost volume storing the costs
for choosing labels in semantic segmentation), and thus is
applicable to various tasks including depth and saliency map
upsampling, cross-modality image restoration, texture re-
moval, and semantic segmentation. In contrast, the adaptive
convolution network is specialized to video frame interpo-
lation, and kernel prediction networks are applicable to de-
noising Monte Carlo renderings (Bako et al. 2017; Vogels
et al. 2018) or burst denoising (Mildenhall et al. 2018) only.
Finally, our model learns spatially-variant kernels to com-
pute residual images, not a final output as in (Bako et al.
2017; Jia et al. 2016; Mildenhall et al. 2018; Niklaus et al.
2017; Vogels et al. 2018), with constraints on weight regres-
sion. This allows the use of residual connections for adaptive
convolution and kernel prediction networks, and achieves
better results.

Our work is also related to the deformable convolutional
network (Dai et al. 2017). The basic idea of deformable con-
volutions is to add offsets to the sampling locations defined
on a regular grid in standard CNNs. The deformable convo-
lutional network samples features directly from learned off-

sets, but shares the same weights for different sets of offsets
as in standard CNNs. In contrast, we use spatially-variant
weights for each sampling location. Another difference is
that we use the learned offset explicitly to obtain the final
result, while the deformable convolutional network uses it
to compute intermediate feature maps.

3 Proposed approach
In this section, we briefly describe our approach to learn-
ing both kernel weights and sampling locations for joint im-
age filtering (Section 3.1), and present a concrete network
architecture and its efficient implementation using a shift-
and-stitch approach (Section 3.2). We then describe a fast
version of DKN (Section 3.3).

3.1 Overview

Our network mainly consists of two parts (Fig. 2): We first
learn spatially-variant kernel weights and spatial sampling
offsets w.r.t the regular grid. Motivated by the SD filter (Ham
et al. 2018) and DJF (Li et al. 2016), we extract features
from individual guidance and target images. Specifically,
we use a two-stream CNN (Simonyan and Zisserman 2014),
where each sub-network is in charge of one of the two im-
ages, with different feature maps used to estimate the cor-
responding kernel weights and offsets. We then compute a
weighted average using the learned kernel weights and sam-
pling locations computed from the offsets to obtain a resid-
ual image. Finally, the filtering result is obtained by combin-
ing the residuals with the target image. Our network is fully
convolutional, does not require fixed-size input images, and
it is trained end-to-end.
Weight and offset learning. Dual supervisory information
for the weights and offsets is typically not available. We

Deformable Kernel Networks for Joint Image Filtering 5

Table 1 Network architecture details. “BN” and “Res.” denote the batch normalization (Ioffe and Szegedy 2015) and residual connection, respec-
tively. We denote by “DownConv” convolution with stride 2. The inputs of our network are 3-channel guidance and 1-channel target images (de-
noted by D). For the model without the residual connection, we use an L1 normalization layer (denoted by “L1 norm.”) instead of subtracting
mean values for weight regression. We apply a zero padding technique to input images to handle boundary pixels.

Feature extraction Weight regression
Type Output Type Output

Input D × 51× 51 Conv(1× 1) k2 × 1× 1

Conv(7× 7)-BN-ReLU 32× 45× 45 Sigmoid k2 × 1× 1

DownConv(2× 2)-ReLu 32× 22× 22 Mean subtraction or
k2 × 1× 1Conv(5× 5)-BN-ReLU 64× 18× 18 L1 norm. (w/o Res.)

DownConv(2× 2)-ReLU 64× 9× 9 Offset regression
Conv(5× 5)-BN-ReLU 128× 5× 5 Type Output
Conv(3× 3)-ReLU 128× 3× 3

Conv(1× 1) 2k2 × 1× 1Conv(3× 3)-ReLU 128× 1× 1

learn instead these parameters by minimizing directly the
discrepancy between the output of the network and a refer-
ence image (e.g., a ground-truth depth map for depth upsam-
pling). In particular, constraints on weight and offset regres-
sion (sigmoid and mean subtraction layers in Fig. 2) spec-
ify how the kernel weights and offsets behave and guide the
learning process. For weight regression, we apply a sigmoid
layer that makes all elements larger than 0 and smaller than
1. We then subtract the mean value from the output of the
sigmoid layer. This makes the sum of kernel weights to be
0, so that the regressed weights act similar to a high-pass fil-
ter. For offset regression, we do not apply the sigmoid layer,
since relative offsets (for x, y positions) from locations on a
regular grid can have negative values.
Residual connection. The main reason behind using a resid-
ual connection is that the filtering result is largely correlated
with the target image, and both share low-frequency con-
tent (Li et al. 2019; Kim et al. 2016; He et al. 2016; Zhang
et al. 2017). Focussing on learning the residuals also acceler-
ates training speed while achieving better performance (Kim
et al. 2016). Note that contrary to (Li et al. 2019; Kim et al.
2016; He et al. 2016; Zhang et al. 2017), we obtain the resid-
uals by a weighted averaging process with the learned ker-
nels, instead of regressing them directly from the network
output. Empirically, the kernels learned with the residual
connection have the same characteristics as the high-pass fil-
ters widely used to extract important structures (e.g., object
boundaries) from images. Note also that we can train DKN
without the residual connection. In this case, we compute
the filtering result as the weighted average in (1).

3.2 DKN architecture

We design a fully convolutional network to learn the ker-
nel weights and the sampling offsets for individual pixels.
A detailed description of the network structure is shown in
Table 1.
Feature extraction. We adapt the architecture of (Niklaus
et al. 2017) for feature extraction, with 7 convolutional lay-

ers. We input the guidance and target images to each of
the sub-networks, which gives a feature map of size 128 ×
1 × 1 for a receptive field of size 51 × 51. We use the
ReLU (Krizhevsky et al. 2012) as an activation function.
Batch normalization (Ioffe and Szegedy 2015) is used for
speeding up training and regularization. In case of joint up-
sampling tasks (e.g., depth map upsampling), we input a
high-resolution guidance image (e.g., a color image) and a
low-resolution target image (e.g., a depth map) upsampled
using bicubic interpolation.

Weight regression. For each sub-network, we add a 1 × 1

convolutional layer on top of the feature extraction layer. It
gives a feature map of size k2× 1× 1, where k is the size of
the filter kernel, which is used to regress the kernel weights.
To estimate the weights, we apply a sigmoid layer to each
feature map of size k2×1×1, and then combine the outputs
by element-wise multiplication (see Fig. 2). We could use a
softmax layer as in (Bako et al. 2017; Niklaus et al. 2017;
Vogels et al. 2018), but empirically find that it does not per-
form as well as the sigmoid layer. The softmax function en-
courages the estimated kernel to have only a few non-zero
elements, which is not appropriate for image filtering. The
estimated kernels should be similar to high-pass filters, with
kernel weights adding to 0. To this end, we subtract the mean
value from the combined output of size k2 × 1× 1. For our
model without a residual connection, we apply instead L1
normalization to the output of size k2×1×1. Since the sig-
moid layer makes all elements in the combined output larger
than 0, applying L1 normalization forces the kernel weights
to add to 1 as in (2).

Offset regression. Similar to the weight regression case, we
add a 1× 1 convolutional layer on top of the feature extrac-
tion layer. The resulting two feature maps of size 2k2×1×1

are combined by element-wise multiplication. The final out-
put contains relative offsets (for x, y positions) from loca-
tions on a regular grid. In our implementation, we use 3× 3

kernels, but the filtering result is computed by aggregating 9

6 International Journal of Computer Vision

(a) (b) (c)

Fig. 3 Illustration of irregular sampling of neighboring pixels using
offsets: (a) regular sampling q on discrete grid; (b) learned offsets ∆q;
(c) deformable sampling locations s(q) with the offsets ∆q. The
learned offsets are fractional and the corresponding pixel values are
obtained by bilinear interpolation.

samples sparsely chosen from a much larger neighborhood.
The two main reasons behind the use of small-size kernels
are as follows: (1) This enables an efficient implementation
in terms of speed and memory. (2) The reliability of samples
is more important than the total number of samples aggre-
gated. A similar finding is noted in (Wang and Cohen 2007),
which shows that only high-confidence samples should be
chosen when estimating foreground and background images
in image matting. Offset regression is closely related to non-
local means (Buades et al. 2005) in that both aggregate pix-
els not located at immediate neighbors. Note that learning
offsets can be seen as estimating correspondences within in-
put images. The sampling positions computed by the off-
sets point to pixels whose intensity values are similar to
that of the center of the kernel. That is, our model with fil-
ter kernels of size k × k computes k2 matching points for
each pixel. The kernel weights tell us how much informa-
tion is aggregated from these matching points, indicating
that the weights correspond to matching confidence. Note
also that we use a larger receptive field than the filter ker-
nel. This better handles the aperture problem occurring in
finding the matching points by considering contextual infor-
mation (Niklaus et al. 2017).
Weighted average. Given the learned kernel K and sam-
pling offsets ∆q, we compute the residuals f̂p − fp as a
weighted average:

f̂p = fp +
!

q∈N (p)

Kps(f, g)fs(q), (3)

where N (p) is a local 3 × 3 window centered at the loca-
tion p on a regular grid (Fig. 3(a)). We denote by s(q) the
sampling position computed from the offset ∆q (Fig. 3(b))
of the location q as follows.

s(q) = q+∆q. (4)

The sampling position s(q) predicted by the network is ir-
regular and typically fractional (Fig. 3(c)). We use bilinear
interpolation (Jaderberg et al. 2015) to sample correspond-
ing (sub) pixels fs(q) as

fs(q) =
!

t∈R(s(q))

G(s, t)ft, (5)

where R(s(q)) enumerates all integer locations in a local 4-
neighborhood system to the fractional position s(q), and G

is a sampling kernel. Following (Dai et al. 2017; Jaderberg
et al. 2015), we use a two-dimensional bilinear kernel, and
split it into two one-dimensional ones as

G(s, t) = g(sx, tx)g(sy, ty), (6)

where g(a, b) = max(0, 1 − |a − b|). Note that the resid-
ual term in (3) is exactly the same as the explicit joint fil-
ters in (1), but we aggregate pixels from the sparsely chosen
locations s(q) with the learned kernels K. Note that aggre-
gating pixels from a fractional grid is not feasible in current
joint filters including DJF (Li et al. 2019).

When we do not use a residual connection, we compute
the filtering result f̂p directly as a weighted average using
the learned kernels and offsets:

f̂p =
!

q∈N (p)

Kps(f, g)fs(q). (7)

Loss. We train our model by minimizing the L1 norm of the
difference between the network output f̂ and ground truth
f gt as follows.

L(f gt, f̂) =
!

p

|f gt
p − f̂p|1. (8)

Testing. Two principles have guided the design of our learn-
ing architecture: (1) Points from a large receptive field in
the original guidance and target images should be used to
compute the weighted averages associated with the value of
the upsampled depth map at each one of its pixels; and (2)
inference should be fast. The second principle is rather self-
evident. We believe that the first one is also rather intuitive,
and it is justified empirically by the ablation study presented
later. In fine, it is also the basis for our approach, since our
network learns where, and how to sample a small number of
points in a large receptive field.

A reasonable compromise between receptive field size
and speed is to use one or several convolutional layers with
a multi-pixel stride, which enlarges the image area pixels
are drawn from without increasing the number of weights
in the network. This is the approach we have followed in
our base architecture, DKN, with two stride-2 “DownConv”
layers. The price to pay is a loss in spatial resolution for the
final feature map, with only 1/16 of the total number N of
pixels in the input images. One could of course give as in-
put to our network the receptive fields associated with all N
of the original guidance and target image pixels, at the cost
of N forward passes during inference. DKN implements a
much more efficient method where 16 shifted copies of the
two images are used in turn as input to the network, and the
corresponding network outputs are then stitched together in
a single image, at the cost of only 16 forward passes. The
details of this shift-and-stitch approach (Long et al. 2015;
Niklaus et al. 2017) can be found in Appendix A.

Deformable Kernel Networks for Joint Image Filtering 7

12

4/ܪ ൈ ܹ/4 ൈ 16𝐶
4/ܪ ൈ ܹ/4 ൈ 16݇ଶ

4/ܪ ൈ ܹ/4 ൈ 32݇ଶ

ܪ ൈ ܹ ൈ 𝐶

ܪ ൈ ܹ ൈ 1 H/4 ൈ ܹ/4 ൈ 16

Weighted
average

G
uidance

Target

Weight & offset regressionFeature extraction: Stitching
: Resampling

: Residual connection
: Sigmoid
: Mean subtraction

Fig. 4 The FDKN architecture. We resample a guidance image of size H ×W ×C with stride 4 in each dimension (Fig. 5), where H , W and C
are height, width and the number of channels, respectively. This gives resampled guidance images of size H/4×W/4× 16C. The target image
is also resampled to the size of H/4×W/4× 16. This allows the FDKN to maintain a receptive field size comparable with the DKN. The FDKN
inputs resampled guidance and target images, and then computes the kernel weight and offset locations of size H ×W × k2 and H ×W × 2k2,
respectively, making it possible to get filtering results in a single forward pass without loss of resolution. Finally, the residuals computed by the
weighted average and the target image are combined to obtain the filtering result. See Table 2 for the detailed description of the network structure.
(Best viewed in color.)

Table 2 FDKN architecture details. The inputs of FDKN are 16C-channel guidance and 16-channel target images (denoted by D). Note that the
receptive field of size 13× 13 in the resampled images is comparable to that of size 51× 51 in the DKN. We apply a zero padding technique to
input images to handle boundary pixels.

Feature extraction Weight regression
Type Output Type Output

Input D × 13× 13 Conv(1× 1) 16k2 × 1× 1

Conv(3× 3)-BN-ReLU 32× 11× 11 Sigmoid 16k2 × 1× 1

Conv(3× 3)-ReLU 32× 9× 9 Mean subtraction or
16k2 × 1× 1Conv(3× 3)-BN-ReLU 64× 7× 7 L1 norm. (w/o Res.)

Conv(3× 3)-ReLU 64× 5× 5 Offset regression
Conv(3× 3)-BN-ReLU 128× 3× 3 Type Output

Conv(3× 3)-ReLU 128× 1× 1 Conv(1× 1) 32k2 × 1× 1

Resampling

!/#	×	&/#	×	#'

!/#	×	&/#	×	#'!	×	$	×	1
Fig. 5 Illustration of resampling. An image of size H × W × 1 is
reshaped with stride r in each dimension, resulting a resampled one of
size H/r ×W/r × r2.

3.3 FDKN architecture

We now present a fast version of DKN (FDKN) that achieves
a 17× speed-up over the DKN for an image of size 640×480

while retaining the same level of quality (Fig. 4). The basic
idea is to remove DownConv layers while maintaining the
same receptive field size as the DKN, making it possible to
obtain the filtering output in a single forward pass. Simply
removing these layers leads to an increase in the total num-
ber of convolutions (see Section 5). A more efficient alter-

native to DKN is to split the input images into the same 16
subsampled and shifted parts as before, but this time stack
them into new target and guidance images (Fig. 5), with 16

channels for the former, and 16C channels for the latter,
e.g., C = 3 when the RGB image is used. The effective re-
ceptive field for FDKN is comparable to that of DKN2, but
FDKN involves much fewer parameters because of the re-
duced input image resolution and the shared weights across
channels. The individual channels are then recomposed into
the final upsampled image (Shi et al. 2016), at the cost of
only one forward pass. Specifically, we use a series of 6
convolutional layers of size 3× 3 for feature extraction. For
weight and offset regression, we apply a 1×1 convolution on
top of the feature extraction layers similar to DKN, but using
more network parameters. For example, FDKN and DKN
compute feature maps of size 16k2 × 1× 1 and k2 × 1× 1,

2 We could also use dilated convolutions (Yu and Koltun 2016) that
support large receptive fields without loss of resolution, but empirically
find that runtime gain is marginal (see Section 5).

8 International Journal of Computer Vision

Table 3 Quantitative comparison with the state of the art on depth map upsampling in terms of average RMSE. Numbers in bold indicate the best
performance and underscored ones are the second best. Following (Li et al. 2016, 2019), the average RMSE are measured in centimeter for the
NYU v2 dataset (Silberman et al. 2012). For other datasets, we compute RMSE with upsampled depth maps scaled to the range [0, 255]. †: Our
models trained with the depth map only without any guidance.

Datasets Middlebury Lu NYU v2 Sintel

Methods 4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16×

Bicubic Int. 4.44 7.58 11.87 5.07 9.22 14.27 8.16 14.22 22.32 6.54 8.80 12.17
MRF (Diebel and Thrun 2006) 4.26 7.43 11.80 4.90 9.03 14.19 7.84 13.98 22.20 8.81 11.77 15.75
GF (He et al. 2013) 4.01 7.22 11.70 4.87 8.85 14.09 7.32 13.62 22.03 6.10 8.22 11.22
JBU (Kopf et al. 2007) 2.44 3.81 6.13 2.99 5.06 7.51 4.07 8.29 13.35 5.88 7.63 10.97
TGV (Ferstl et al. 2013) 3.39 5.41 12.03 4.48 7.58 17.46 6.98 11.23 28.13 32.01 36.78 43.89
Park (Park et al. 2011) 2.82 4.08 7.26 4.09 6.19 10.14 5.21 9.56 18.10 9.28 12.22 16.51
SDF (Ham et al. 2018) 3.14 5.03 8.83 4.65 7.53 11.52 5.27 12.31 19.24 6.52 7.98 11.36
FBS (Barron and Poole 2016) 2.58 4.19 7.30 3.03 5.77 8.48 4.29 8.94 14.59 11.96 12.29 13.08

Results with downsampling based on bicubic interpolation

DMSG (Hui et al. 2016) 1.88 3.45 6.28 2.30 4.17 7.22 3.02 5.38 9.17 5.32 7.24 10.11
DJF (Li et al. 2016) 1.68 3.24 5.62 1.65 3.96 6.75 2.80 5.33 9.46 4.58 6.57 9.38
DG (Gu et al. 2017) 1.97 4.16 5.27 2.06 4.19 6.90 3.68 5.78 10.08 4.11 6.61 9.24
DJFR (Li et al. 2019) 1.32 3.19 5.57 1.15 3.57 6.77 2.38 4.94 9.18 3.97 6.32 9.19
PAC (Su et al. 2019) 1.32 2.62 4.58 1.20 2.33 5.19 1.89 3.33 6.78 3.38 4.89 7.65

FDKN† 1.07 2.23 5.09 0.85 1.90 5.33 2.05 4.10 8.10 3.31 5.08 8.51
DKN† 1.12 2.13 5.00 0.90 1.83 4.99 2.11 4.00 8.24 3.40 4.90 8.18

FDKN w/o Res. 1.12 2.23 4.52 0.85 2.19 5.15 1.88 3.67 7.13 3.38 5.02 7.74
DKN w/o Res. 1.26 2.16 4.32 0.99 2.21 5.12 1.66 3.36 6.78 3.36 4.82 7.48
FDKN 1.08 2.17 4.50 0.82 2.10 5.05 1.86 3.58 6.96 3.36 4.96 7.74
DKN 1.23 2.12 4.24 0.96 2.16 5.11 1.62 3.26 6.51 3.30 4.77 7.59

Results with downsampling based on nearest-neighbor interpolation

DMSG (Hui et al. 2016) 2.11 3.74 6.03 2.48 4.74 7.51 3.37 6.20 10.05 5.49 7.48 10.52
DJF (Li et al. 2016) 2.14 3.77 6.12 2.54 4.71 7.66 3.54 6.20 10.21 5.51 7.52 10.63
DJFR (Li et al. 2019) 1.98 3.61 6.07 2.22 4.54 7.48 3.38 5.86 10.11 5.50 7.43 10.48
PAC (Su et al. 2019) 1.91 3.20 5.60 2.48 4.37 6.60 2.82 5.01 8.64 5.41 6.98 9.64

FDKN† 2.89 3.92 6.75 2.85 4.64 7.62 3.64 5.43 8.96 5.74 7.31 10.31
DKN† 2.94 4.14 8.12 2.88 5.13 8.24 3.67 6.68 12.15 5.78 7.59 10.95

FDKN w/o Res. 2.11 3.63 6.29 2.50 4.52 7.37 2.65 5.02 8.69 5.48 7.27 10.22
DKN w/o Res. 1.95 3.18 5.50 2.37 4.17 6.37 2.48 4.78 8.52 5.29 6.95 9.53
FDKN 2.21 3.64 6.15 2.64 4.55 7.20 2.62 4.99 8.67 5.33 7.25 9.86
DKN 1.93 3.17 5.49 2.35 4.16 6.33 2.46 4.76 8.50 5.29 6.92 9.56

respectively, for weight regression, from each feature of size
128 × 1 × 1. This allows FDKN to estimate kernel weights
and offsets for all pixels simultaneously. In practice, FDKN
gives a 17 times speed-up over DKN. Because it involves
fewer parameters (0.6M vs. 1.1M for DKN), one might ex-
pect somewhat degraded results. Our experiments demon-
strate that FDKN remains in the ballpark of that of DKN,
still significantly better than competing approaches, and in
one case even overperforming DKN. We show in Table 2 the
detailed description of the network structure.

4 Experiments
In this section we present a detailed analysis and evalua-
tion of our approach. We apply our models to the tasks of
joint image upsampling (Section 4.1), cross-modality image
restoration and texture removal (Section 4.2) and semantic
segmentation (Section 4.3), and compare them to the state

of the art in each case. The inputs of our network are 3-
channel guidance and 1-channel target images. In case of
a 1-channel guidance image (e.g., RGB/NIR image restora-
tion), we create a 3-channel image by duplicating the single
channel three times. For multi-channel target images (e.g.,
in texture removal), we apply our model separately in each
channel and combine the outputs. The results for compar-
isons have been obtained from the source code provided by
the authors.

4.1 Joint image upsampling experiments
Following the experimental protocol of (Li et al. 2016,
2019), we train our models on the task of depth map up-
sampling using a large number of RGB/D image pairs, and
test them on the tasks of (noisy) depth map upsampling, and
saliency image upsampling that require selectively transfer-
ring the structural details from the guidance image to the
target one.

Deformable Kernel Networks for Joint Image Filtering 9

0 1

(a) RGB image. (b) GF. (c) TGV. (d) SDF. (e) DJFR. (f) PAC. (g) DKN. (h) FDKN. (i) Ground truth.

Fig. 6 Visual comparison of upsampled depth images (8×): (a) an RGB image, (b) GF (He et al. 2013), (c) TGV (Ferstl et al. 2013), (d) SDF (Ham
et al. 2018), (e) DJFR (Li et al. 2019), (f) PAC (Su et al. 2019), (g) DKN, (h) FDKN, and (i) ground truth. Top to bottom: Each two rows show
upsampled images on the NYU v2 (Silberman et al. 2012), Lu (Lu et al. 2014), Middlebury (Hirschmuller and Scharstein 2007) and Sintel (Butler
et al. 2012) datasets, respectively. Note that we train our models with the NYU v2 dataset, and do not fine-tune them to other datasets.

To our knowledge, there is no standard protocol for sim-
ulating low-resolution depth images. For example, DJF (Li
et al. 2016), DJFR (Li et al. 2019), and PAC (Su et al. 2019)
use nearest-neighbor downsampling, e.g., selecting a single
pixel from a 8 × 8 window for a scale factor of ×8. In par-
ticular, PAC keeps the center pixel, while DJF and DJFR
select the right-bottom one. DMSG (Hui et al. 2016) and
DG (Gu et al. 2017) exploit a bicubic downsampling tech-
nique. For fair comparison, we report the results obtained by

all methods, DJF, DJFR, PAC, DMSG3, DG, using bicubic
downsampling, unless otherwise specified. We also perform
the same comparison using nearest-neighbor downsampling
as in DJF (Li et al. 2016) and DJFR (Li et al. 2019) (i.e., se-
lecting the right-bottom pixel for each sampling grid) for all
methods, except for DG, as it does not provide a source code
for training.

3 It uses the Middlebury and Sintel datasets for training the network.
For fair comparison of DMSG with other CNN-based methods includ-
ing ours, we retrain the DMSG model using the same image pairs from
the NYU v2 dataset as in (Li et al. 2016)

10 International Journal of Computer Vision

(a) RGB image. (b) GT.

(c) DKN. (d) DKN†.

Fig. 7 An example from the Lu dataset (Lu et al. 2014) where the RGB
guidance image does not help. From left to right: (a) an RGB image,
(b) ground-truth depth, and results from (c) DKN and (d) DKN†, ren-
dered as difference maps between upsampling results and ground truth.
In this example, the poor contrast of color edges in dark regions ham-
pers the ability of the RGB guidance to assist upsampling, and DKN†

performs better than DKN.

4.1.1 Experimental details

We sample 1,000 RGB/D image pairs of size 640×480 from
the NYU v2 dataset (Silberman et al. 2012). We use the same
image pairs as in (Li et al. 2016, 2019) to train the networks.
We train different models to upsample depth map with a
batch size of 1 for 40k iterations, giving roughly 20 epochs
over the training data. We use the Adam optimizer (Kingma
and Ba 2015) with β1 = 0.9 and β2 = 0.999. As learn-
ing rate we use 0.001 and divide it by 5 every 10k itera-
tions. Data augmentation and regularization techniques such
as weight decay and dropout (Krizhevsky et al. 2012) are not
used, since 1,000 RGB/D image pairs from the NYU dataset
have proven to be sufficient to train our models. All net-
works are trained end-to-end using PyTorch (Paszke et al.
2017).

4.1.2 Results

Depth map upsampling. We test our models on depth map
upsampling with the following four benchmark datasets.
These datasets feature aligned color and depth images. The
inputs to our models are a high-resolution color image and
a low-resolution depth image upsampled using bicubic or
nearest-neighbor interpolation.
• Middlebury dataset (Hirschmuller and Scharstein 2007;

Scharstein and Pal 2007): We use the 30 RGB/D image

pairs from the 2001-2006 datasets provided by Lu (Lu
et al. 2014).

• Lu dataset (Lu et al. 2014): This provides 6 RGB/D image
pairs acquired by the ASUS Xtion Pro camera.

• NYU v2 dataset (Silberman et al. 2012): It consists of
1,449 RGB/D image pairs captured with the Microsoft
Kinect (Zhang 2012) using structured light, similar to the
Middlebury dataset. We exclude the 1,000 pairs used for
training, and use the rest (449 pairs) for evaluation.

• Sintel dataset (Butler et al. 2012): This dataset provides
1,064 RGB/D image pairs created from an animated 3D
movie. It contains realistic scenes including fog and mo-
tion blur. We use 864 pairs from a final-pass dataset for
testing4.

We compare our method with the state of the art in Ta-
ble 3. It shows the average RMSE between upsampling re-
sults and ground truth. From this table, we observe three
things: (1) Our models outperform the state of the art in-
cluding CNN-based methods (Hui et al. 2016; Li et al. 2016,
2019; Su et al. 2019) by significant margins in terms of
RMSE, even without the residual connection (DKN w/o
Res. and FDKN w/o Res.). For example, DKN decreases
the average RMSE by 32% (4×), 34% (8×) and 29% (16×)
compared to DJFR. (2) We can clearly see that our mod-
els perform well on both synthetic and real datasets (e.g.,
the Sintel and NYU v2 datasets), and generalize well to
other images (e.g., on the Middlebury dataset) outside the
training dataset. Note that we train our models with the
NYU v2 dataset, and do not fine-tune them to other datasets.
(3) FDKN retains the superior performance of DKN. Similar
conclusions can be seen for the results of nearest-neighbor
downsampling.

Figure 6 shows a visual comparison of the upsampled
depth images (8×). The better ability to extract common
structures from the target and guidance images by our mod-
els here is clearly visible. Specifically, our results show a
sharp depth transition without the texture-copying artifacts.
In contrast, artifacts are clearly visible even in the results of
DJFR, which tends to over-smooth the results and does not
recover fine details. This confirms once more the advantage
of using the weighted average with spatially-variant kernels
and an adaptive neighborhood system in joint image filter-
ing.

We show in Fig. 7 a failure example on the Lu
dataset (Lu et al. 2014). As the color images in the dataset
are captured in low-light conditions, the color boundaries
become less reliable, and our model trained without the
color image guidance, DKN†, outperforms DKN. Specif-
ically, the percentage of the image that DKN† outper-
forms DKN (8×) is as follows: 43% (13/30), 100% (6/6),
2% (10/449), and 27% (238/864) for the Middlebury, Lu,

4 We discard the 200 pairs that provide RGB images only.

Deformable Kernel Networks for Joint Image Filtering 11

Table 4 Quantitative comparison with the state of the art on noisy depth map upsampling in terms of average RMSE on the noisy Middlebury
dataset (Park et al. 2011). †: The model trained with a synthetic dataset.

Art Books Moebius

Methods 4× 8× 16× 4× 8× 16× 4× 8× 16×

Bicubic 6.07 7.27 9.59 5.15 5.45 5.97 5.51 5.68 6.11
DMSG (Hui et al. 2016) 6.19 7.26 9.53 5.38 5.18 5.20 5.48 5.06 5.36
DJFR (Li et al. 2019) 4.25 6.43 9.05 2.20 3.35 4.94 2.39 3.51 4.56
PAC (Su et al. 2019) 5.34 7.69 10.66 2.11 3.12 4.60 2.21 3.38 4.72
PDN† (Riegler et al. 2016a) 3.11 4.48 7.35 1.56 2.24 3.46 1.68 2.48 3.62

FDKN w/o Res. 3.24 4.57 7.67 1.55 2.18 3.32 1.76 2.57 3.92
FDKN 3.14 4.47 7.61 1.49 2.13 3.40 1.70 2.53 3.91
DKN w/o Res. 2.98 4.25 7.78 1.47 2.16 3.62 1.64 2.43 4.03
DKN 3.01 4.14 7.01 1.44 2.10 3.09 1.63 2.39 3.55

(a) Input. (b) DMSG. (c) PAC. (d) DJFR. (e) DKN.

Fig. 8 Visual comparison of noisy depth map upsampling (8×) on the art sequence in the noisy Middlebury dataset (Park et al. 2011): (a) Input,
(b) DMSG (Hui et al. 2016), (c) PAC (Su et al. 2019), (d) DJFR (Li et al. 2019), and (e) DKN.

(a) Intensity. (b) LR ToF. (c) TGV. (d) DKN. (e) GT.

Fig. 9 Visual comparison of noisy depth map upsampling on the books sequence in the ToFMark dataset (Ferstl et al. 2013): (a) Intensity, (b) LR
ToF, (c) TGV (Ferstl et al. 2013), (d) DKN, and (e) GT.

NYU v2, and Sintel datasets, respectively. This suggests that
using guidance images does not always give better results. In
general, RGB guidance images provide structural informa-
tion (e.g., gradients along occluding edges) useful in depth
map upsampling, but they may also contain unrelated details
(e.g., gradients along texture edges) that at time degrade per-
formance.

Noisy depth map upsampling. To show the robustness of
our models on noisy data, we train our models using pairs of
noisy low-resolution/ground-truth depth images in the NYU
v2 (Silberman et al. 2012) dataset. We simulate noisy low-
resolution depth images following the protocol of (Riegler
et al. 2016a). The other experimental settings are the same
as in Section 4.1.1. We compare our models with the state
of the art in Table 4 including CNN-based methods (Hui

Table 5 Quantitative comparison of noisy depth map upsampling in
terms of average RMSE on the ToFMark dataset (Ferstl et al. 2013). †:
The model trained with a synthetic dataset.

Methods Books Devil Shark

NN 30.46 27.53 38.21
Bilinear 29.11 25.34 36.34
JBU (Kopf et al. 2007) 27.82 25.30 34.79
GF (He et al. 2013) 27.11 23.45 33.26
TGV (Ferstl et al. 2013) 24.00 23.19 29.89
PDN† (Riegler et al. 2016a) 23.74 20.47 28.81

DKN w/o Res. 23.45 19.97 27.91

et al. 2016; Li et al. 2019; Su et al. 2019; Riegler et al.
2016a) on the noisy Middlebury dataset. To obtain the re-
sults of DMSG (Hui et al. 2016), DJFR (Li et al. 2019),

12 International Journal of Computer Vision

(a) RGB image. (b) Bicubic Int. (c) DMSG. (d) PAC. (e) DJFR. (f) DKN. (g) FDKN. (h) Ground truth.

Fig. 10 Visual comparison of saliency map upsampling (8×) on the DUT-OMRON dataset (Yang et al. 2013): (a) an RGB image, (b) Bicubic Int.,
(c) DMSG (Hui et al. 2016), (d) PAC (Su et al. 2019), (e) DJFR (Li et al. 2019), (f) DKN, (g) FDKN, and (h) ground truth.

Table 6 Quantitative comparison on saliency map upsampling in terms
of weighted F-scores (Margolin et al. 2014). We use 5,168 images from
the DUT-OMRON dataset (Yang et al. 2013).

Methods Weighted-Fscore

Bicubic Int. 0.886
GF (He et al. 2013) 0.890
SDF (Ham et al. 2018) 0.885
DMSG (Hui et al. 2016) 0.938
DJFR (Li et al. 2019) 0.925
PAC (Su et al. 2019) 0.943

DKN 0.944
FDKN 0.961

and PAC (Su et al. 2019), we retrain the models using the
same image pairs as ours. The results of PDN are taken
from (Riegler et al. 2016a)5. In Table 5, we compare our
model with other methods (Kopf et al. 2007; He et al. 2013;
Ferstl et al. 2013; Riegler et al. 2016a) on the ToFMark
dataset, where all numbers are taken from (Riegler et al.
2016a). From these tables, we can see that our models out-
perform the state of the art, demonstrating that they are quite
effective to handle synthetic and real noisy data, even better
than PDN (Riegler et al. 2016a) that requires many itera-
tions to compute the primal-dual algorithm in testing. Fig-
ures 8 and 9 show visual comparisons on the noisy Mid-
dlebury and ToFmark datasets, respectively. We can see that
our models suppress the noise, while preserving sharp depth
boundaries (e.g., thin sticks and small holes in Fig. 8) and
being robust to texture-copying artifacts (e.g., texts in a vase
and books in Fig. 9).
Saliency map upsampling. To evaluate the generaliza-
tion ability of our models for depth map upsampling on

5 PDN uses synthetic depth maps created by a 3D renderer. The au-
thors provide the source code online but despite our best efforts, we
have not been able to retrain the corresponding models in the same set-
ting as ours. We thus simply indicate the original results from (Riegler
et al. 2016a)

other tasks, we apply them trained with the NYU v2
dataset to saliency map upsampling without fine-tuning.
We downsample saliency maps (×8) in the DUT-OMRON
dataset (Yang et al. 2013), and then upsample them under the
guidance of high-resolution color images. We show in Ta-
ble 6 a comparison of weighted F-measure (Margolin et al.
2014) between upsampled images and the ground truth. Fig-
ure 10 shows examples of the upsampling results by the state
of the art and our models. The results show that our models
outperform others including CNN-based methods (Li et al.
2019; Hui et al. 2016; Su et al. 2019).

4.2 Cross-modality image restoration and texture
removal experiments

4.2.1 Experimental details

Following (Li et al. 2016, 2019), we use depth denoising as a
proxy task for cross-modality image restoration and texture
removal, since ground-truth datasets for these tasks are not
available. We train our models for denoising depth images
with RGB/D image pairs from the NYU v2 dataset (Silber-
man et al. 2012). The models for depth noise removal are
similarly trained to those for joint image upsampling in Sec-
tion 4.1.1 under the guidance of high-resolution RGB im-
ages but with 4k iterations. Noisy depth images are synthe-
sized by adding Gaussian noise with zero mean and vari-
ance of 0.005. The models are then applied to the tasks of
cross-modality image restoration and texture removal with-
out fine-tuning. For comparison, average RMSE for GF (He
et al. 2013), Yan (Yan et al. 2013), SDF (Ham et al. 2018),
DJF (Li et al. 2016), and DKN on depth noise removal are
5.34, 12.53, 7.56, 2.63, and 2.46, respectively, in the test
split of the NYU v2 dataset, showing that our model again
outperforms the others. We do not use the residual connec-
tion for noise removal tasks, since we empirically find that it
does not help in this case. We only show qualitative results

Deformable Kernel Networks for Joint Image Filtering 13

(a) Guidance. (b) Target. (c) GF. (d) SDF. (e) Yan. (f) DJF. (g) DKN. (h) FDKN.

Fig. 11 Examples of cross-modality noise reduction for (top) flash/non-flash denoising and (bottom) RGB/NIR denoising: (a-b) Guidance and
target images, (c) GF (He et al. 2013), (d) SDF (Ham et al. 2018), (e) Yan (Yan et al. 2013), (f) DJF (Li et al. 2016), (g) DKN, and (h) FDKN. Our
models preserve textures while smoothing noise. GF and DJF tend to over-smooth the textures. Artifacts are clearly visible in the results of SDF.
The method of (Yan et al. 2013), specially designed for this task, gives the best results.

(a) Input image. (b) RGF. (c) RTV. (d) Cov. (e) SDF. (f) DJF. (g) DKN. (h) FDKN.

Fig. 12 Visual comparison of texture removal for regular (top) and irregular (bottom) textures: (a) an input image, (b) RGF (Zhang et al. 2014),
(c) RTV (Xu et al. 2012), (d) Cov (Karacan et al. 2013), (e) SDF (Ham et al. 2018), (f) DJF (Li et al. 2016), (g) DKN, and (h) FDKN.

in these tasks, since ground truth is not available. All pre-
vious works (e.g., (Li et al. 2016; Yan et al. 2013; Li et al.
2019; He et al. 2013)) we are aware of for these tasks offer
qualitative results only.

4.2.2 Results
Cross-modality image restoration. For flash/non-flash de-
noising, we set the flash and non-flash images as guidance
and target ones, respectively. Similarly, we restore the color
image guided by the flash NIR image in RGB/NIR denois-
ing. Examples for flash/non-flash and RGB/NIR restora-
tion are shown in Fig. 11. Qualitatively, our models out-
perform other state-of-the-art methods (Li et al. 2016; Ham
et al. 2018; He et al. 2013). For example, GF (He et al.
2013) using guidance images only cannot deal with gra-
dient reversal in flash NIR images, resulting in smoothed
edges. SDF (Ham et al. 2018) and DJF (Li et al. 2016)

use both guidance and target images. However, SDF tends
to enhance edges, giving over-sharpened results, while DJF
overly smooths images. In contrast, our models preserve
edges while smoothing noise without artifacts. This demon-
strates that our models trained with RGB/D images can gen-
eralize well for others with different modalities. The method
of (Yan et al. 2013), specially designed for this task, gives
the best results.

Texture removal. We set the textured image itself for guid-
ance and target, and apply our models repeatedly to remove
small-scale textures. We show examples in Fig. 12. Our
models outperform DJF (Li et al. 2016) trained for denois-
ing depth images, suggesting that a generalization ability is
better. In particular, they remove textures without artifacts
while maintaining other high-frequency structures such as
image boundaries and corners. Our models give results com-

14 International Journal of Computer Vision

(a) RGB image. (b) Baseline. (c) DenseCRF. (d) DGF. (e) FDKN. (f) Ground truth.

Fig. 13 Visual comparison of semantic segmentation on the validation set of Pascal VOC 2012 benchmark (Everingham et al. 2015): (a) an RGB
image, (b) baseline (Chen et al. 2018), (c) denseCRF (Krähenbühl and Koltun 2011), (d) DGF (Wu et al. 2018), (e) FDKN, and (f) ground truth.
Compared to the state of the art, our model shows better ability to improve the localization accuracy of object boundaries and refine incorrectly
labeled segments.

Table 7 Quantitative comparison on semantic segmentation in terms
of average IoU. We use 1,449 images from the validation set in the
Pascal VOC 2012 benchmark (Everingham et al. 2015).

Methods Mean IoU

Baseline (Chen et al. 2018) 70.69
DenseCRF (Krähenbühl and Koltun 2011) 71.98
DGF (Wu et al. 2018) 72.96

FDKN 73.60

parable to other methods including RTV (Xu et al. 2012)
and Cov (Karacan et al. 2013) specially designed for texture
removal. A plausible explanation of why networks trained
for denoising depth images work for texture removal is that
textures can be considered as patterned noise. Repeatedly
applying our networks thus removes them. A similar finding
can be found in (Li et al. 2016). We empirically find that 4
iterations are enough to get satisfactory results, and use the
same number of iterations for all experiments.

4.3 Semantic segmentation experiments
CNNs commonly use max pooling and downsampling to
achieve invariance, but this degrades localization accu-
racy especially at object boundaries (Long et al. 2015).
DeepLab (Chen et al. 2018) overcomes this problem us-
ing probabilistic graphical models. It applies a fully con-
nected CRF (Krähenbühl and Koltun 2011) to the response
of the final layer of a CNN. Zheng et al. interpret CRFs
as recurrent neural networks which are then plugged into
as a part of a CNN (Zheng et al. 2015), making it possi-
ble to train the whole network end-to-end. Recently, Wu et
al. have proposed a layer to integrate guided filtering (He
et al. 2013) into CNNs (Wu et al. 2018). Instead of us-
ing CRFs (Chen et al. 2018; Krähenbühl and Koltun 2011;

Zheng et al. 2015) or guided image filtering (He et al. 2013),
we apply the FDKN to the response of the final layer of
DeepLab v2 (Chen et al. 2018) for semantic segmentation.

4.3.1 Experimental details

Following the experimental protocol of (Wu et al. 2018),
we plug FDKN into DeepLab-v2 (Chen et al. 2018), which
uses ResNet-101 (He et al. 2016) pretrained for ImageNet
classification, as a part of CNNs for semantic segmentation,
instead of applying a fully connected conditional random
field (CRF) (Krähenbühl and Koltun 2011) to refine seg-
mentation results. That is, we integrate DeepLab-v2 and our
model and train the whole network end-to-end, avoiding an
offline post-processing using CRFs. We use the Pascal VOC
2012 dataset (Everingham et al. 2015) that contains 1, 464,
1, 449, and 1, 456 images for training, validation and test,
respectively. Following (Chen et al. 2018; Wu et al. 2018),
we augment the training dataset by the annotations provided
by (Hariharan et al. 2011), resulting in 10, 582 images, and
use 1, 449 images in the validation set for evaluation. We
train the network using a softmax log loss with a batch size
of 1 for 20k iterations. The SGD optimizer with momen-
tum of 0.9 is used. As learning rate, we use the scheduling
method of (Chen et al. 2018) with learning rate of 2.5×10−4

and 2.5×10−3 for DeepLab-v2 and FDKN, respectively. We
upsample 21-channel outputs (20 object classes and back-
ground) of DeepLab-v2 before a softmax layer using a high-
resolution color image. We apply the FDKN separately in
each channel.
4.3.2 Results

We show in Table 7 mean intersection-over-union (IoU)
scores for the validation set in the Pascal VOC 2012

Deformable Kernel Networks for Joint Image Filtering 15

Table 8 Average RMSE comparison (DKN/FDKN) of different components and size of kernels (from 3× 3 to 25× 25). From the third row, we
can see that aggregating pixels from a 15×15 window is enough. We thus restrict the maximum range of offset locations to 15×15. For example,
results for 7×7 in the forth row are computed using 49 pixels sparsely sampled from a 15×15 window. We omit the results for 15×15, 19×19
and 25× 25 kernels, since they are equal to or beyond the maximum range of offset locations. For each network, numbers in bold indicate the best
performance and underscored ones are the second best.

Weight learning Offset learning Res. 3× 3 5× 5 7× 7 15× 15 19× 19 25× 25
RGB Depth RGB Depth

" 5.92 / 6.05 5.52 / 5.73 5.43 / 5.67 5.59 / 5.74 5.82 / 5.81 6.21 / 5.99
" 5.24 / 5.30 4.36 / 4.47 4.09 / 4.24 4.09 / 4.17 4.11 / 4.18 4.15 / 4.21

" " 5.03 / 5.14 3.90 / 4.16 3.48 / 3.80 3.32 / 3.66 3.33 / 3.66 3.39 / 3.72
" " 5.37 / 5.18 5.38 / 5.09 5.40 / 5.07 – – –

" " 4.06 / 4.13 4.09 / 4.13 4.13 / 4.14 – – –
" " " " 3.36 / 3.67 3.32 / 3.65 3.33 / 3.66 – – –
" " " " " 3.26 / 3.58 3.21 / 3.53 3.19 / 3.52 – – –

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 14 Visual comparison of different networks (DKN) for depth upsampling (8×) using the kernel of size 3× 3. (a) an RGB image. Results for
weight regression using (b) RGB, (c) depth and (d) RGB and depth images. Results for weight and offset regression using (e) RGB, (f) RGB and
depth images, and (g) RGB and depth images with the residual connection. (h) ground truth.

Table 9 Quantitative comparison of different components for weight
regression for filter kernels of size 3× 3.

Activation function Mean subtraction DKN FDKN
Softmax Sigmoid

3.74 3.98
" 5.72 5.89

" " 3.49 3.65
" " 3.26 3.58

benchmark (Everingham et al. 2015). To the baseline
method (DeepLab v2 w/o CRF (Chen et al. 2018)), we add
CRF (Krähenbühl and Koltun 2011), guided filtering (Wu
et al. 2018), or FDKN layers. This table shows that our
model quantitatively yields better accuracy in terms of mean
IoU than other state-of-the-art methods. Examples of se-
mantic segmentation are shown in Fig. 13. Our model out-
performs other methods qualitatively as well: It improves
the localization of object boundaries (first row) and refines
incorrect labels (second row).

5 Ablation study
In this section, we conduct an ablation analysis on different
components in our models, and show the effects of differ-
ent parameters for depth map upsampling (8×) on the NYU
v2 dataset. We also discuss other issues including kernel vi-
sualization, runtime, training loss, and upscaling factors for
training and testing.

Network architecture. We show the average RMSE for six
variants of our models in Table 8. The baseline models learn
kernel weights from the guidance images only. From the
second row, we can see that our models trained using the
target images only give better results than the baseline, in-
dicating that using the guidance images only is not enough
to fully exploit common structures. The third row demon-
strates that constructing kernels from both guidance and tar-
get images boosts performance. For example, the average
RMSE of DKN decreases from 5.92 to 5.03 for the 3 × 3

kernel. The fourth and fifth rows show that learning the off-
sets significantly boosts the performance of our models. The
average RMSE of DKN trained using the guidance or target
images only decreases from 5.92 to 5.37 and from 5.24 to
4.06, respectively, for the 3 × 3 kernel. The last two rows
demonstrate that the effect of learning kernel weights and
offsets from both inputs is significant, and combining all
components including the residual connection gives the best
results. Figure 14 shows a visual comparison of using dif-
ferent networks for depth upsampling. Note that learning to
predict the spatial offsets is important because (1) learning
spatially-variant kernels for individual pixels would be very
hard otherwise, unless using much larger kernels to achieve
the same neighborhood size, which would lead to an inef-
ficient implementation, and (2) contrary to current architec-
tures including DJF (Li et al. 2016), PAC (Su et al. 2019) and

16 International Journal of Computer Vision

Table 10 Quantitative comparison of using different number of channels for feature extraction. The results of DKN and FDKN are separated by
“/”. We denote by ni (i = 1, 2) the number of channels in the final two layers for feature extraction. For each network, numbers in bold indicate
the best performance and underscored ones are the second best.

n1 128 256 256 256 256

n2 128 128 256 512 1024

RMSE 3.26 / 3.58 3.22 / 3.51 3.20 / 3.49 3.17 / 3.46 3.15 / 3.42
Runtime (s) 0.17 / 0.01 0.20 / 0.01 0.22 / 0.01 0.27 / 0.02 0.36 / 0.02
Number of parameter (M) 1.1 / 0.6 1.7 / 1.1 2.3 / 1.7 3.5 / 2.9 5.8 / 5.9
Model size (MB) 4.5 / 2.8 6.7 / 4.5 9.0 / 7.3 14.0 / 13.0 23.0 / 24.2

Table 11 Runtime comparison for images of size 640 × 480 on the
NYU v2 (Silberman et al. 2012) dataset. †: Our models trained with
the depth map only without any guidance.

Methods GPU Times(s) CPU Times (s)

MRF (Diebel and Thrun 2006) – 0.69
GF (He et al. 2013) – 0.14
JBU (Kopf et al. 2007) – 0.31
TGV (Ferstl et al. 2013) – 33
Park (Park et al. 2011) – 17
SDF (Ham et al. 2018) – 25
FBS (Barron and Poole 2016) – 0.37

DMSG (Hui et al. 2016) 0.04 1.4
DJFR (Li et al. 2019) 0.01 1.3
PAC (Su et al. 2019) 0.03 1.4
DKN† 0.09 3.2
FDKN† 0.01 0.9
DKN 0.17 5.4
FDKN 0.01 1.0

DMSG (Hui et al. 2016), this allows sub-pixel information
aggregation.

Our models use a two-stream network to extract feature
maps from the guidance and target images. We can regress
the weights and offsets with concatenated guidance and tar-
get images passed to a single network. This model, however,
gives worse errors than our two-stream DKN. In particular,
the RMSE increases from 3.26 to 3.50 for filter kernels of
size 3×3. This suggests that the different feature maps from
the two-stream architecture are better to estimate the kernel
weights and offsets. A similar finding is noted in DJF (Li
et al. 2016).

Our models use sigmoid and mean subtraction layers
for weight regression. We could use a softmax layer that
makes all elements larger than 0 and smaller 1 as in the sig-
moid layer. The sigmoid and mean subtraction layer can be
replaced with a single linear one. We compare in Table 9
the performance of DKN and FDKN with softmax or sig-
moid layers, and when using mean subtraction or not. This
demonstrates that 1) the softmax layer does not perform
as well as the sigmoid layer, and 2) constraints on weight
regression using sigmoid and mean subtraction layers give
better results.
Kernel size. Table 8 also compares the performances of net-
works with different size of kernels. We enlarge the kernel

size gradually from 3×3 to 25×25 and compute the average
RMSE. From the third row, we observe that the performance
improves until size of 15 × 15. Increasing size further does
not give additional performance gain. This indicates that ag-
gregating pixels from a 15 × 15 window is enough for the
task. For offset learning, we restrict the maximum range of
the sampling position to 15 × 15 for all experiments. That
is, the filtering results from the third to last rows are com-
puted by aggregating 9, 25 or 49 samples sparsely chosen
from a 15 × 15 window. The last row of Table 8 suggests
that our final models also benefit from using more samples.
The RMSE for DKN decreases from 3.26 to 3.19 at the cost
of additional runtime. For comparison, DKN with kernels of
size 3× 3, 5× 5 and 7× 7 take 0.17, 0.18 and 0.19 seconds,
respectively, with a Nvidia Titan XP. A 3 × 3 size offers a
good compromise in terms of RMSE and runtime and this is
what we have used in all experiments.
Feature channels. In Table 10, we compare the effects of
the number of feature channels in terms of RMSE, runtime,
the number of network parameters, and model size. We use
our DKN and FDKN models including the residual connec-
tion and a fixed size of 3 × 3 kernels. We vary the number
of channels ni (i = 1, 2) in the final two layers for fea-
ture extraction (see Tables 1 and 2). The table shows that
using more channels for feature extraction helps improve
performance, but requires more runtime and a large number
of parameters to be learned. For example, DKN takes twice
more time for a (modest) 0.11 RMSE gain. Consequently,
we choose the number of feature channels n1 = 128 and
n2 = 128 for both models.
DownConv for DKN. We empirically find that extracting
features from large receptive fields is important to incorpo-
rate context for weight and offset learning. For example, re-
ducing the size from 51× 51 to 23× 23 causes an increase
of the average RMSE from 3.26 to 5.00 for the 3× 3 kernel.
The DKN without DownConv layers can be implemented in
a single forward pass, but requires more parameters (1.6M
vs. 1.1M for DKN) to maintain the same receptive field size,
with a total number of convolutions increasing from 0.6M
to 1M at each pixel. We may use dilated convolutions (Yu
and Koltun 2016) that support large receptive fields without
loss of resolution. When using the same receptive field size
as 51 × 51, the average RMSE for dilated convolutions in-

Deformable Kernel Networks for Joint Image Filtering 17

MRF (NIPS 2006)

GF (TPAMI 2013)

FGI (ECCV 2016)

JBU (SIGGRAPH 2007)

FBS (ECCV 2016) PARK (ICCV 2011)

SDF (TPAMI 2018)

TGV (ICCV 2013)

DJFR (TPAMI 2019)
DMSG (ECCV 2016)

DKN

DKN†
FDKN†

FDKN

PAC (CVPR 2019)

Fig. 15 Runtime and root mean squared errors (RMSE) comparison of
upsampled depth maps (8×) on the NYU v2 (Silberman et al. 2012)
dataset. †: Our models trained with the depth map only without any
guidance.

Table 12 RMSE comparison of using different upscaling factors for
training and testing on depth map upsampling.

Train/Test 4× 8× 16×

4× 1.62 6.70 11.24
8× 3.93 3.26 10.53
16× 9.04 8.61 6.51

creases from 3.26 to 4.30 for the 3 × 3 kernel. We can also
use deconvolutional layers, similar to the U-Net architec-
ture (Ronneberger et al. 2015) for upsampling. They, how-
ever, produce checkerboard artifacts (Odena et al. 2016),
which may degrade the performance. The resampling tech-
nique (Fig. 5) thus appears to be the preferable alternative.
Training loss. Average RMSEs for L1, L2 and
L1+perceptual losses are 3.58, 3.69, and 3.66, respec-
tively, for the task of depth upsampling (8×) on the NYU
v2 dataset. The L1 loss is robust to outliers, preserving
depth boundaries better than the L2 one. The perceptual
loss, typically using a network (Simonyan and Zisserman
2015) pretrained for the ImageNet classification, does not
provide a gain on the RMSE performance.
Runtime. Our network consists of two parts: 1) feature ex-
traction and weight & offset regression, and 2) weighted av-
erage (Fig. 2). The second part takes less than 0.001s for
all models. The first part for DKN, DKN†, FDKN, FDKN†

takes 0.165s, 0.086s, 0.011s, 0.01s respectively for images
of size 640 × 480. For comparison with other methods, ta-
ble 11 shows runtime on the same machine. We report the

(a) RGB image. (b) ×4. (c) ×8. (d) ×16.

Fig. 16 Visual comparison of upsampled depth images for DKN when
the scale factors for training (×16) and test (×4,×8,×16) are differ-
ent.

Table 13 RMSE comparison by varying the number of training data
on depth map upsampling (8×).

Datasets Methods 10 50 100 200 500 700 1000

NYU v2 DMSG 7.40 6.32 5.97 5.64 5.41 5.35 5.38
FDKN 5.01 4.28 3.98 3.77 3.61 3.60 3.58
DKN 4.73 3.97 3.62 3.33 3.27 3.25 3.26

Sintel DMSG 8.62 8.08 7.65 7.46 7.27 7.21 7.24
FDKN 6.04 5.37 5.16 5.05 4.98 4.98 4.96
DKN 5.79 5.24 5.01 4.85 4.82 4.74 4.77

GPU runtime for DMSG (Hui et al. 2016), DJFR (Li et al.
2019), PAC (Su et al. 2019), and our models with a Nvidia
Titan XP. DKN is slower than DMSG (Hui et al. 2016),
PAC (Su et al. 2019) and DJFR (Li et al. 2019), but yields
a significantly better RMSE (Fig. 15 and Table 3). FDKN
runs about 17× faster than the DKN, as fast as DJFR, but
with significantly higher accuracy. We also report the CPU
runtime with an Intel i5 3.3 GHz, demonstrating that FDKN
is as fast or faster than other CNN-based methods, even on
CPUs.

Upscaling factors for training and testing. Table 12 com-
pares the average RMSE on the NYU dataset (Silberman
et al. 2012), when the scale factors for training and test are
different. It shows that the performance is degraded. This
may be handled by a scale augmentation technique during
training (Kim et al. 2016). A visual comparison is shown in
Fig. 16.

Kernel prediction vs. direct regression. Our model has
several advantages over current CNN-based approaches that
directly regress the filtering output. First, the direct regres-
sion may overfit the particular characteristics of training
data, especially when the number of training samples is
small. In contrast, weighted averaging smooths the output
and acts as a regularizer, suggesting that our model is not
seriously affected by the number of training samples. To
demonstrate this, we evaluate the average RMSE perfor-
mance in Table 13, when varying the size of the training
data. We train the DKN, FDKN and DMSG (Hui et al.
2016), where the filtering output is directly regressed from
input images, for depth map upsampling (8×) while grad-
ually increasing the number of training samples from 10 to

18 International Journal of Computer Vision

Fig. 17 Visualization of filter kernels. Top: (From left to right) an RGB image, a low-resolution depth image, and an upsampling result by DKN.
Bottom: (From left to right) Snippets of RGB images, low-resolution depth images, and kernels learned w/o and w/ the residual connection. The
center positions in the RGB and depth images are denoted by blue dots. The kernel weights are plotted with a heat map. (Best viewed in color.)

1, 000 in the NYU v2 dataset (Silberman et al. 2012). We
test them in the same configuration as in Table 3.

Table 13 shows that our models are more robust to
the size of training data and generalize better to other im-
ages (e.g., on the Sintel dataset (Butler et al. 2012)) out-
side the training dataset than the direct regression approach,
even with more learnable parameters (1.1M for DKN and
0.6M for FDKN vs. 0.43M for DMSG (Hui et al. 2016)).
In particular, the DKN trained with only 10 images outper-
forms the state of the art by a significant margin for all test
datasets (see Table 3). Second, the kernels learned by direct
regression are defined implicitly and hard to visualize. In
contrast, our method learns sparse kernels (i.e., where to ag-
gregate) explicitly. We can interpret and visualize why ker-
nels learned by our model give smooth results while pre-
serving edges (Fig. 17), and this also gives a clue for tuning
hyper-parameters. For examples, we can reduce the maxi-
mum range of offset locations (i.e., the size of the filter ker-
nel) and the number of weights (i.e., the total number of
samples to aggregate), when the weights are concentrated
on central parts of the kernels, and a few of them are highly
confident, respectively. Note that sparsely aggregating sub-
pixel information is not feasible for direct regression ap-
proaches (e.g., DMSG (Hui et al. 2016) and DJF (Li et al.
2016)). Finally, our model can be applied to any tasks re-
quiring an explicit weighted averaging processing beyond
(joint) image filtering, as confirmed for the task of semantic
segmentation in Section 4.3.

Kernel visualization. We show in Fig. 17 some examples
of 3 × 3 filter kernels estimated by the DKN with/without
the residual connection. Although the sampling positions are
fractional, we plot them on a discrete regular grid using bi-
linear interpolation for the purpose of visualization. Corre-
sponding kernel weights are also interpolated. We observe
three things: (1) The learned kernels are spatially adaptive
and edge-aware. For example, the kernels learned without
the residual connection aggregate depth values that are sim-
ilar to that at the center position. Note that nearby pixels
have lower weights than non-neighboring ones especially at
depth boundaries, as they are blurred in the low-resolution

depth image. This suggests that structural details are also
related to further away pixels. A similar finding is noted in
nonlocal means (Buades et al. 2005). (2) They can handle
the case when the structures from the guidance and target
images are not consistent as shown in the second exam-
ple. (3) The kernels learned with the residual connection are
orientation-selective and look like high-pass filters. For ex-
ample, the kernels from the first and second examples can
extract diagonal and vertical edges, respectively.

6 Conclusion
We have presented a CNN architecture for joint image fil-
tering that is generic and applicable to a great variety of ap-
plications. Instead of regressing the filtering results directly
from the network, we use spatially-variant weighted aver-
ages where the set of neighbors and the corresponding ker-
nel weights are learned end-to-end in a dense and local man-
ner. We have also presented an efficient implementation that
gives much faster runtime than the brute-force one. A fast
version further achieves an additional 17× speed-up with-
out much (if any) loss in performance. Our models general-
ize well to images that have different modalities from the
training dataset, as demonstrated by our experiments. Fi-
nally, we have shown that the weighted averaging process
with sparsely sampled 3 × 3 kernels is sufficient to set new
state-of-the-art results on several tasks. In future work, we
will explore network architectures for sparse-to-dense inter-
polation such as depth completion (Tang et al. 2019) and
optical flow propagation (Revaud et al. 2015).

A Appendix: Efficient implementation

We use the shift-and-stitch approach (Long et al. 2015; Niklaus et al.
2017) that stitches the network outputs from shifted versions of the
input (Fig. 18). We can obtain the same result as the pixel-wise imple-
mentation in 16 forward passes. We first shift input images x pixels
to the left and y pixels up, once for every (x, y) where {(x, y)|0 ≤
x, y ≤ 3}, and obtain a total of 16 shifted inputs. Each shifted in-
put goes through the network that gives the kernel weights K and the
offsets ∆q of size k2 × N/16 and 2k2 × N/16, respectively. The

Deformable Kernel Networks for Joint Image Filtering 19

Shifted input images

(Guidance & target)

Patch sampling with stride

Target image

Filtering result

DKN

Sampler

!

!

StitchingReshape

16

16

16 16

16
16

16

!"($): 	()×+ 16⁄

!:	$%×' 16⁄

!": 	1×' 16⁄

Δ":	2&'×) 16⁄

!"×$ 16⁄
Fig. 18 Efficient implementation using a shift-and-stitch approach. We denote d by the maximum range of the sampling location s(q). We shift
the input images and compute the filtering result for each shifted input. We then stitch them up to get a filtering result that has the same resolution
as the inputs. Our approach makes it possible to reuse the storage for kernel weights, offsets, and resampled pixels. See text for details. (Best
viewed in color.)

next step is to obtain image values fs(q) using the sampling func-
tion s(q) from the target image. To this end, starting from every lo-
cation (x, y) in the target image, we sample patches of size d × d
with stride 4 in each dimension, each of which gives the output of
size d2 × N/16. The patch size corresponds to the maximum range
of the sampling position s(q). For an efficient implementation, we re-
strict the range (e.g., to 15 × 15 in our experiment). We then sample
k2 pixels using the sampling position s(q) from patches of size d× d,
obtaining fs(q) of size k2 ×N/16 for each shifted input. To compute
a weighted average, we apply element-wise multiplication between
the kernel weights K and the corresponding sampled pixels fs(q) of
size k2 ×N/16 followed by column-wise summation, resulting in an
output of size 1×N/16. Finally, we stitch 16 outputs of size 1×N/16
into a single one to get the final output. Note that one can stitch kernel
weights and offsets first and then compute a weighted average, but this
requires a large amount of memory. We stitch instead the outputs after
the weighted average, and reuse the storage for kernel weights, offsets,
and sampled pixels.

Acknowledgements The authors would like to thank Yijun Li for
helpful discussion. This work was supported in part by Samsung Re-
search Funding & Incubation Center for Future Technology (SRFC-
IT1802-06), the Louis Vuitton/ENS chair on artificial intelligence, the
Inria/NYU collaboration agreement, and the French government un-
der management of Agence Nationale de la Recherche as part of the
“Investissements d’avenir” program, reference ANR-19-P3IA-0001
(PRAIRIE 3IA Institute).

References

Bako S, Vogels T, McWilliams B, Meyer M, Novák J, Harvill A, Sen P,
Derose T, Rousselle F (2017) Kernel-predicting convolutional net-
works for denoising Monte Carlo renderings. ACM Trans Graph
36(4):97 3, 4, 5

Barron JT, Poole B (2016) The fast bilateral solver. In: Proc. Eur. Conf.
Comput. Vis. 1, 8, 16

Buades A, Coll B, Morel JM (2005) A non-local algorithm for image
denoising. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 6,
18

Butler DJ, Wulff J, Stanley GB, Black MJ (2012) A naturalistic open
source movie for optical flow evaluation. In: Proc. Eur. Conf.
Comput. Vis. 2, 9, 10, 18

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018)
Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans Pat-
tern Anal Mach Intell 40(4):834–848 14, 15

Choy CB, Gwak J, Savarese S, Chandraker M (2016) Universal corre-
spondence network. In: Adv. Neural Inf. Process. Syst. 3

Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y (2017) Deformable
convolutional networks. In: Proc. Int. Conf. Comput. Vis. 4, 6

Diebel J, Thrun S (2006) An application of Markov random fields to
range sensing. In: Adv. Neural Inf. Process. Syst. 8, 16

Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zis-
serman A (2015) The pascal visual object classes challenge: A
retrospective. Int J Comput Vis 111(1):98–136 14, 15

Farbman Z, Fattal R, Lischinski D, Szeliski R (2008) Edge-preserving
decompositions for multi-scale tone and detail manipulation
27(3):67 2, 3

Ferstl D, Reinbacher C, Ranftl R, Rüther M, Bischof H (2013) Image
guided depth upsampling using anisotropic total generalized vari-
ation. In: Proc. Int. Conf. Comput. Vis. 1, 2, 3, 8, 9, 11, 12, 16

Ferstl D, Rüther M, Bischof H (2015) Variational depth superresolu-
tion using example-based edge representations. In: Proc. Int. Conf.
Comput. Vis. 3

Getreuer P, Garcia-Dorado I, Isidoro J, Choi S, Ong F, Milanfar P
(2018) Blade: Filter learning for general purpose computational
photography. In: Proc. IEEE Conf. Computational Photography 3

Gu S, Zuo W, Guo S, Chen Y, Chen C, Zhang L (2017) Learning
dynamic guidance for depth image enhancement. In: Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. 2, 8, 9

Ham B, Cho M, Schmid C, Ponce J (2016) Proposal flow. In: Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. 1

Ham B, Cho M, Ponce J (2018) Robust guided image filtering us-
ing nonconvex potentials. IEEE Trans Pattern Anal Mach Intell
40(1):192–207 1, 2, 3, 4, 8, 9, 12, 13, 16

20 International Journal of Computer Vision

Hariharan B, Arbelaez P, Bourdev L, Maji S, Malik J (2011) Semantic
contours from inverse detectors. In: Proc. Int. Conf. Comput. Vis.
14

He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern
Anal Mach Intell 35(6):1397–1409 1, 2, 3, 8, 9, 11, 12, 13, 14, 16

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
5, 14

Hirschmuller H, Scharstein D (2007) Evaluation of cost functions
for stereo matching. In: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. 9, 10

Hosni A, Rhemann C, Bleyer M, Rother C, Gelautz M (2013) Fast
cost-volume filtering for visual correspondence and beyond. IEEE
Trans Pattern Anal Mach Intell 35(2):504–511 1

Hui TW, Loy CC, Tang X (2016) Depth map super-resolution by deep
multi-scale guidance. In: Proc. Eur. Conf. Comput. Vis. 2, 3, 8, 9,
10, 11, 12, 16, 17, 18

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: Proc. Int.
Conf. Machine Learning 5

Jaderberg M, Simonyan K, Zisserman A, et al. (2015) Spatial trans-
former networks. In: Adv. Neural Inf. Process. Syst. 3, 6

Jia X, De Brabandere B, Tuytelaars T, Gool LV (2016) Dynamic filter
networks. In: Adv. Neural Inf. Process. Syst. 3, 4

Karacan L, Erdem E, Erdem A (2013) Structure-preserving image
smoothing via region covariances. ACM Trans Graph 32(6):176
1, 13, 14

Kim J, Kwon Lee J, Mu Lee K (2016) Accurate image super-resolution
using very deep convolutional networks. In: Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. 5, 17

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization.
In: Proc. Int. Conf. Learning Representations 10

Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral
upsampling. ACM Trans Graph 26(3):96 1, 2, 3, 8, 11, 12, 16

Krähenbühl P, Koltun V (2011) Efficient inference in fully connected
crfs with gaussian edge potentials. In: Adv. Neural Inf. Process.
Syst. 14, 15

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification
with deep convolutional neural networks. In: Adv. Neural Inf. Pro-
cess. Syst. 2, 5, 10

Levin A, Lischinski D, Weiss Y (2008) A closed-form solution to
natural image matting. IEEE Trans Pattern Anal Mach Intell
30(2):228–242 2

Li Y, Huang JB, Ahuja N, Yang MH (2016) Deep joint image filtering.
In: Proc. Eur. Conf. Comput. Vis. 1, 2, 3, 4, 8, 9, 10, 12, 13, 14,
15, 16, 18

Li Y, Huang JB, Ahuja N, Yang MH (2019) Joint image filtering with
deep convolutional networks. IEEE Trans Pattern Anal Mach Intell
41(8):1909–1923 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17

Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks
for semantic segmentation. In: Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit. 6, 14, 18

Lu S, Ren X, Liu F (2014) Depth enhancement via low-rank matrix
completion. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
9, 10

Margolin R, Zelnik-Manor L, Tal A (2014) How to evaluate foreground
maps? In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 12

Mildenhall B, Barron JT, Chen J, Sharlet D, Ng R, Carroll R (2018)
Burst denoising with kernel prediction networks. In: Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. 3, 4

Niklaus S, Mai L, Liu F (2017) Video frame interpolation via adaptive
convolution. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
3, 4, 5, 6, 18

Odena A, Dumoulin V, Olah C (2016) Deconvolution and checker-
board artifacts. Distill 1(10) 17

Park J, Kim H, Tai YW, Brown MS, Kweon I (2011) High quality
depth map upsampling for 3D-ToF cameras. In: Proc. Int. Conf.
Comput. Vis. 1, 3, 8, 11, 16

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z,
Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation
in PyTorch. In: NIPS-W 10

Revaud J, Weinzaepfel P, Harchaoui Z, Schmid C (2015) EpicFlow:
Edge-preserving interpolation of correspondences for optical flow.
In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp 1164–
1172 18

Riegler G, Ferstl D, Rüther M, Horst B (2016a) A deep primal-dual
network for guided depth super-resolution. In: Proc. British Ma-
chine Vision Conference 3, 11, 12

Riegler G, Rüther M, Horst B (2016b) ATGV-Net: Accurate depth
super-resolution. In: Proc. Eur. Conf. Comput. Vis. 3

Romano Y, Isidoro J, Milanfar P (2017) RAISR: Rapid and accu-
rate image super resolution. IEEE Trans Computational Imaging
3(1):110–125 3

Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional net-
works for biomedical image segmentation. In: Proc. Intl. Conf. on
Medical image computing and computer-assisted intervention 17

Scharstein D, Pal C (2007) Learning conditional random fields for
stereo. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 10

Shen X, Zhou C, Xu L, Jia J (2015) Mutual-structure for joint filtering.
In: Proc. Int. Conf. Comput. Vis. 1

Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D,
Wang Z (2016) Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In: Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. 7

Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmenta-
tion and support inference from rgbd images. In: Proc. Eur. Conf.
Comput. Vis. 8, 9, 10, 11, 12, 16, 17, 18

Simonyan K, Zisserman A (2014) Two-stream convolutional networks
for action recognition in videos. In: Adv. Neural Inf. Process. Syst.
4

Simonyan K, Zisserman A (2015) Very deep convolutional networks
for large-scale image recognition. In: Proc. Int. Conf. Learning
Representations 17

Su H, Jampani V, Sun D, Gallo O, Learned-Miller E, Kautz J (2019)
Pixel-adaptive convolutional neural networks. In: Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. 8, 9, 10, 11, 12, 15, 16,
17

Szeliski R (2006) Locally adapted hierarchical basis preconditioning
25(3):1135–1143 3

Tang J, Tian FP, Feng W, Li J, Tan P (2019) Learning guided
convolutional network for depth completion. arXiv preprint
arXiv:190801238 18

Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color
images. In: Proc. Int. Conf. Comput. Vis. 1, 2, 3

Vogels T, Rousselle F, McWilliams B, Röthlin G, Harvill A, Adler D,
Meyer M, Novák J (2018) Denoising with kernel prediction and
asymmetric loss functions. ACM Trans Graph 37(4):124 3, 4, 5

Wang J, Cohen MF (2007) Optimized color sampling for robust mat-
ting. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 6

Wu H, Zheng S, Zhang J, Huang K (2018) Fast end-to-end trainable
guided filter. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
14, 15

Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via L0 gradient min-
imization 30(6):174 3

Xu L, Yan Q, Xia Y, Jia J (2012) Structure extraction from texture via
relative total variation. ACM Trans Graph 31(6):139 1, 2, 3, 13,
14

Xu L, Ren J, Yan Q, Liao R, Jia J (2015) Deep edge-aware filters. In:
Proc. Int. Conf. Machine Learning 2

Yan Q, Shen X, Xu L, Zhuo S, Zhang X, Shen L, Jia J (2013) Cross-
field joint image restoration via scale map. In: Proc. Int. Conf.

Deformable Kernel Networks for Joint Image Filtering 21

Comput. Vis. 1, 12, 13
Yang C, Zhang L, Lu H, Ruan X, Yang MH (2013) Saliency detection

via graph-based manifold ranking. In: Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. 12

Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via
sparse representation. IEEE Trans Image Process 19(11):2861–
2873 3

Yang Q, Yang R, Davis J, Nistér D (2007) Spatial-depth super resolu-
tion for range images. In: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. 1

Yu F, Koltun V (2016) Multi-scale context aggregation by dilated con-
volutions. In: Proc. Int. Conf. Learning Representations 7, 16

Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaus-
sian denoiser: Residual learning of deep CNN for image denoising.
IEEE Trans Image Process 26(7):3142–3155 5

Zhang Q, Shen X, Xu L, Jia J (2014) Rolling guidance filter. In: Proc.
Eur. Conf. Comput. Vis. 1, 3, 13

Zhang Z (2012) Microsoft Kinect sensor and its effect. IEEE Trans
Multimedia 19(2):4–10 10

Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D,
Huang C, Torr PH (2015) Conditional random fields as recurrent
neural networks. In: Proc. Int. Conf. Comput. Vis. 14

