
HAL Id: hal-01857016
https://hal.science/hal-01857016v3

Preprint submitted on 4 Mar 2019 (v3), last revised 21 Oct 2020 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deformable Kernel Networks for Joint Image Filtering
Beomjun Kim, Jean Ponce, Bumsub Ham

To cite this version:
Beomjun Kim, Jean Ponce, Bumsub Ham. Deformable Kernel Networks for Joint Image Filtering.
2019. �hal-01857016v3�

https://hal.science/hal-01857016v3
https://hal.archives-ouvertes.fr

1

Deformable Kernel Networks for Joint Image
Filtering

Beomjun Kim, Jean Ponce, Fellow, IEEE, Bumsub Ham, Member, IEEE

Abstract—Joint image filters are used to transfer structural details from a guidance picture used as a prior to a target image, in tasks
such as enhancing spatial resolution and suppressing noise. Previous methods based on convolutional neural networks (CNNs)
combine nonlinear activations of spatially-invariant kernels to estimate structural details and regress the filtering result. In this paper,
we instead learn explicitly sparse and spatially-variant kernels. We propose a CNN architecture and its efficient implementation, called
the deformable kernel network (DKN), that outputs sets of neighbors and the corresponding weights adaptively for each pixel. The
filtering result is then computed as a weighted average. We also propose a fast version of DKN that runs about fifteen times faster for
an image of size 640 × 480. We demonstrate the effectiveness and flexibility of our models on the tasks of depth map upsampling,
saliency map upsampling, cross-modality image restoration, texture removal, and semantic segmentation. In particular, we show that
the weighted averaging process with sparsely sampled 3 × 3 kernels outperforms the state of the art by a significant margin.

Index Terms—Joint filtering, convolutional neural networks, depth map upsampling, cross-modality image restoration, texture removal,
semantic segmentation

F

1 INTRODUCTION

Image filtering with a guidance signal, a process called guided
or joint filtering, has been used in a variety of computer vision
and graphics tasks, including depth map upsampling [1], [2],
[3], [4], [5], [6], cross-modality image restoration [7], [8], [9],
texture removal [6], [10], [11], [12], scale-space filtering [6], dense
correspondence [13], [14] and semantic segmentation [15]. For
example, high-resolution color images can be used as guidance
to enhance the spatial resolution of depth maps [4]. The basic
idea behind joint image filtering is to transfer structural details
from the guidance image to the target one, typically by estimating
spatially-variant kernels from the guidance. Concretely, given the
target image f and the guidance image g, the filtering output f̂ at
position p = (x, y) is expressed as a weighted average [4], [16]:

f̂p =
∑

q∈N (p)

Wpq(f, g)fq, (1)

where we denote byN (p) a set of neighbors (defined on a discrete
regular grid) near the position p. The filter kernel W is a function
of the guidance image g [2], [3], [4], [7], the target image f
itself [11], [16], or both [5], [6], normalized so that∑

q∈N (p)

Wpq(f, g) = 1. (2)

Classical approaches to joint image filtering mainly focus
on designing the filter kernels W and the set of neighbors
N (i.e., sampling locations q). They use hand-crafted kernels
and sets of neighbors without learning. For example, the bilateral
filter [16] uses spatially-variant Gaussian kernels to encode local
structures from the guidance image. The guided filter [7] also
leverages the local structure of the guidance image, but uses

• Beomjun Kim and Bumsub Ham are with the School of Electrical
and Electronic Engineering, Yonsei University, Seoul, Korea. E-mail:
beomjun.kim@yonsei.ac.kr; mimo@yonsei.ac.kr.

• Jean Ponce is with Inria and PSL Research University (CNRS/ENS/INRIA
UMR 8548), Paris, France. E-mail: jean.ponce@inria.fr.

matting Laplacian kernels [19], enabling a constant processing
time. These filters use regularly sampled neighbors for aggregating
pixels, and do not handle inconsistent structures in the guidance
and target images [6]. This causes texture-copying artifacts [3], es-
pecially in the case of data from different sensors. To address this
problem, the SD filter [6] constructs spatially-variant kernels from
both guidance and target images to exploit common structures,
and formulates joint image filtering as an optimization problem.
This type of approaches (e.g., [3], [10], [20]) computes a filtering
output by optimizing an objective function that involves solving
a large linear system. This is equivalent to filtering an image by
an inverse matrix [7], whose rows correspond to a filter kernel,
leveraging global structures in the guidance image. Optimization-
based methods can be considered as implicit weighted-average
filters. Learning-based approaches using convolutional neural net-
works (CNNs) [5], [21], [22] are also becoming increasingly
popular. The networks are trained using large quantities of data,
reflecting natural image priors and often outperforming traditional
methods by large margins. These methods do not use a weighted
averaging process with spatially-variant kernels as in (1). They
combine instead nonlinear activations of spatially-invariant kernels
learned from the networks. That is, they approximate spatially-
variant kernels by mixing the activations of spatially-invariant
ones nonlinearly (e.g., via the ReLU function [23]).

In this paper, we propose to exploit spatially-variant kernels
explicitly to encode the structural details from both guidance
and target images as in classical approaches, but learn the kernel
weights in a completely data-driven way. We also learn the set of
neighbors, building an adaptive and sparse neighborhood system
for each pixel, which may be difficult to design by hand. To im-
plement this idea, we propose a CNN architecture and its efficient
implementation, called a deformable kernel network (DKN), for
learning sampling locations of the neighboring pixels and their
corresponding kernel weights at every pixel. We also propose
a fast version of DKN (FDKN), achieving a 15× speed-up
compared to the plain DKN for an image of size 640×480, while

2

(a) RGB image. (b) Depth image. (c) GF [7]. (d) SDF [6]. (e) DJFR [17]. (f) Ours (DKN).
Fig. 1. Qualitative comparison of the state of the art and our model on depth map upsampling (16×). Given (a) a high-resolution color image and
(b) a low-resolution depth image from the Sintel dataset [18], we upsample the depth image using (c) GF [7], (d) SDF [6], (e) DJFR [17] and (f) our
method. The filtering results for GF and our model are obtained by the weighted average in (1). We use filter kernels W of size 3 × 3 and 17 × 17
in our model and GF, respectively. We can see that our method using sparsely sampled 3 × 3 kernels outperforms GF and even the state of the
art including the optimization-based SDF method [6] and CNN-based one [17]. Note that applying GF with 3 × 3 kernels does not recover fine
details. (Best viewed in color.)

retaining its superior performance. We show that the weighted
averaging process using sparsely sampled 3×3 kernels is sufficient
to obtain a new state of the art in a variety of applications,
including depth map upsampling (Figs. 1 and 7), saliency map
upsampling (Fig. 8), cross-modality image restoration (Fig. 9),
texture removal (Fig. 10), and semantic segmentation (Fig. 11).
Contributions. The main contributions of this paper can be
summarized as follows:
• We introduce a generic model for joint image filtering and its

implementation, the DKN, that computes the set of neighbors
and their corresponding weights adaptively for individual pix-
els (Section 3).
• We propose a fast version of DKN (FDKN) that runs about

fifteen times faster than the DKN while retaining its superior
performance (Section 3).
• We achieve a new state of the art on several tasks, clearly

demonstrating the advantage of our approach to learning both
kernel weights and sampling locations (Section 4). We also
provide an extensive experimental analysis to investigate the in-
fluence of all the components and parameters of our model (Sec-
tion 5).

To encourage comparison and future work, our code and models
are available at our project webpage: https://github.com/jun0kim/
deformablekernelnetwork.

2 RELATED WORK

Here we briefly describe the context of our approach, and review
representative works related to ours.

2.1 Joint image filtering

We categorize joint image filtering into explicit/implicit weighted-
average methods and learning-based ones. First, explicit joint
filters compute the output at each pixel by a weighted average
of neighboring pixels in the target image, where the weights are
estimated from the guidance and/or target image [4], [7], [11].
The bilateral [16] and guided [7] filters are representative methods
that have been successfully adapted to joint image filtering. They
use hand-crafted kernels to transfer fine-grained structures from
the guidance image. It is, however, difficult to manually adapt the
kernels to new tasks, and these methods may transfer erroneous
structures to the target image [5]. Second, implicit weighted-
average methods formulate joint filtering as an optimization prob-
lem, and minimize an objective function that usually involves
fidelity and regularization terms [2], [3], [6], [10], [20], [24]. The
fidelity term encourages the filtering output to be close to the

target image, and the regularization term, typically modeled using
a weighted L2 norm [20], gives the output having a structure
similar to that of the guidance image. Although, unlike explicit
ones, implicit joint filters exploit global structures in the guidance
image, hand-crafted regularizers may not reflect structural priors in
the guidance image. Moreover, optimizing the objective function
involves solving a large linear system, which is time consuming,
even with preconditioning [25] or multigrid methods [20]. Finally,
learning-based methods can further be categorized into dictionary-
and CNN-based approaches. Dictionary-based methods exploit the
relationship between paired target patches (e.g., low- and high-
resolution patches for upsampling), additionally coupled with the
guidance image [26], [27]. In CNN-based methods [5], [21], [22],
an encoder-decoder architecture is used to learn features from
the target and guidance images, and the filtering output is then
regressed directly from the network. Learning-based techniques
require a large number of ground-truth images for training.

Our method borrows from both explicit weighted-average
methods and CNN-based ones. Unlike existing explicit joint
filters [4], [7], [11], that use hand-crafted kernels and neighbors
defined on a fixed regular grid, we leverage CNNs to learn the
set of neighbors and their corresponding weights adaptively. Our
method differs from previous CNN-based ones [5], [21], [22] in
that we learn spatially-variant kernels for each pixel to obtain
filtering results as a weighted average.

2.2 Variants of the spatial transformer [28]

Recent works introduce more flexible and effective CNN architec-
tures. Jaderberg et al. propose a novel learnable module, the spatial
transformer [28], that outputs the parameters of the desired spatial
transformation (e.g., affine or thin plate spline) given a feature
map or an input image. The spatial transformer makes a standard
CNN network for classification invariant to a set of geometric
transformation, but it has a limited capability of handling local
transformations. Choy et al. introduce a convolutional version of
the spatial transformer [29]. They learn local transformation pa-
rameters for normalizing orientation and scale in feature matching.
Most similar to ours are the dynamic filter network [30] and its
variants (the adaptive convolution network [31] and the kernel
prediction networks [32], [33], [34]), where a set of local trans-
formation parameters is generated adaptively conditioned on the
input image. The main differences between our model and these
works are three-fold. First, our network is more general in that it is
not limited to learning spatially-variant kernels, but it also learns
the sampling locations of neighbors. This allows us to aggregate

3

Sampler

Joint Network1

!

Δ#

$%(')

Weighted averageWeight & offset
regression

Feature extraction

$) $*

Weight

Offset

+,×1×1

2+,×1×1

+,×1×1

2+,×1×1 +,×1×1

2+,×1×1

Sampling
neighboring pixels

$0*

G
uidance

Target

-0.12 -0.32 0.17

-0.15 0.16 0.13

-0.16 0.07 0.35

Weight

: Reshape
: Residual connection
: Sigmoid
: Mean subtraction

Fig. 2. The DKN architecture. We learn the kernel weights K and the spatial sampling offsets ∆q from the feature maps of guidance and target
images. To obtain the residual image f̂p−fp, we then compute the weighted average with the kernel weights K and image values fs(q) sampled at
offset locations ∆q from the neighbors ft. Finally, the result is combined with the target image fp to obtain the filtering result f̂p. Our model is fully
convolutional and is learned end-to-end. We denote by } and � element-wise multiplication and dot product, respectively. The reshaping operator
and residual connection are drawn in dotted and dashed lines, respectively. See Table 1 for the detailed description of the network structure. (Best
viewed in color.)

sparse but highly related samples only, enabling an efficient im-
plementation in terms of speed and memory and achieving state-
of-the-art results even with kernels of size 3× 3 on several tasks.
Note that the adaptive convolution and kernel prediction networks
require much larger neighbors (e.g., 21×21 in [32], [34], 41×41
in [31], and 8 × 5 × 5 in [33]). We show that learning sampling
locations of neighbors clearly boosts the performance significantly
compared to learning kernel weights only. Second, our model is
generic and generalizes well to other tasks. It can handle multi-
modal images (e.g., RGB/D images in depth map upsampling and
RGB/cost images in semantic segmentation), and thus is applica-
ble to various tasks including depth and saliency map upsampling,
cross-modality image restoration, texture removal, and semantic
segmentation. In contrast, the adaptive convolution network is
specialized to video frame interpolation, and kernel prediction
networks are applicable to denoising Monte Carlo renderings [32],
[34] or burst denoising [33] only. Finally, our model learns
spatially-variant kernels to compute residual images, not a final
output as in [30], [31], [32], [33], [34], with constraints on weight
regression. This allows to use residual connections for adaptive
convolution and kernel prediction networks, and achieves better
results. Our work is also related to the deformable convolutional
network [35]. The basic idea of deformable convolutions is to
add offsets to the sampling locations defined on a regular grid in
standard CNNs. The deformable convolutional network samples
features directly from learned offsets, but shares the same weights
for different sets of offsets as in standard CNNs. In contrast, we
use spatially-variant weights for each sampling location. Another
difference is that we use the learned offset explicitly to obtain the
final result, while the deformable convolutional network uses it to
compute intermediate feature maps.

3 PROPOSED APPROACH

In this section, we briefly describe our approach to learning
both kernel weights and sampling locations for joint image fil-
tering (Section 3.1), and present a concrete network architec-
ture (Section 3.2) and its efficient implementation using a shift-
and-stitch approach (Section 3.3). We then describe a fast version
of DKN (Section 3.4).

3.1 Overview
Our network mainly consists of two parts (Fig. 2): We first learn
spatially-variant kernel weights and spatial sampling offsets w.r.t
the regular grid. To this end, a two-stream CNN [36], where each
sub-network has the same structure (but different parameters),
takes the guidance and target images to extract feature maps that
are used to estimate the kernel weights and the offsets. We then
compute a weighted average using the learned kernel weights and
sampling locations computed from the offsets to obtain a residual
image. Finally, the filtering result is obtained by combining the
residuals with the target image. Our network is fully convolutional,
does not require fixed-size input images, and it is trained end-to-
end.
Weight and offset learning. It is hard to get supervision directly
for kernel weights and offsets for individual pixels. We instead
train our network with ground-truth target images and learn the
kernel weights and offsets guided by an explicit weighted average.
This is a kind of meta-supervision that specifies how the kernel
weights and offsets behave. In particular, constraints on weight
and offset regression (sigmoid and mean subtraction layers in Fig.
2) guide the learning process. For weight regression, we apply a
sigmoid layer that makes all elements larger than 0 and less than
1. We then subtract the mean value from the output of the sigmoid
layer so that the regressed weights should be similar to high-pass
filter with kernel weights adding to 0. For offset regression, we
do not apply the sigmoid layer since relative offsets (for x, y
positions) from locations on a regular grid can have negative
values.
Residual connection. The main reason behind using a residual
connection is that the filtering result is largely correlated with the
target image, and both share low-frequency content [17], [37],
[38], [39]. Focussing on learning the residuals also accelerates
training speed while achieving better performance. Note that
contrary to [17], [37], [38], [39], we obtain the residuals by a
weighted averaging process with the learned kernels, instead of
estimating them directly from the network output. Empirically,
the kernels learned with the residual connection have the same
characteristics as the high-pass filters widely used to extract
important structures (e.g., object boundaries) from images. Note
also that we can train DKN without the residual connection. In

4

this case, we compute the filtering result as the weighted average
in (1).

3.2 DKN architecture

We design a fully convolutional network to learn the kernel
weights and the sampling offsets for individual pixel. A detailed
description of the network structure is shown in Table 1.
Feature extraction. We adapt a similar architecture in [31] for
feature extraction that consists of 7 convolutional layers. We input
the guidance and target images to each of the sub-networks that
gives a feature map of size 128 × 1 × 1 for a receptive field of
size 51 × 51. We use the ReLU [23] as an activation function.
Batch normalization [40] is used for speeding up training and
regularization. In case of joint upsampling tasks (e.g., depth map
upsampling), we input a high-resolution guidance image (e.g., a
color image) and a low-resolution target image (e.g., a depth map)
upsampled using bicubic interpolation.
Weight regression. For each sub-network, we add a 1 × 1
convolutional layer on top of the feature extraction layer. It gives
a feature map of size k2 × 1× 1, where k is the size of the filter
kernel, which is used to regress the kernel weights. To estimate
the weights, we apply a sigmoid layer to each feature map of
size k2 × 1 × 1, and then combine the outputs by element-wise
multiplication (see Fig. 2). We could use a softmax layer as in [31],
but empirically find that it does not perform as well as the sigmoid
layer. The softmax function encourages the estimated kernel to
have only a few non-zero elements, which is not appropriate
for image filtering. The estimated kernels should be similar to
high-pass filters, with kernel weights adding to 0. To this end,
we subtract the mean value from the combined output of size
k2 × 1 × 1. For our model without a residual connection, we
apply instead L1 normalization to the output of size k2 × 1 × 1.
Since the sigmoid layer makes all elements in the combined output
larger than 0, applying L1 normalization forces the kernel weights
to add to 1 as in (2).
Offset regression. Similar to the weight regression case, we add
a 1 × 1 convolutional layer on top of the feature extraction layer.
The resulting two feature maps of size 2k2 × 1× 1 are combined
by element-wise multiplication. The final output contains relative
offsets (for x, y positions) from locations on a regular grid. In
our implementation, we use 3 × 3 kernels, but the filtering result
is computed by aggregating 9 samples sparsely chosen from a
much larger neighborhood. The two main reasons behind the use
of small-size kernels are that (1) the size of the receptive field and
the reliability of samples are much more important than the total
number of samples aggregated, and (2) this enables an efficient
implementation in terms of speed and memory. A similar finding
is noted in [41], which shows that only high-confidence samples
should be chosen when estimating foreground and background
images in image matting. Note that offset regression is closely
related to nonlocal means [42] in that both select which pixels to
aggregate instead of immediate neighbors. Note also that learning
offsets can be thought of as a generalization of “self-supervised”
correspondence models in stereo matching [43] and optical flow
estimation [44]. For example, in the case of stereo matching, a
model is trained to produce a flow field such that a right image is
reconstructed by a left one according to that flow field. Our model
with filter kernels of size k × k computes k2 correspondences for
each pixel within input images, and also learns the corresponding
weights to produce a filtering output.

(a) (b) (c)
Fig. 3. Illustration of irregular sampling of neighboring pixels using
offsets: (a) regular sampling q on discrete grid; (b) learned offsets ∆q;
(c) deformable sampling locations s(q) with the offsets ∆q. The learned
offsets are fractional and the corresponding pixel values are obtained by
bilinear interpolation.

Weighted average. Given the learned kernel K and sampling
offsets ∆q, we compute the residuals f̂p − fp as a weighted
average:

f̂p = fp +
∑

q∈N (p)

Kps(f, g)fs(q), (3)

where N (p) is a local 3 × 3 window centered at the location
p on a regular grid (Fig. 3(a)). We denote by s(q) the sampling
position computed from the offset ∆q (Fig. 3(b)) of the location
q as follows.

s(q) = q + ∆q. (4)

The sampling position s(q) predicted by the network is irregular
and typically fractional (Fig. 3(c)). We use bilinear interpola-
tion [28] to sample corresponding (sub) pixels fs(q) as

fs(q) =
∑

t∈R(s(q))

G(s, t)ft, (5)

where R(s(q)) enumerates all integer locations in a local 4-
neighborhood system to the fractional position s(q), and G is
a two-dimensional bilinear kernel. We split the kernel G into two
one-dimensional ones [28], [35] as

G(s, t) = g(sx, tx)g(sy, ty), (6)

where g(a, b) = max(0, 1− |a− b|). Note that the residual term
in (3) is exactly the same as the explicit joint filters in (1), but we
aggregate pixels from the sparsely chosen locations s(q) with the
learned kernels K . Note that aggregating pixels from a fractional
grid is not feasible in current joint filters including DJF [17].

When we do not use a residual connection, we compute the
filtering result f̂p directly as a weighted average using the learned
kernels and offsets:

f̂p =
∑

q∈N (p)

Kps(f, g)fs(q). (7)

Loss. We train our model by minimizing the L1 norm of the
difference between the network output f̂ and ground truth f gt

as follows.
L(f gt, f̂) =

∑
p

|f gt
p − f̂p|1. (8)

3.2.1 Efficient implementation
We compute the filtering results for inputs of any size in a
single forward pass, since our network is fully convolutional [45].
The output dimensions are, however, reduced by factor of 4 in
each dimension due to the use of convolutions with multiple
strides to extract features (“DownConv” in Table 1). A pixel-wise
implementation (Fig. 2) prevents this problem, but it requires a

5

TABLE 1
Network architecture details. “BN” and “Res.” denote the batch normalization [40] and residual connection, respectively. We denote by “DownConv”

convolution with stride 2. The inputs of our network are 3-channel guidance and 1-channel target images (denoted by D). For the model without
the residual connection, we use an L1 normalization layer (denoted by “L1 norm.”) instead of subtracting mean values for weight regression.

Feature extraction Weight regression

Type Output Type Output

Input D × 51 × 51 Conv(1 × 1) k2 × 1 × 1

Conv(7 × 7)-BN-ReLU 32 × 45 × 45 Sigmoid k2 × 1 × 1

DownConv(2 × 2)-ReLu 32 × 22 × 22 Mean subtraction or
k2 × 1 × 1Conv(5 × 5)-BN-ReLU 64 × 18 × 18 L1 norm. (w/o Res.)

DownConv(2 × 2)-ReLU 64 × 9 × 9 Offset regression

Conv(5 × 5)-BN-ReLU 128 × 5 × 5 Type Output

Conv(3 × 3)-ReLU 128 × 3 × 3
Conv(1 × 1) 2k2 × 1 × 1Conv(3 × 3)-ReLU 128 × 1 × 1

Shifted input images

(Guidance & target)

Patch sampling with stride

Target image

Filtering result

DKN

Sampler

!

!

StitchingReshape

16

16

16 16

16
16

16

!"($): 	()×+ 16⁄

!:	$%×' 16⁄

!": 	1×' 16⁄

Δ":	2&'×) 16⁄

!"×$ 16⁄
Fig. 4. Efficient implementation using a shift-and-stitch approach. We denote d by the maximum range of the sampling location s(q). We shift the
input images and compute the filtering result for each shifted input. We then stitch them up to get a filtering result that has the same resolution as
the inputs. Our approach makes it possible to reuse the storage for kernel weights, offsets, and resampled pixels. See text for details. (Best viewed
in color.)

total of N forward passes in case of an image of size N(= HW)
pixels, where H and W are height and width, respectively.

We use instead the shift-and-stitch approach [31], [45] that
stitches the network outputs from shifted versions of the in-
put (Fig. 4). We can obtain the same result as the pixel-wise
implementation in 16 forward passes. We first shift input images
x pixels to the left and y pixels up, once for every (x, y) where
{(x, y)|0 ≤ x, y ≤ 3}, and obtain a total of 16 shifted inputs.
Each shifted input goes through the network that gives the kernel
weightsK and the offsets ∆q of size k2×N/16 and 2k2×N/16,
respectively. The next step is to obtain image values fs(q) using
the sampling function s(q) from the target image. To this end,
starting from every location (x, y) in the target image, we sample
patches of size d×dwith stride 4 in each dimension, each of which
gives the output of size d2×N/16. The patch size corresponds to
the maximum range of the sampling position s(q). For an efficient
implementation, we restrict the range (e.g., to 15×15 in our exper-
iment). We then sample k2 pixels using the sampling position s(q)
from patches of size d× d, obtaining fs(q) of size k2×N/16 for
each shifted input. To compute a weighted average, we apply
element-wise multiplication between the kernel weightsK and the
corresponding sampled pixels fs(q) of size k2×N/16 followed by
column-wise summation, resulting in an output of size 1×N/16.

Finally, we stitch 16 outputs of size 1 × N/16 into a single one
to get the final output. Note that one can stitch kernel weights and
offsets first and then compute a weighted average, but this requires
a large amount of memory. We stitch instead the outputs after the
weighted average, and reuse the storage for kernel weights, offsets,
and sampled pixels.

3.3 FDKN architecture
We now present a fast version of DKN (FDKN) that achieves a
15× speed-up over the DKN for an image of size 640×480 while
retaining the same level of quality (Fig. 5). The basic idea is to
remove DownConv layers while maintaining the same receptive
field size as the DKN, making it possible to obtain the filtering
output in a single forward pass. Simply removing these layers
leads to an increase in the total number of convolutions (see
Section 6). We instead leverage resampling [46] (Fig. 6) that en-
ables covering large receptive fields using small-size convolutions
compared to the DKN. This also reduces the total number of net-
work parameters to estimate. Particularly, we resample guidance
and interpolated target images separately with stride 4 in each
channel, and obtain resampled ones of size H/4 ×W/4 × 16C
and H/4 ×W/4 × 16, respectively, where C is the number of
channels. This has an effect of enlarging receptive fields by factor
of 4 in each dimension. We may use dilated convolutions [47]

6

12

𝐻/4 × 𝑊/4 × 16𝐶
𝐻/4 × 𝑊/4 × 16𝑘2

𝐻/4 × 𝑊/4 × 32𝑘2

𝐻 × 𝑊 × 𝐶

𝐻 × 𝑊 × 1 H/4 × 𝑊/4 × 16

Weighted
average

G
uidance

Target

Weight & offset regressionFeature extraction: Stitching
: Resampling

: Residual connection
: Sigmoid
: Mean subtraction

Fig. 5. The FDKN architecture. We resample a guidance image of size H × W × C with stride 4 in each dimension (Fig. 6), where H, W and C
are height, width and the number of channels, respectively. This gives resampled guidance images of size H/4 × W/4 × 16C. The target image
is also resampled to the size of H/4 × W/4 × 16. This allows the FDKN to maintain a receptive field size comparable with the DKN. The FDKN
inputs resampled guidance and target images, and then computes the kernel weight and offset locations of size H ×W × k2 and H ×W × 2k2,
respectively, making it possible to get filtering results in a single forward pass without loss of resolution. Finally, the residuals computed by the
weighted average and the target image are combined to obtain the filtering result. See Table 2 for the detailed description of the network structure.
(Best viewed in color.)

TABLE 2
FDKN architecture details. The inputs of FDKN are 16C-channel guidance and 16-channel target images (denoted by D). Note that the receptive

field of size 13 × 13 in the resampled images is comparable to that of size 51 × 51 in the DKN.

Feature extraction Weight regression

Type Output Type Output

Input D × 13 × 13 Conv(1 × 1) 16k2 × 1 × 1

Conv(3 × 3)-BN-ReLU 32 × 11 × 11 Sigmoid 16k2 × 1 × 1

Conv(3 × 3)-ReLU 32 × 9 × 9 Mean subtraction or
16k2 × 1 × 1Conv(3 × 3)-BN-ReLU 64 × 7 × 7 L1 norm. (w/o Res.)

Conv(3 × 3)-ReLU 64 × 5 × 5 Offset regression

Conv(3 × 3)-BN-ReLU 128 × 3 × 3 Type Output

Conv(3 × 3)-ReLU 128 × 1 × 1 Conv(1 × 1) 32k2 × 1 × 1

Resampling

!/#	×	&/#	×	#'

!/#	×	&/#	×	#'!	×	$	×	1

Fig. 6. Illustration of resampling. An image of size H×W×1 is reshaped
with stride r in each dimension, resulting a resampled one of size H/r×
W/r × r2.

that support large receptive fields without loss of resolution,
but empirically find that runtime gain is marginal (see Section
6). The FDKN takes as inputs resampled guidance and target
images, and extracts features for weight and offset regression by 6
convolutional layers of size 3×3, which maintains a receptive field
size comparable with the DKN. Different from the DKN, FDKN
regresses kernel weights and offsets for all pixels simultaneously,
allowing to obtain the filtering output in a single forward pass.
After estimating weights and offset locations, we combine the
residuals computed by a weighted average with the interpolated
target image. We show in Table 2 the detailed description of the

network structure.

4 EXPERIMENTS

In this section we present a detailed analysis and evaluation of
our approach. We describe implementation details including our
experimental protocol and training/testing setups (Section 4.1). We
then apply our models to the tasks of joint depth or saliency image
upsampling (Section 4.2), cross-modality image restoration and
texture removal1 (Section 4.3) and semantic segmentation (Sec-
tion 4.4), and compare them to the state of the art in each case.
The results for all comparisons have been obtained from the source
code provided by the authors.

4.1 Experimental details
4.1.1 Joint image upsampling and noise removal
Following the experimental protocol of [5], [17], we train our
models on the tasks of depth map upsampling and depth noise
removal using a large number of RGB/D image pairs, and test
them on depth map upsampling and other joint filtering tasks (e.g.,
cross-modality image restoration) that require selectively transfer-
ring the structural details from the guidance image to the target
one.

1. We only show qualitative results in this task since ground truth is not
available.

7

TABLE 3
Quantitive comparison with the state of the art on depth map upsampling in terms of average RMSE. Numbers in bold indicate the best

performance and underscored ones are the second best.

Datasets Middlebury [48] Lu [49] NYU v2 [50] Sintel [18]

Methods 4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16×

Bicubic Int. 4.44 7.58 11.87 5.07 9.22 14.27 8.16 14.22 22.32 6.54 8.80 12.17
MRF [51] 4.26 7.43 11.80 4.90 9.03 14.19 7.84 13.98 22.20 8.81 11.77 15.75
GF [7] 4.01 7.22 11.70 4.87 8.85 14.09 7.32 13.62 22.03 6.10 8.22 11.22
JBU [4] 2.44 3.81 6.13 2.99 5.06 7.51 4.07 8.29 13.35 5.88 7.63 10.97
TGV [3] 3.39 5.41 12.03 4.48 7.58 17.46 6.98 11.23 28.13 32.01 36.78 43.89
Park [2] 2.82 4.08 7.26 4.09 6.19 10.14 5.21 9.56 18.10 9.28 12.22 16.51
SDF [6] 3.14 5.03 8.83 4.65 7.53 11.52 5.27 12.31 19.24 6.52 7.98 11.36
FBS [15] 2.58 4.19 7.30 3.03 5.77 8.48 4.29 8.94 14.59 11.96 12.29 13.08

DMSG [21] 1.88 3.45 6.28 2.30 4.17 7.22 3.02 5.38 9.17 5.32 7.24 10.11
DJF [5] 2.14 3.77 6.12 2.54 4.71 7.66 3.54 6.20 10.21 5.51 7.52 10.63
DJFR [17] 1.98 3.61 6.07 2.22 4.54 7.48 3.38 5.86 10.11 5.50 7.43 10.48

FDKN w/o Res. 1.12 2.23 4.52 0.85 2.19 5.15 1.88 3.67 7.13 3.38 5.02 7.74
FDKN 1.08 2.17 4.50 0.82 2.10 5.05 1.86 3.58 6.96 3.36 4.96 7.74
DKN w/o Res. 1.26 2.16 4.32 0.99 2.21 5.12 1.66 3.36 6.78 3.36 4.82 7.48
DKN 1.23 2.12 4.24 0.96 2.16 5.11 1.62 3.26 6.51 3.30 4.77 7.59

Training. We sample 1,000 RGB/D image pairs of size 640×480
from the NYU v2 dataset [50]. We use the same image pairs as
in [5], [17] to train the networks. We divide each image in the
1,000 training pairs into two halves of size 320 × 480 due to the
lack of GPU memory, and use the corresponding 2,000 RGB/D
image pairs as training samples. We train different models for joint
image upsampling and other tasks. For joint image upsampling,
the models are trained with a batch size of 1 for 40k iterations,
giving roughly 20 epochs over the training data. We synthesize
low-resolution depth images (4×, 8×, 16×) from ground truth
by bicubic downsampling. The models for depth noise removal
are similarly trained but with 4k iterations under the guidance of
high-resolution RGB images. Noisy depth images are synthesized
by adding Gaussian noise with zero mean and variance of 0.005.
We use the Adam optimizer [52] with β1 = 0.9 and β2 = 0.999.
As learning rate we use 0.001 and divide it by 5 every 10k
iterations. Data augmentation and regularization techniques such
as weight decay and dropout [23] are not used, since 1,000 RGB/D
image pairs from the NYU dataset have proven to be sufficient
to train our models. All networks are trained end-to-end using
PyTorch [53].
Testing. We can obtain filtering results of DKN for inputs of
any size by stitching coarse outputs, which is far more efficient
than a brute-force implementation. Filtering results for FDKN are
obtained in a single pass. The inputs of our network are 3-channel
guidance and 1-channel target images. In case of a 1-channel
guidance image (e.g., RGB/NIR image restoration), we create a 3-
channel image by duplicating the single channel three times. For
multi-channel target images (e.g., in texture removal), we apply
our model separately in each channel and combine the outputs.
4.1.2 Semantic segmentation
Following the experimental protocol of [54], we plug FDKN
in DeepLab-v2 [55], which uses ResNet-101 [38] pretrained
for ImageNet classification, as a part of CNNs for semantic
segmentation2, instead of applying a fully connected conditional
random field (CRF) [56] to refine segmentation results. That is, we
integrate DeepLab-v2 and our model and train the whole network
end-to-end, avoiding an offline post-processing using CRFs.

2. We use a PyTorch version available online: https://github.com/isht7/
pytorch-deeplab-resnet

Training. We use the Pascal VOC 2012 dataset [57] that contains
1, 464, 1, 449, and 1, 456 images for training, validation and test,
respectively. Following [54], [55], we augment the training dataset
by the annotations provided by [58], resulting in 10, 582 images,
and use 1, 449 images in the validation set for evaluation. We train
the network using a softmax log loss with a batch size of 1 for 20k
iterations. The SGD optimizer with momentum of 0.9 is used. As
learning rate, we use the scheduling method of [55] with learning
rate of 2.5 × 10−4 and 2.5 × 10−3 for DeepLab-v2 and FDKN,
respectively.
Testing. We upsample 21-channel outputs (20 object classes and
background) of DeepLab-v2 before a softmax layer using a high-
resolution color image. We apply the FDKN separately in each
channel.

4.2 Joint image upsampling experiments

We train different models to upsample depth images for scale
factors 4×, 8×, 16× with RGB/D image pairs from the NYU v2
dataset [50], and apply them to the tasks of depth map and saliency
map upsampling. The inputs to our models are a high-resolution
color image and a low-resolution depth image upsampled using
bicubic interpolation.
Depth map upsampling. We test our models on depth map
upsampling with the following four benchmark datasets. These
datasets feature aligned color and depth images.
• Middlebury dataset [48], [59]: We use the 30 RGB/D image

pairs from the 2001-2006 datasets provided by Lu [49].
• Lu dataset [49]: This provides 6 RGB/D image pairs acquired

by the ASUS Xtion Pro camera [60].
• NYU v2 dataset [50]: It consists of 1,449 RGB/D image pairs

captured with the Microsoft Kinect [61]. We exclude the 1,000
pairs used for training, and use the rest (449 pairs) for evaluation
• Sintel dataset [18]: This dataset provides 1,064 RGB/D image

pairs created from an animated 3D movie. It contains realistic
scenes including fog and motion blur. We use 864 pairs from a
final-pass dataset for testing.

We compare our method with the state of the art in Table 3.
It shows the average root mean squared errors (RMSE) between
upsampling results and ground truth. The results of DJF [5] and its
residual version (DJFR [17]) are obtained by the provided models

8

(a) RGB image. (b) GF [7]. (c) TGV [3]. (d) Park [2]. (e) SDF [6]. (f) DJFR [17]. (g) DKN. (h) FDKN. (i) Ground truth.
Fig. 7. Visual comparison of upsampled depth images (8×). Top to bottom: Each two rows show upsampled images on the NYU v2 [50], Lu [49],
Middlebury [48] and Sintel [18] dataset, respectively. Note that we train our models with the NYU v2 dataset, and do not fine-tune them to other
datasets.

trained with the NYU v2 dataset. DMSG [21] uses the Middlebury
and Sintel datasets for training the network. For fair comparison of
DMSG with other CNN-based methods including ours, we retrain
the DMSG model using the same image pairs from the NYU v2
dataset as in [5], [17]. All other numbers are taken from [5], [17].
From this table, we can see that (1) our models outperform the
state of the art including CNN-based methods [5], [17], [21] by
significant margins in terms of RMSE, even without the residual
connection (DKN w/o Res. and FDKN w/o Res.); (2) they perform
well on both synthetic and real datasets (e.g., the Sintel and NYU
v2 datasets), and generalize well to other images (e.g., on the
Middlebury dataset) outside the training dataset; and (3) FDKN
retains the superior performance of DKN, and even outperforms
DKN for the Lu dataset. Figure 7 shows a visual comparison of
the upsampled depth images (8×). The better ability to extract
common structures from the target and guidance images by our
models here is clearly visible. Specifically, our results show a

TABLE 4
Quantitative comparison on saliency map upsampling in terms of

weighted F-scores [62]. We use 5,168 images from the DUT-OMRON
dataset [63].

Bicubic Int. GF [7] SDF [6] DJFR [17] DKN FDKN

Weighted F-score 0.8860 0.8895 0.8851 0.9248 0.9440 0.9606

sharp depth transition without the texture-copying artifacts. In
contrast, artifacts are clearly visible even in the results of DJFR,
which tends to over-smooth the results and does not recover fine
details. This confirms once more the advantage of using spatially-
variant kernels and an adaptive neighborhood system in joint
image filtering.
Saliency map upsampling. To evaluate the generalization abil-
ity of our models on other tasks, we apply them trained with
the NYU v2 dataset to saliency map upsampling without fine-

9

(a) RGB image. (b) Bicubic Int. (c) GF [7]. (d) SDF [6]. (e) DJFR [17]. (f) DKN. (g) FDKN. (h) Ground truth.
Fig. 8. Visual comparison of saliency map upsampling (8×) on the DUT-OMRON dataset [63].

(a) Guidance. (b) Target. (c) GF [7]. (d) SDF [6]. (e) Yan [9]. (f) DJF [5]. (g) DKN. (h) FDKN.
Fig. 9. Examples of cross-modality noise reduction for (top) flash/non-flash denoising and (bottom) RGB/NIR denoising. Our models preserve
textures while smoothing noise. GF and DJF tend to over-smooth the textures. Artifacts are clearly visible in the results of SDF. The method of [9],
specially designed for this task, gives the best results.

tuning. We downsample saliency maps (×8) in the DUT-OMRON
dataset [63], and then upsample them under the guidance of
high-resolution color images. We show in Table 4 a comparison
of weighted F-measure [62] between upsampled images and the
ground truth. Figure 8 shows examples of the upsampling results
by the state of the art and our models. The results show that our
models outperform others including a CNN-based method [17].

4.3 Other joint filtering experiments
Following [5], [17], we use depth denoising as a proxy task
for cross-modality image restoration and texture removal, since
ground-truth datasets for these tasks are not available. We train
the networks for denoising depth images with RGB/D image pairs
from the NYU v2 dataset [50]. The models are then applied to
the tasks of cross-modality image restoration and texture removal
without fine-tuning. We do not use the residual connection for
noise removal tasks, since we empirically find that it does not
help in this case. For cross-modality image restoration and texture
removal tasks, all previous works (e.g., [5], [7], [9], [17]) we
are aware of for these tasks offer qualitative results only. For
comparison, average RMSE for GF [7], Yan [9], SDF [6], DJF [5],
and DKN on depth noise removal are 5.34, 12.53, 7.56, 2.63, and
2.46, respectively, in the test split of the NYU v2 dataset, showing
that our model again outperforms the others.
Cross-modality image restoration. For flash/non-flash denoising,
we set the flash and non-flash images as guidance and target ones,
respectively. Similarly, we restore the color image guided by the
flash NIR image in RGB/NIR denoising. Examples for flash/non-
flash and RGB/NIR restoration are shown in Fig. 9. Qualitatively,

our models outperform other state-of-the-art methods [5], [6], [7],
and give comparable results to those of Yan [9] that is specially
designed for this task. In particular, they preserve edges while
smoothing noise without artifacts. This demonstrates that our
models trained with RGB/D images can generalize well for others
with different modalities.
Texture removal. We set the textured image itself for guidance
and target, and apply our models repeatedly to remove small-
scale textures. We show examples in Fig. 10. Compared to the
state of the art, our models remove textures without artifacts
while maintaining other high-frequency structures such as image
boundaries and corners. A plausible explanation of why networks
trained for denoising depth images work for texture removal is that
textures can be considered as patterned noise. Repeatedly applying
our networks thus removes them. A similar finding can be found
in [5]. We empirically find that 4 iterations are enough to get
satisfactory results, and use the same number of iterations for all
experiments.

4.4 Semantic segmentation experiments
CNNs commonly use max pooling and downsampling to achieve
invariance, but this degrades localization accuracy especially at
object boundaries [45]. DeepLab [55] overcomes this problem
using probabilistic graphical models. It applies a fully connected
CRF [56] to the response of the final layer of a CNN. Zheng et
al. [64] interpret CRFs as recurrent neural networks which are
then plugged in as a part of a CNN, making it possible to train
the whole network end-to-end. Recently, Wu et al. [54] have
proposed a layer to integrate guided filtering [7] into CNNs.

10

(a) Input image and snippets. (b) RGF [11]. (c) RTV [10]. (d) Cov [12]. (e) SDF [6]. (f) DJF [5]. (g) DKN. (h) FDKN.

Fig. 10. Visual comparison of texture removal for regular (top) and irregular (bottom) textures.

(a) RGB image. (b) Baseline [55]. (c) DenseCRF [56]. (d) DGF [54]. (e) FDKN. (f) Ground truth.
Fig. 11. Visual comparison of semantic segmentation on the validation set of Pascal VOC 2012 benchmark [57]. Compared to the state of the art,
our model shows better ability to improve the localization accuracy of object boundaries and refine incorrectly labeled segments.

Instead of using CRFs [55], [56], [64] or guided image filter-
ing [7], we apply the FDKN to the response of the final layer
of DeepLab v2 [55], before CRFs. Note that FDKN is fully
differentiable and the whole network is trained end-to-end. We
show in Table 5 mean intersection-over-union (IoU) scores for the
validation set in the Pascal VOC 2012 benchmark [57]. To the
baseline method (DeepLab v2 w/o CRF [55]), we add CRF [56],
guided filtering [54], or FDKN layers. This table shows that
our model quantitatively yields better accuracy in terms of mean
IoU than other state-of-the-art methods. Examples of semantic
segmentation are shown in Fig. 11. Our model outperforms other
methods qualitatively as well: It improves the localization of
object boundaries (first row) and refines incorrect labels (second
row).

5 DISCUSSION

In this section, we conduct an ablation analysis on different com-
ponents in our models, and show the effects of different parameters
for depth map upsampling (8×) on the NYU v2 dataset. We also

TABLE 5
Quantitative comparison on semantic segmentation in terms of average

IoU. We use 1,449 images from the validation set in the Pascal
VOC 2012 benchmark [57].

Methods Baseline [55] DenseCRF [56] DGF [54] FDKN

Mean IoU 70.69 71.98 72.96 73.60

discuss other issues including kernel visualization, runtime, and
upscaling factors for training and testing.
Network architecture. We show the average RMSE for five
variants of our models in Table 6. The baseline model learns
kernel weights from the guidance image only. The first row shows
that this baseline already outperforms the state of the art (see
Table 3). From the second row, we can see that our models trained
using the target image only gives better results than the baseline,
indicating that using the guidance image only is not enough to
fully exploit common structures. The third row demonstrates that
constructing kernels from both guidance and target images boosts
performance. For example, the average RMSE of DKN decreases
from 5.92 to 5.03 for the 3 × 3 kernel. We can also see that the

11

TABLE 6
Average RMSE comparison (DKN/FDKN) of different components and size of kernels (from 3 × 3 to 25 × 25). From the third row, we can see that
aggregating pixels from a 15 × 15 window is enough. We thus restrict the maximum range of offset locations to 15 × 15. For example, results for

7 × 7 in the forth row are computed using 49 pixels sparsely sampled from a 15 × 15 window. We omit the results for 15 × 15, 19 × 19 and 25 × 25
kernels, since they are equal to or beyond the maximum range of offset locations.

Weight learning Offset learning Res. 3 × 3 5 × 5 7 × 7 15 × 15 19 × 19 25 × 25
RGB Depth RGB Depth

X 5.92 / 6.05 5.52 / 5.73 5.43 / 5.67 5.59 / 5.74 5.82 / 5.81 6.21 / 5.99
X 5.24 / 5.30 4.36 / 4.47 4.09 / 4.24 4.09 / 4.17 4.11 / 4.18 4.15 / 4.21

X X 5.03 / 5.14 3.90 / 4.16 3.48 / 3.80 3.32 / 3.66 3.33 / 3.66 3.39 / 3.72
X X 5.37 / 5.18 5.38 / 5.09 5.40 / 5.07 – – –
X X X X 3.36 / 3.67 3.32 / 3.65 3.33 / 3.66 – – –
X X X X X 3.26 / 3.58 3.21 / 3.53 3.19 / 3.52 – – –

(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 12. Visual comparison of different networks for depth upsampling (8×) using the kernel of size 3 × 3. (a) RGB image. Results for weight
regression using (b) RGB, (c) depth and (d) RGB and depth images. Results for weight and offset regression using (e) RGB, (f) RGB and depth
images, and (g) RGB and depth images with the residual connection. (h) Ground truth.

TABLE 7
Quantitative comparison of using different number of channels for feature extraction. The results of DKN and FDKN are separated by “/”. We

denote by ni (i = 1, 2) the number of channels in the final two layers for feature extraction. For each network, numbers in bold indicate the best
performance and underscored ones are the second best.

n1 128 256 256 256 256

n2 128 128 256 512 1024

RMSE 3.26 / 3.58 3.22 / 3.51 3.20 / 3.49 3.17 / 3.46 3.15 / 3.42
Runtime (s) 0.17 / 0.01 0.20 / 0.01 0.22 / 0.01 0.27 / 0.02 0.36 / 0.02
Number of parameter (M) 1.1 / 0.6 1.7 / 1.1 2.3 / 1.7 3.5 / 2.9 5.8 / 5.9
Model size (MB) 4.5 / 2.8 6.7 / 4.5 9.0 / 7.3 14.0 / 13.0 23.0 / 24.2

effect of learning kernel weights and offsets from both inputs is
significant, and combining all components including the residual
connection gives the best results. For example, learning the offsets
significantly boosts the performance of DKN from 5.03 to 3.36 for
the 3× 3 kernel, and the residual connection further decreases the
average RMSE to 3.26. Figure 12 shows a visual comparison of
using different networks for depth upsampling. Note that learning
to predict the spatial offsets is important because (1) learning
spatially-variant kernels for individual pixels would be very hard
otherwise, unless using much larger kernels to achieve the same
neighborhood size, which would lead to an inefficient implemen-
tation, and (2) contrary to current architectures including DJF [5]
and DMSG [21], this allows sub-pixel information aggregation.

Kernel size. Table 6 also compares the performances of networks
with different size of kernels. We enlarge the kernel size gradually
from 3 × 3 to 25 × 25 and compute the average RMSE. From
the third row, we observe that the performance improves until
size of 15 × 15. Increasing size further does not give additional
performance gain. This indicates that aggregating pixels from a
15 × 15 window is enough for the task. For offset learning, we
restrict the maximum range of the sampling position to 15×15 for
all experiments. That is, the filtering results from the third to last
rows are computed by aggregating 9, 25 or 49 samples sparsely
chosen from a 15× 15 window. The last row of Table 6 suggests
that our final models also benefit from using more samples. The
RMSE for DKN decreases from 3.26 to 3.19 at the cost of
additional runtime. For comparison, DKN with kernels of size
3×3, 5×5 and 7×7 take 0.17, 0.18 and 0.19 seconds, respectively,

with a Nvidia Titan XP. A 3× 3 size offers a good compromise in
terms of RMSE and runtime and this is when we have used in all
experiments.

Feature channels. In Table 7, we compare the effects of the
number of feature channels in terms of RMSE, runtime, the
number of network parameters, and model size. We use our
DKN and FDKN models including the residual connection and
a fixed size of 3 × 3 kernels. We vary the number of channels
ni (i = 1, 2) in the final two layers for feature extraction (see
Tables 1 and 2). The table shows that using more channels for
feature extraction helps improve performance, but requires more
runtime and a large number of parameters to be learned. For
example, DKN takes twice more time for a (modest) 0.11 RMSE
gain. Consequently, we choose the number of feature channels
n1 = 128 and n2 = 128 for both models.

Kernel visualization. We show in Fig. 13 some examples of 3×3
filter kernels estimated by the DKN with/without the residual
connection. Although the sampling positions are fractional, we
plot them on a discrete regular grid using bilinear interpolation
for the purpose of visualization. Corresponding kernel weights are
also interpolated. We observe three things: (1) The learned kernels
are spatially adaptive and edge-aware. For example, the kernels
learned without the residual connection aggregate depth values
that are similar to that at the center position. (2) They can handle
the case when the structures from the guidance and target images
are not consistent as shown in the second example. (3) The kernels
learned with the residual connection are orientation-selective and
look like high-pass filters. For example, the kernels from the first

12

Fig. 13. Visualization of filter kernels. Top: (From left to right) a RGB image, a low-resolution depth image, and an upsampling result by DKN.
Bottom: (From left to right) Snippets of RGB images, low-resolution depth images, and kernels learned w/o and w/ the residual connection. The
center positions in the RGB and depth images are denoted by red dots. The kernel weights are plotted with a heat map. (Best viewed in color.)

TABLE 8
Runtime comparison for images of size 640 × 480 (NYU v2 dataset).

MRF [51] GF [7] JBU [4] TGV [3] Park [2] SDF [6] FBS [15] DMSG [21] DJFR [17] DKN FDKN
Times (s) 0.69 0.14 0.31 33 18 25 0.37 0.04 0.01 0.17 0.01

10 3 10 2 10 1 100 101 102

Runtime(s)
2

4

6

8

10

12

14

16

RM
SE

MRFGF

JBU

TGV

PARK

SDF

FBS

DMSGDJFR

DKNFDKN

CPU
GPU
Ours

Fig. 14. Runtime and RMSE comparison to the state of the art. Our
models show a good trade-off between runtime and RMSE. They out-
perform other methods by significant margins in terms of RMSE and
shows runtime comparable to DJFR.

TABLE 9
RMSE comparison (DKN/DJFR [17]) of using different upscaling factors

for training and testing on depth map upsampling.

Train/Test 4× 8× 16×

4× 1.62/ 3.34 6.70/10.21 11.24/19.75
8× 3.93/ 9.27 3.26/ 5.86 10.53/15.65
16× 9.04/19.12 8.61/13.43 6.51/10.11

and second examples can extract diagonal and vertical edges,
respectively.
Runtime. Table 8 shows runtime comparisons on the same ma-
chine. We report the runtime for DMSG [21], DJFR [17] and our
models with a Nvidia Titan XP and for other methods with an Intel
i5 3.3 GHz CPU. Our current implementation for DKN takes on
average 0.17 seconds for images of size 640× 480. For compar-
ison, the brute-force implementation takes 720 seconds, requiring
about 4000× more time. DKN is slower than DMSG [21] and
DJFR [17], but yields a significantly better RMSE (Fig. 14 and
Table 3). FDKN runs about 15× faster than the DKN and as fast
as DJFR with significantly higher accuracy.
DownConv for DKN. The DKN without “DownConv” layers
can be implemented in a single forward pass, but requires more
parameters (≈ 0.47M) to maintain the same receptive field size,
with no runtime gain in experiments and a total number of
convolutions increasing from 0.6M to 1M at each pixel. We have
also tried dilated convolutions [65] that support large receptive
fields without loss of resolution. When using the same receptive

(a) RGB image. (b) ×4. (c) ×8. (d) ×16.
Fig. 15. Visual comparison of upsampled depth images for
DJFR [17] (top) and DKN (bottom) when the scale factors for train-
ing (×16) and test (×4,×8,×16) are different.

field size and learnable parameter numbers (≈ 0.5M), even though
the runtime decreases from 0.17 to 0.15 seconds, the average
RMSE for dilated convolutions increases from 3.26 to 4.30 for
depth upsampling (×8) on the NYU v2 dataset, and the storage
requirements are multiplied by 16. FDKN thus appears to be the
preferable alternative.
Upscaling factors for training and testing. Table 9 compares
the average RMSE between DKN and DJFR [17] on the NYU
dataset [50], when the scale factors for training and test are
different. It shows that the performance is degraded for both
methods in this case. This may be handled by a scale augmentation
technique during training [37]. Another observation is that our
model gives a similar result when the scale factor for testing is
smaller than that used for training. For scale factors of ×4, ×8
and ×16, our model trained with factor of ×16 gives the average
RMSE of 9.04, 8.61 and 6.51, respectively, whereas DJFR gives
19.12, 13.43 and 10.11, respectively. This demonstrates that our
model generalizes better over different scale factors. A visual
comparison is shown in Fig. 15.
Kernel prediction vs. direct regression. Our model has sev-
eral advantages over current CNN-based approaches that directly
regress the filtering output. First, the direct regression may overfit
the particular characteristics of training data, especially when
the number of training samples is small. In contrast, weighted
averaging smooths the output and acts as a regularizer, suggesting
that our model is not seriously affected by the number of training
samples. To demonstrate this, we evaluate the average RMSE
performance in Table 10 when varying the size of the training
data. We train the DKN, FDKN and DMSG [21], where the
filtering output is directly regressed from input images, for depth
map upsampling (8×) while gradually increasing the number of
training samples from 10 to 1, 000 in the NYU v2 dataset [50]. We

13

TABLE 10
RMSE comparison by varying the number of training data on depth

map upsampling (8×).

Datasets Methods 10 50 100 200 500 700 1000

NYU v2 [50] DMSG [21] 7.40 6.32 5.97 5.64 5.41 5.35 5.38
FDKN 5.01 4.28 3.98 3.77 3.61 3.60 3.58
DKN 4.73 3.97 3.62 3.33 3.27 3.25 3.26

Sintel [18] DMSG [21] 8.62 8.08 7.65 7.46 7.27 7.21 7.24
FDKN 6.04 5.37 5.16 5.05 4.98 4.98 4.96
DKN 5.79 5.24 5.01 4.85 4.82 4.74 4.77

test them in the same configuration as in Table 3. Table 10 shows
that our models are more robust to the size of training data and
generalize better to other images (e.g., on the Sintel dataset [18])
outside the training dataset than the direct regression approach,
even with more learnable parameters (1.1M for DKN and 0.6M
for FDKN vs. 0.43M for DMSG [21]). In particular, the DKN
trained with only 10 images outperforms the state of the art by
a significant margin for all test datasets (see Table 3). Second,
the kernels learned by direct regression are defined implicitly
and hard to visualize. In contrast, our method learns sparse
kernels (i.e., where to aggregate) explicitly. We can interpret and
visualize why kernels learned by our model give smooth results
while preserving edges (Fig. 13), and this also gives a clue for tun-
ing hyper-parameters. For examples, we can reduce the maximum
range of offset locations (i.e., the size of the filter kernel) and the
number of weights (i.e., the total number of samples to aggregate),
when the weights are concentrated on central parts of the kernels,
and a few of them are highly confident, respectively. Note that
sparsely aggregating sub-pixel information is not feasible for
direct regression approaches (e.g., DMSG [21] and DJF [5]).
Finally, our model can be applied to any tasks requiring an explicit
weighted averaging processing beyond (joint) image filtering, as
confirmed for the task of semantic segmentation in Section 4.4.

6 CONCLUSION

We have presented a CNN architecture for joint image filtering that
is generic and applicable to a great variety of applications. Instead
of regressing the filtering results directly from the network, we
use spatially-variant weighted averages where the set of neighbors
and the corresponding kernel weights are learned end-to-end in
a dense and local manner. We have also presented an efficient
implementation that gives much faster runtime than the brute-force
one. A fast version further achieves an additional 15× speed-up
without much (if any) loss in performance. Our models generalize
well to images that have different modalities from the training
dataset, as demonstrated by our experiments. Finally, we have
shown that the weighted averaging process with sparsely sampled
3 × 3 kernels is sufficient to set new state-of-the-art results on
several tasks.

ACKNOWLEDGMENTS

The authors would like to thank Yijun Li for helpful discussion.
This work was supported in part by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIP) (No. 2017R1C1B2005584), the Louis Vuitton/ENS chair
on artificial intelligence and the NYU/Inria collaboration agree-
ment.

REFERENCES

[1] Q. Yang, R. Yang, J. Davis, and D. Nistér, “Spatial-depth super resolution
for range images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2007.

[2] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. Kweon, “High quality
depth map upsampling for 3D-ToF cameras,” in Proc. Int. Conf. Comput.
Vis., 2011.

[3] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof, “Image
guided depth upsampling using anisotropic total generalized variation,”
in Proc. Int. Conf. Comput. Vis., 2013.

[4] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, “Joint bilateral
upsampling,” ACM Trans. Graph., vol. 26, no. 3, p. 96, 2007.

[5] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep joint image
filtering,” in Proc. Eur. Conf. Comput. Vis., 2016.

[6] B. Ham, M. Cho, and J. Ponce, “Robust guided image filtering using
nonconvex potentials,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40,
no. 1, pp. 192–207, 2018.

[7] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, 2013.

[8] X. Shen, C. Zhou, L. Xu, and J. Jia, “Mutual-structure for joint filtering,”
in Proc. Int. Conf. Comput. Vis., 2015.

[9] Q. Yan, X. Shen, L. Xu, S. Zhuo, X. Zhang, L. Shen, and J. Jia, “Cross-
field joint image restoration via scale map,” in Proc. Int. Conf. Comput.
Vis., 2013.

[10] L. Xu, Q. Yan, Y. Xia, and J. Jia, “Structure extraction from texture via
relative total variation,” ACM Trans. Graph., vol. 31, no. 6, p. 139, 2012.

[11] Q. Zhang, X. Shen, L. Xu, and J. Jia, “Rolling guidance filter,” in Proc.
Eur. Conf. Comput. Vis., 2014.

[12] L. Karacan, E. Erdem, and A. Erdem, “Structure-preserving image
smoothing via region covariances,” ACM Trans. Graph., vol. 32, no. 6,
p. 176, 2013.

[13] B. Ham, M. Cho, C. Schmid, and J. Ponce, “Proposal flow,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016.

[14] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-
volume filtering for visual correspondence and beyond,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 2, pp. 504–511, 2013.

[15] J. T. Barron and B. Poole, “The fast bilateral solver,” in Proc. Eur. Conf.
Comput. Vis., 2016.

[16] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. Int. Conf. Comput. Vis., 1998.

[17] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Joint image filtering with
deep convolutional networks,” arXiv preprint arXiv:1710.04200, 2017.

[18] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open
source movie for optical flow evaluation,” in Proc. Eur. Conf. Comput.
Vis., 2012.

[19] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2,
pp. 228–242, 2008.

[20] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” vol. 27,
no. 3, p. 67, 2008.

[21] T.-W. Hui, C. C. Loy, and X. Tang, “Depth map super-resolution by deep
multi-scale guidance,” in Proc. Eur. Conf. Comput. Vis., 2016.

[22] L. Xu, J. Ren, Q. Yan, R. Liao, and J. Jia, “Deep edge-aware filters,” in
Proc. Int. Conf. Machine Learning, 2015.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Adv. Neural Inf. Process.
Syst., 2012.

[24] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient
minimization,” vol. 30, no. 6, p. 174, 2011.

[25] R. Szeliski, “Locally adapted hierarchical basis preconditioning,” vol. 25,
no. 3, pp. 1135–1143, 2006.

[26] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11, pp.
2861–2873, 2010.

[27] D. Ferstl, M. Ruther, and H. Bischof, “Variational depth superresolution
using example-based edge representations,” in Proc. Int. Conf. Comput.
Vis., 2015.

[28] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Adv. Neural Inf. Process. Syst., 2015.

[29] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker, “Universal
correspondence network,” in Adv. Neural Inf. Process. Syst., 2016.

[30] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter
networks,” in Adv. Neural Inf. Process. Syst., 2016.

[31] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017.

14

[32] S. Bako, T. Vogels, B. McWilliams, M. Meyer, J. Novák, A. Harvill,
P. Sen, T. Derose, and F. Rousselle, “Kernel-predicting convolutional
networks for denoising Monte Carlo renderings,” ACM Trans. Graph.,
vol. 36, no. 4, p. 97, 2017.

[33] B. Mildenhall, J. T. Barron, J. Chen, D. Sharlet, R. Ng, and R. Carroll,
“Burst denoising with kernel prediction networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018.

[34] T. Vogels, F. Rousselle, B. McWilliams, G. Röthlin, A. Harvill, D. Adler,
M. Meyer, and J. Novák, “Denoising with kernel prediction and asym-
metric loss functions,” ACM Trans. Graph., vol. 37, no. 4, p. 124, 2018.

[35] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proc. Int. Conf. Comput. Vis., 2017.

[36] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Adv. Neural Inf. Process. Syst., 2014.

[37] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.

[39] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017.

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. Int. Conf.
Machine Learning, 2015.

[41] J. Wang and M. F. Cohen, “Optimized color sampling for robust matting,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007.

[42] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005.

[43] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monoc-
ular depth estimation with left-right consistency,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017.

[44] J. Y. Jason, A. W. Harley, and K. G. Derpanis, “Back to basics: Unsu-
pervised learning of optical flow via brightness constancy and motion
smoothness,” in Proc. Eur. Conf. Comput. Vis., 2016.

[45] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015.

[46] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016.

[47] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convo-
lutions,” in Proc. Int. Conf. Learning Representations, 2016.

[48] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for
stereo matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2007.

[49] S. Lu, X. Ren, and F. Liu, “Depth enhancement via low-rank matrix
completion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014.

[50] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in Proc. Eur. Conf. Comput.
Vis., 2012.

[51] J. Diebel and S. Thrun, “An application of Markov random fields to range
sensing,” in Adv. Neural Inf. Process. Syst., 2006.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learning Representations, 2015.

[53] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” 2017.

[54] H. Wu, S. Zheng, J. Zhang, and K. Huang, “Fast end-to-end trainable
guided filter,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018.

[55] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, 2018.

[56] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs
with gaussian edge potentials,” in Adv. Neural Inf. Process. Syst., 2011.

[57] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospec-
tive,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, 2015.

[58] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in Proc. Int. Conf. Comput. Vis., 2011.

[59] D. Scharstein and C. Pal, “Learning conditional random fields for stereo,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007.

[60] https://www.asus.com/ae-en/3D-Sensor/Xtion PRO LIVE/.
[61] Z. Zhang, “Microsoft Kinect sensor and its effect,” IEEE Trans. Multi-

media, vol. 19, no. 2, pp. 4–10, 2012.

[62] R. Margolin, L. Zelnik-Manor, and A. Tal, “How to evaluate foreground
maps?” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014.

[63] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, “Saliency detection
via graph-based manifold ranking,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2013.

[64] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du,
C. Huang, and P. H. Torr, “Conditional random fields as recurrent neural
networks,” in Proc. Int. Conf. Comput. Vis., 2015.

[65] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convo-
lutions,” in Proc. Int. Conf. Learning Representations, 2016.

Beomjun Kim is a PhD student of Electrical and Electronic Engineering
at Yonsei University in Seoul, Korea. He received the B.S. degrees in
Computer Science from Yonsei University in 2016. He has received the
Global PhD Fellowship from the National Research Foundation of Korea
(NRF) since 2018. His research interest include computer vision, deep
learning, and joint filtering.

Jean Ponce is a research director at Inria and a visiting researcher
at the NYU Center for Data Science, on leave from École Normale
Supérieure (ENS) / PSL Research University, where he is a professor,
and served as director of the computer science department from 2011
to 2017. Before joining ENS and Inria, Jean Ponce held positions at MIT,
Stanford, and the University of Illinois at Urbana-Champaign, where he
was a full professor until 2005. Jean Ponce is an IEEE Fellow and a
Sr. member of the Institut Universitaire de France. He served as editor-
in-chief for the International Journal of Computer Vision from 2003
to 2008, and chaired the IEEE Conference on Computer Vision and
Pattern Recognition in 1997 and 2000, and the European Conference on
Computer Vision in 2008. Jean Ponce is the recipient of two US patents,
an ERC advanced grant, and the 2016 IEEE CVPR Longuet-Higgins
prize. He is the author of “Computer Vision: A Modern Approach”, a
textbook translated in Chinese, Japanese, and Russian.

Bumsub Ham is an an Assistant Professor of Electrical and Elec-
tronic Engineering at Yonsei University in Seoul, Korea. He received
the B.S. and Ph.D. degrees in Electrical and Electronic Engineering
from Yonsei University in 2008 and 2013, respectively. From 2014 to
2016, he was Post-Doctoral Research Fellow with Willow Team of INRIA
Rocquencourt, École Normale Supérieure de Paris, and Centre National
de la Recherche Scientifique. His research interests include computer
vision, computational photography, and machine learning, in particular,
regularization and matching, both in theory and applications.

