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Deformable Kernel Networks for Joint Image
Filtering

Beomjun Kim1 Jean Ponce2 Bumsub Ham1,?

1Yonsei University 2DI-ENS / WILLOW

Abstract. Joint image filters transfer structural details from a guid-
ance picture used as a prior to a target image, particularly for enhanc-
ing spatial resolution and suppressing noise. Previous methods based
on convolutional neural networks (CNNs) combine nonlinear activations
of spatially-invariant kernels to estimate structural details and regress
the filtering result. In this paper, we learn instead sparse and spatially-
variant kernels explicitly. We propose a CNN architecture, called a de-
formable kernel network (DKN), that outputs sets of neighbors and
their corresponding weights adaptively for each pixel. The filtering re-
sult is then computed as a weighted average. We also propose an effi-
cient implementation that runs about 3000× faster than a brute-force
one for an image of size 640 × 480. We demonstrate the effectiveness
and flexibility of our model on the tasks of depth map upsampling,
saliency map upsampling, cross-modality image restoration, and tex-
ture removal. In particular, we show that the weighted averaging pro-
cess with sparsely sampled 3 × 3 kernels outperforms the state of the
art by a significant margin. Our code and models are available online:
https://github.com/jun0kim/DeformableKernelNetwork

Keywords: Joint filtering, deep convolutional neural networks, depth
map upsampling

1 Introduction

Image filtering with a guidance signal, a process called guided or joint filtering,
has been used in a variety of computer vision and graphics tasks, including depth
map upsampling [1,2,3,4,5,6], cross-modality image restoration [7,8,9], texture
removal [6,10,11,12], scale-space filtering [6], dense correspondence [13,14] and
semantic segmentation [15]. For example, high-resolution color images can be
used as guidance to enhance the spatial resolution of depth maps [4]. The basic
idea behind joint image filtering is to transfer structural details from the guidance
image to the target one, typically by estimating spatially-variant kernels from
the guidance. Concretely, given the target image f and the guidance image g, the
filtering output f̂ at position p = (x, y) is expressed as a weighted average [4,16]:

f̂p =
∑

q∈N (p)

Wpq(f, g)fq. (1)
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(a) RGB image. (b) Depth image. (c) GF [7]. (d) DJFR [17]. (e) Ours.

Fig. 1. Comparison of the state of the art and our model on depth map upsam-
pling (16×). Given (a) a high-resolution color image and (b) a low-resolution depth
image from the Sintel dataset [18], we upsample the depth image using (b) GF [7], (c)
DJFR [17] and (d) our method. The filtering results for GF and our model are obtained
by the weighted average in (1). In this example, we use filter kernels W of size 3× 3 in
both methods. (Best viewed in color.)

Here, we denote by N (p) a set of neighbors (defined on a discrete regular
grid) near the position p. The filter kernel W is a function of the guidance image
g [2,3,4,7], the target image f itself [11,16], or both [5,6], normalized so that∑

q∈N (p)

Wpq(f, g) = 1. (2)

Classical approaches to joint image filtering mainly focus on designing the
filter kernels W and the set of neighbors N (i.e., sampling locations q). They
use hand-crafted kernels and sets of neighbors without learning. For example,
the bilateral filter [16] uses spatially-variant Gaussian kernels to encode local
structures from the guidance image. The guided filter [7] also leverages the lo-
cal structure of the guidance image, but uses matting Laplacian kernels [19],
enabling in constant time. These filters use locally and regularly sampled neigh-
bors for aggregating pixels, and do not handle inconsistent structures in the
guidance and target images [6]. This causes texture-copying artifacts [3], espe-
cially in the case of data from different sensors. To address this problem, the
SD filter [6] constructs the kernel W from both images f and g to exploit com-
mon structures, and formulates joint image filtering as an optimization problem.
This type of approaches (e.g., [3,10,20]) computes a filtering output by solving a
linear system. This is equivalent to implicitly filtering an image by an inverse ma-
trix [7], whose rows correspond to a filter kernel, leveraging global structures in
the guidance image. Optimization-based methods can be considered as implicit
weighted-average filters. Learning-based approaches using convolutional neural
networks (CNNs) [5,21,22] are also becoming increasingly popular. The networks
are trained using large quantities of data, making it possible to reflect natural
image priors and often outperforming traditional methods by large margins.
These methods do not use a weighted averaging process with spatially-variant
kernels as in (1). CNN-based methods combine instead nonlinear activations
of spatially-invariant kernels learned from the networks. That is, they approx-
imates spatially-variant kernels by mixing the activations of spatially-invariant
ones nonlinearly (e.g., via the ReLU function [23]).
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In this paper we propose to exploit spatially-variant kernels explicitly to en-
code the structural details from both guidance and target images as in classical
approaches, but learn the kernel weights in a completely data-driven way. We
also learn the set of neighbors, building an adaptive and sparse neighborhood sys-
tem for each pixel, which may be difficult to design by hand. To implement this
idea, we propose a CNN architecture, called a deformable kernel network (DKN),
for learning sampling locations of the neighboring pixels and their corresponding
kernel weights at every pixel. We also propose an efficient implementation that is
about 3000× faster at test time than a brute-force one for images of size 640×480.
We show that the weighted averaging process using sparsely sampled 3× 3 ker-
nels is sufficient to reach state-of-the-art results in a variety of applications,
including depth map upsampling, saliency map upsampling, cross-modality im-
age restoration and texture removal (Fig. 1). Our code and models are available
online:https://github.com/jun0kim/DeformableKernelNetwork.

Contributions. The main contributions of this paper can be summarized as
follows:

• We introduce a generic and efficient model for joint image filtering, the DKN,
that computes the set of neighbors and their corresponding weights adaptively
for individual pixels.

• We propose its efficient implementation using a shift-and-stitch approach [24,25].
• We achieve a new state of the art on several tasks, clearly demonstrating

the advantage of our approach to learning both kernel weights and sampling
locations.

2 Related work
Here we briefly describe representative approaches related to our work.

Joint image filtering. We categorize joint image filtering into explicit/implicit
weighted-average methods and learning-based ones. First, explicit joint filters
compute the output at each pixel by a weighted average of neighboring pix-
els in the target image, where the weights are estimated from the guidance
and/or target image [4,7,11]. The bilateral filter [16] and guided filter [7] are
representative methods that have been successfully adapted to joint image fil-
tering. They use hand-crafted kernels to transfer fine-grained structures from the
guidance image. It is difficult to manually design the kernels to new tasks, and
these methods may transfer erroneous structures to the target image [5]. Second,
implicit weighted-average methods formulate joint filtering as an optimization
problem, and minimize an objective function that usually involves fidelity and
regularization terms [2,3,6,10,20,26]. The fidelity term encourages the filtering
output to be close to the target image, and the regularization term, typically
modeled using a weighted L2 norm [20], gives the output a structure similar to
that of the guidance image. Although, unlike explicit ones, implicit joint filters
exploit global structures in the guidance image, hand-crafted regularizers may
not reflect structural priors in the guidance image. Moreover, optimizing the
objective function involves solving a large linear system, which is time consum-
ing, even with preconditioning [27] or multigrid methods [20]. Finally, learning-
based methods can further be categorized into dictionary-based and CNN-based

https://github.com/jun0kim/DeformableKernelNetwork
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approaches. Dictionary-based methods exploit the relationship between paired
low-resolution and high-resolution target patches, additionally coupled with the
guidance image [28,29]. In CNN-based methods [5,21,22], an encoder-decoder
architecture is used to learn features from the target and guidance images, and
the filtering output is then regressed directly from the network. Learning-based
methods require a large number of ground-truth images for training.

Our method borrows from both explicit weighted-average methods and CNN-
based ones. Unlike existing explicit joint filters [4,7,11], that use hand-crafted
kernels and neighbors defined on a fixed regular grid, we leverage CNNs to learn
the set of neighbors and their corresponding weights adaptively. Our method
differs from previous CNN-based ones [5,21,22] in that we learn spatially-variant
kernels for each pixel to obtain filtering results as a weighted average.

Variants of the spatial transformer [30]. Recent works introduce more
flexible and effective CNN architectures. Jaderberg et al. propose a novel learn-
able module, the spatial transformer [30], that outputs the parameters of the
desired spatial transformation (e.g., affine and thin plate spline) given a feature
map or an input image. The spatial transformer makes a standard CNN net-
work for classification invariant to a set of geometric transformation, but it has
a limited capability of handling local transformations. Choy et al. introduce a
convolutional version of the spatial transformer [31]. They learn local transfor-
mation parameters for normalizing orientation and scale in feature matching.
Most similar to ours are the dynamic filter network [32] for video prediction and
the adaptive convolution network [25] for video frame interpolation, where a set
of local transformation parameters is generated adaptively conditioned on the
input image. Compared to these works, our network is more general in that it is
not limited to learning spatially-variant kernels, but it also learns the sampling
locations of neighbors. This allows us to achieve state-of-the-art results even with
kernels of size 3× 3 on several tasks. Our work is also related to the deformable
convolutional network [33]. The basic idea of deformable convolutions is to add
offsets to the sampling locations defined on a regular grid in the standard con-
volution. The deformable convolutional network samples features directly from
learned offsets, but shares the same weights for different sets of offsets as in
standard CNNs. Unlike this, we use spatially-variant weights for each sampling
location. Another difference is that we use the learned offset explicitly to obtain
the final result, while the deformable convolutional network uses it to compute
intermediate feature maps.

3 Proposed approach

3.1 Overview

Our network mainly consists of two parts (Fig. 2): We first learn spatially-variant
kernel weights and spatial sampling offsets w.r.t the regular grid. To this end, a
two-stream CNN [34], where each sub-network has the same structure (but dif-
ferent parameters), takes the guidance and target images to extract feature maps
that are used to estimate the kernel weights and the offsets. We then compute
a weighted average using the learned kernel weights and sampling locations to
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Fig. 2. The DKN architecture. Our model learns the kernel weights K and the spatial
sampling offsets ∆q from the feature maps of guidance and target images. To obtain the
residual image f̂p−fp, it then computes the weighted average with the kernel weights K
and image values fs(q) sampled at offset locations ∆q from the neighbors ft. Finally,

the result is combined with the target image fp to obtain the filtering result f̂p. Our
model is fully convolutional and is learned end-to-end. We denote } and � by element-
wise multiplication and dot product, respectively. The reshaping operator and residual
connection are drawn in dotted and dashed lines, respectively. See Table 1 for the
detailed description of the network structure. (Best viewed in color.)

obtain a residual image. The sampling locations are computed from the offsets.
Finally, the filtering result is obtained by combining the residuals with the tar-
get image. Our network is fully convolutional, does not require fixed-size input
images, and it is trained end-to-end.

The main reasons behind using a residual connection are that the filtering
result is largely correlated with the target image, and both share low-frequency
content [17,35,36]. Focussing on learning the residuals also accelerates training
speed while achieving better performance. Note that contrary to [17,35,36], we
obtain the residuals by a weighted averaging process with the learned kernels,
instead of estimating them directly from the network output. Empirically, the
kernels learned with the residual connection have the same characteristics as
the high-pass filters widely used to extract important structures (e.g., object
boundaries) from images. Note also that we can train the DKN without the
residual connection. In this case, we compute the filtering result directly as the
weighted average in (1). In the following sections, we describe each component
of our model and its efficient implementation.

3.2 Network architecture

We design a fully convolutional network to learn the kernel weights and the
sampling offsets for individual pixel. The detailed description of the network
structure is shown in Table 1.

Feature extraction. We input the guidance and target images to each of sub-
networks that consist of 7 convolutional layers. The sub-network gives a feature
map of size 128×1×1 for the receptive field of size 51×51. We use the ReLU [23]
as an activation function and batch normalization [37] for regularization.
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Table 1. Network architecture details. “BN” and “Res.” denote the batch normaliza-
tion [37] and residual connection, respectively. We denote by “DownConv” convolution
with stride 2. The inputs of our network are 3-channel guidance and 1-channel target
images (denoted by C). For the model without the residual connection, we use an L1
normalization layer (denoted by “L1 norm.”) instead of subtracting mean values for
weight regression.

Feature extraction Weight regression

Type Output Type Output

Input C × 51× 51 Conv(1× 1) k2 × 1× 1

Conv(7× 7)-BN-ReLU 32× 45× 45 Sigmoid k2 × 1× 1

DownConv(2× 2) 32× 22× 22 Mean subtraction or
k2 × 1× 1

Conv(5× 5)-BN-ReLU 64× 18× 18 L1 norm. (w/o Res.)

DownConv(2× 2)-ReLU 64× 9× 9 Offset regression

Conv(5× 5)-BN-ReLU 128× 5× 5 Type Output

Conv(3× 3)-ReLU 128× 3× 3
Conv(1× 1) 2k2 × 1× 1

Conv(3× 3)-ReLU 128× 1× 1

Weight regression. For each sub-network, we add a 1× 1 convolutional layer
on top of the feature extraction layer. It gives a feature map of size k2 × 1 ×
1, where k is the size of the filter kernel, which is used to regress the kernel
weights. To estimate the weights, we apply a sigmoid layer to each feature map of
size k2×1×1, and then combine the outputs by element-wise multiplication (see
Fig. 2). We could use a softmax layer as in [25], but empirically find that it does
not perform as well as the sigmoid layer. The softmax function encourages the
estimated kernel to have only a few non-zero elements, which is not appropriate
for image filtering. The estimated kernels should be similar to high-pass filters,
with the kernel weights adding to 0. To this end, we subtract the mean value
from the combined output of size k2 × 1 × 1. For our model without residual
connection, we apply instead L1 normalization to the output of size k2× 1× 11,
forcing the kernel weights to add to 1 as in (2).

Offset regression. Similar to the weight regression case, we add a 1 × 1 con-
volutional layer on top of the feature extraction layer. The resulting two feature
maps of size 2k2 × 1× 1 are combined by element-wise multiplication. The final
output contains relative offsets (for x, y positions) from locations on a regular
grid. In our implementation, we use 3× 3 kernels. That is, the filtering result is
computed by aggregating 9 samples sparsely chosen from a large neighborhood.
The two main reasons behind the use of small-size kernels are that (1) the size of
the receptive field and the reliability of samples are much more important than
the total number of samples aggregated, and (2) this enables an efficient imple-
mentation in terms of speed and memory. A similar finding has been observed
in [38], which shows that only high-confidence samples should be chosen when
estimating foreground and background images in image matting. Note that off-
set regression is closely related to nonlocal means [39] in that both select which
pixels to aggregate instead of the immediate ones.
1 All elements in the combined output are larger than 0.
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(a) (b) (c)

Fig. 3. Illustration of irregular sampling of neighboring pixels using offsets: (a) regular
sampling q on discrete grid; (b) learned offsets ∆q; (c) deformable sampling loca-
tions s(q) with the offsets ∆q. The learned offsets are fractional and the corresponding
pixel values are obtained by bilinear interpolation.

Filtering. Given the learned kernel K and sampling offsets ∆q, we compute
the residuals f̂p−fp as a weighted average followed by adding the target image:

f̂p = fp +
∑

q∈N (p)

Kps(f, g)fs(q), (3)

Here, we define N (p) as a local 3 × 3 window centered at the location p on
a regular grid (Fig. 3(a)). We denote by s(q) the sampling position computed
from the offset ∆q (Fig. 3(b)) of the location q as follows.

s(q) = q +∆q. (4)

The sampling position s(q) predicted by the network is irregular and typically
fractional (Fig. 3(c)). We use bilinear interpolation [30] to sample corresponding
(sub-)pixels fs(q) as

fs(q) =
∑

t∈R(s(q))

G(s, t)ft, (5)

where R(s(q)) enumerates all integer locations in a local 4-neighborhood system
to the fractional position s(q), and G is a two-dimensional bilinear kernel. We
split the kernel G into two one-dimensional ones [30,33] as

G(s, t) = g(sx, tx)g(sy, ty), (6)

where g(a, b) = max(0, 1− |a− b|). Note that the residual term in (3) is exactly
the same as the explicit joint filters in (1), but we aggregate pixels from the
sparsely chosen locations s(q) with the learned kernels K.

When we do not use a residual connection, we compute the filtering result f̂p
directly as a weighted average using the learned kernels and offsets:

f̂p =
∑

q∈N (p)

Kps(f, g)fs(q). (7)

Loss. We train our model by minimizing L1 norm of the difference between the
network output f̂ and ground truth fgt as follows.

L(fgt, f̂) =
∑
p

|fgt
p − f̂p|1. (8)
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Fig. 4. Efficient implementation using a shift-and-stitch approach. We shift the input
images and compute the results through the network. We then stitch them up to get
a filtering result that has the same resolution as the inputs. Our approach makes it
possible to reuse the storage for kernel weights, offsets, and resampled pixels. See text
for details. We denote d by the maximum range of the sampling location s(q). (Best
viewed in color.)

3.3 Efficient implementation

We compute the filtering results for inputs of any size in a single forward pass,
since our network is fully convolutional [24]. The output dimensions are, how-
ever, reduced by factor of 4 in each dimension due to the use of convolutions with
multiple strides to extract features (“DownConv” in Table 1). A pixel-wise im-
plementation (Fig. 2) prevents this problem, but it requires a total of N forward
passes in case of an image of size N pixels.

We use instead the shift-and-stitch approach [24,25] that stitches the network
outputs from shifted versions of the input (Fig. 4). We can obtain the same
result as the pixel-wise implementation in 16 forward passes. We first shift input
images x pixels to the left and y pixels up, once for every (x, y) where {(x, y)|0 ≤
x, y ≤ 3}, and obtain total 16 shifted inputs. Each shifted input goes through the
network that gives the kernel weights K and the offsets ∆q of size k2×N/16 and
2k2 × N/16, respectively. A next step is to obtain image values fs(q) using the
sampling function s(q) from the target image. To this end, starting from every
location (x, y) in the target image, we sample patches of size d× d with stride 4
in each dimension, each of which gives the output of size d2 ×N/16. The size of
patches corresponds to the maximum range of the sampling position s(q). For an
efficient implementation, we restrict the range (e.g., to 15×15 in our experiment).
We then sample k2 pixels by the sampling position s(q) from the patches of
size d× d, obtaining fs(q) of size k2 ×N/16 for each shifted input. To compute
a weighted average, we apply element-wise multiplication between the kernel
weights K and the corresponding sampled pixels fs(q) of size k2×N/16 followed
by column-wise summation, resulting in an output of size 1×N/16. Finally, we
stitch 16 outputs of size 1×N/16 into a single one to get the final output. Note
that one can stitch kernel weights and offsets first and then compute a weighted
average. This requires a large amount of memory. We stitch instead the outputs
after the weighted average, and reuse the storage for kernel weights, offsets, and
resampled pixels.
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4 Experiments

We apply our model to the tasks of joint image upsampling (depth map upsam-
pling and saliency map upsampling) and noise removal (cross-modality image
restoration and texture removal), and compare it to the state of the art in each
case. For noise removal, we can only show qualitative comparisons as quanti-
tative ground truth is not available. The results for the comparison have been
obtained from the source code provided by the authors. Our code and models
will be made publicly available at the time of publication. More results can be
found in the supplementary material.

4.1 Implementation details

Following the experimental protocol in [5,17], we train our models using a large
number of RGB/D image pairs, and test them to depth map upsampling and
other joint filtering tasks (e.g., cross-modality image restoration) that require
selectively transferring the structural details from the guidance image to the
target one.

Training. We sample 1,000 RGB/D image pairs of size 640 × 480 from the
NYU v2 dataset [40]. We use the same image pairs as in [5,17] to train the
networks. We divide each image in the 1,000 training pairs into two halves of
size 320×480 due to the lack of GPU memory, and use total 2,000 RGB/D image
pairs as training samples. We train different models for joint image upsampling
and noise removal. For joint image upsampling, the models are trained with a
batch size of 1 for 40k iterations, giving roughly 20 epochs over the training data.
We synthesize low-resolution depth images (4×, 8×, 16×) from ground truth by
bicubic downsampling. The models for noise removal are similarly trained but
with 4k iterations. Noisy depth images are synthesized by adding the Gaussian
noise with zero mean and variance of 0.005. We use the Adam optimizer [41]
with β1 = 0.9 and β2 = 0.999. As learning rate we use 0.001 and divide it by 5
every 10k iterations. Regularization techniques such as weight decay, dropout,
and data augmentation are not used as the training dataset is sufficiently large
to train our models. All networks are trained end-to-end using PyTorch [42].

Testing. We can obtain filtering results for inputs of any size by stitching
coarse outputs, which is far more efficient than a brute-force implementation.
The inputs of our network are 3-channel guidance and 1-channel target images. In
case of a 1-channel guidance image (e.g., RGB/NIR image restoration), we create
a 3-channel image by duplicating the single channel three times. For a multi-
channel target image (e.g., texture removal), we apply our model separately in
each channel and combine the outputs.

4.2 Joint image upsampling

We train different models to upsample depth images for scale factors (4×, 8×,
16×) with RGB/D image pairs from the NYU v2 dataset [40], and apply them to
the tasks of depth map and saliency map upsampling. The inputs to our models
are a high-resolution color image and a low-resolution depth image upsampled
using bicubic interpolation.
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Table 2. Quantitive comparison with the state of the art on depth map upsampling in
terms of average RMSE. All numbers except for the Sintel dataset are taken from [5,17].
Numbers in bold indicate the best performance and underscored ones are the second
best.

Datasets Middlebury [43] Lu [44] NYU v2 [40] Sintel [18]

Methods 4× 8× 16× 4× 8× 16× 4× 8× 16× 4× 8× 16×

Bicubic Int. 4.44 7.58 11.87 5.07 9.22 14.27 8.16 14.22 22.32 6.54 8.80 12.17
MRF [45] 4.26 7.43 11.80 4.90 9.03 14.19 7.84 13.98 22.20 8.81 11.77 15.75
GF [7] 4.01 7.22 11.70 4.87 8.85 14.09 7.32 13.62 22.03 6.10 8.22 11.22
JBU [4] 2.44 3.81 6.13 2.99 5.06 7.51 4.07 8.29 13.35 5.88 7.63 10.97
TGV [3] 3.39 5.41 12.03 4.48 7.58 17.46 6.98 11.23 28.13 32.01 36.78 43.89
Park [2] 2.82 4.08 7.26 4.09 6.19 10.14 5.21 9.56 18.10 9.28 12.22 16.51
SDF [6] 3.14 5.03 8.83 4.65 7.53 11.52 5.27 12.31 19.24 6.52 7.98 11.36
FBS [15] 2.58 4.19 7.30 3.03 5.77 8.48 4.29 8.94 14.59 11.96 12.29 13.08

DMSG [21] 1.88 3.50 6.28 2.30 4.14 7.22 3.02 5.40 9.17 5.32 7.23 10.11
DJF [5] 2.14 3.77 6.12 2.54 4.71 7.66 3.54 6.20 10.21 5.51 7.52 10.63
DJFR [17] 1.98 3.61 6.07 2.22 4.54 7.48 3.38 5.86 10.11 5.50 7.43 10.48

Ours w/o Res. 1.26 2.16 4.32 0.99 2.21 5.12 1.66 3.36 6.78 3.36 4.82 7.47
Ours 1.23 2.12 4.24 0.96 2.16 5.11 1.62 3.26 6.51 3.30 4.77 7.58

Depth map upsampling. We test our models on depth map upsampling with
the following four benchmark datasets. These datasets feature aligned color and
depth images.

• Middlebury dataset [43,46]: We use the 30 RGB/D image pairs from 2001-2006
datasets provided by Lu [44].

• Lu dataset [44]: This provides 6 RGB/D image pairs acquired by the ASUS
Xtion Pro camera [47].

• NYU v2 dataset [40]: It consists of 1,449 RGB/D image pairs captured with
the Microsoft Kinect [48]. We exclude the 1,000 pairs used for training, and
use the rest (449 pairs) for evaluation.

• Sintel dataset [18]: This dataset provides 1,064 RGB/D image pairs created
from an animated 3D movie. It contains realistic scenes including fog and
motion blur. We use 864 pairs from a final-pass dataset for testing.

We compare our method with the state of the art in Table 2. It shows the av-
erage root mean squared errors (RMSE) between upsampling results and ground
truth. All numbers except those for the Sintel dataset are taken from [5,17]. For
the Sintel dataset, the results of DJF [5] and its residual version (DJFR [17]) are
obtained by the provided models trained with the NYU v2 dataset. From this
table, we can see that (1) our models outperform the state of the art including
CNN-based methods [5,17,21] by significant margins in terms of RMSE, even
without the residual connection (Ours w/o Res.), and (2) they perform well on
both synthetic and real datasets (e.g., the Sintel and NYU v2 datasets), and
generalize well for other images (e.g., in the Middlebury dataset) outside the
training dataset. The direct comparison of DMSG [21] with DJF, DJFR, and
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RGB image. GF [7]. JBU [4]. TGV [3]. Park [2]. DJFR [17]. Ours. GT.

Fig. 5. Visual comparison of upsampled depth images (8×) on the NYU v2 dataset.

Table 3. Quantitative comparison on saliency map upsampling in terms of weighted
F-score. We use 5,168 images from the DUT-OMRON dataset [49].

HR Bicubic Int. GF [7] SDF [6] DJFR [17] Ours

Weighted F-score 0.386 0.371 0.370 0.371 0.378 0.380

ours may not be fair, since DMSG uses the Middlebury and Sintel datasets for
training the network. Nevertheless, our models perform better for scale factors
×8 and ×16 in the Middlebury dataset. DMSG [21] does not generalize for the
real dataset.

Figure 5 shows a visual comparison of the upsampled depth images (8×) on
the NYU v2 dataset. The better ability to extract common structures from the
target and guidance images by our model here is clearly visible. Specifically, our
results show a sharp depth transition without the texture-copying artifacts. In
contrast, the artifacts are clearly visible even from the results of DJFR. DJFR
tends to over-smooth the results and does not recover fine details. This veri-
fies once more the advantage of using spatially-variant kernels and an adaptive
neighborhood system in joint image filtering.

Saliency map upsampling. We set the saliency map computed by the mani-
fold method [49] on the downsampled (8×) image in the DUT-OMRON dataset [49]
as target. The low-resolution saliency map is then upsampled under the guidance
of the original image. We show in Table 3 a comparison of weighted F-scores [50]
between upsampled saliency maps and the ground truth. Figure 6 shows exam-
ples of the upsampling results by the state of the art and our model. The results
show that our model outperforms others including a CNN-based one [17].
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RGB image. Bicubic Int. GF [7]. SDF [6]. DJFR [17]. Ours.

Fig. 6. Visual comparison of saliency map upsampling (8×) on the DUT-OMRON
dataset [49].

Guidance. Target. GF [7]. SDF [6]. Yan [9]. DJF [5]. Ours.

Fig. 7. Examples of cross-modality noise reduction for (top) flash/non-flash denoising
and (bottom) RGB/NIR denoising.

4.3 Noise removal
We train a model for denoising depth images with RGB/D image pairs from the
NYU v2 dataset [40]. We do not use the residual connection, since we empirically
find that it does not help in this case. The model is applied to the tasks of cross-
modality image restoration and texture removal without fine-tuning.

Cross-modality image restoration. For flash/non-flash denoising, we set the
flash and non-flash images as guidance and target ones, respectively. Similarly,
we restore the color image guided by the flash NIR image in RGB/NIR denois-
ing. Examples on flash/non-flash and RGB/NIR restoration are shown in Fig. 7
qualitatively. Our model outperforms other state-of-the-art methods [5,6,7], and
give comparable results to those of Yan [9] that is specially designed for this task.
In particular, it can preserve edges while smoothing noise without artifacts. This
demonstrates that our model trained with RGB/D images can generalize well
for other ones that have different modalities.

Texture removal. We set the textured image itself as guidance and target
ones, and apply our model repeatedly to remove small-scale textures. We show
examples of texture removal in Fig. 8. Compared to the state of the art, our
model removes textures without artifacts while maintaining other high-frequency
structures such as image boundaries and corners.

4.4 Ablation study

In this section, we conduct an ablation analysis on different components and
parameters in our model. We report the results for depth map upsampling (8×)
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Input image and snippets. RGF [11]. RTV [10]. Cov [12]. SDF [6]. DJF [5]. Ours.

Fig. 8. Visual comparison of texture removal for regular (top) and irregular (bottom)
textures.

Table 4. RMSE comparison of different networks.

Weight learning Offset learning
Res. 3 × 3 5 × 5 7 × 7 15 × 15 19 × 19 25 × 25

RGB Depth RGB Depth

X 5.92 5.52 5.43 5.59 5.82 6.21
X 5.24 4.36 4.09 4.09 4.11 4.15

X X 5.03 3.90 3.48 3.32 3.33 3.39
X X 5.37 5.38 5.40 – – –
X X X X 3.36 3.32 3.33 – – –
X X X X X 3.26 3.21 3.19 – – –

on the NYU v2 dataset. An ablation study on the number of feature channels
can be found in the supplementary material.

Network architecture. We show the average RMSE for five variants of our
model in Table 4. The baseline model learns kernel weights from the guidance
image only. The first row shows that our baseline already outperforms the state
of the art (Table 2). From the second row, we can see that our model trained
without using the guidance image gives comparable results to the state of the
art. We can also see that, for a fixed size of the kernel, the effect of learning
kernel weights and offsets from both inputs is significant, and combining all
components including the residual connection gives the best results.

Kernel size. Table 4 compares the performance for different size of kernels. We
enlarge the size of the kernels gradually from 3× 3 to 25× 25 and compute the
average RMSE. From the third row, we observe that the performance improves
until size of 15×15. Increasing size further does not give additional performance
gain. This indicates that aggregating pixels from a 15×15 window is enough for
the task. We restrict the maximum range of the sampling position to 15 × 15
for all experiments. The last row of Table 4 suggests that our final model also
benefits from increasing the kernel size. The RMSE decreases from 3.26 to 3.19 at
the cost of taking more runtime. For comparison, our models with kernels of size
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Table 5. RMSE comparison (ours/DJFR [17]) of using different scale factors for train-
ing and testing on depth map upsampling.

Train/Test 4× 8× 16×
4× 1.62/ 3.34 6.70/10.21 11.24/19.75
8× 3.93/ 9.27 3.26/ 5.86 10.53/15.65
16× 9.04/19.12 8.61/13.43 6.51/10.11

3×3, 5×5 and 7×7 take 0.22, 0.27 and 0.34 seconds, respectively, with a Nvidia
GTX 1080Ti. Accordingly, we use the kernel of size 3×3 to all experiments. This
could be a good trade-off between the performance and efficiency.

4.5 Discussion

Runtime. With a Nvidia GTX 1080Ti, our current implementation takes on
average 0.22 second for images of size 640×480. For comparison, the brute-force
implementation takes 720 seconds, requiring about 3000× more time than the
efficient version. The average runtime of DJFR [17] is about 0.02 seconds on the
same configuration. The faster overall speed comes from the use of spatially-
invariant kernels in standard CNNs.

Limitations. Table 5 compares the average RMSE between our model and
DJFR [17] on the NYU dataset [40], when the scale factors for training and
test are different. It shows that the performance is degraded for both methods
if the factors for training/test are different. This may be handled by a scale
augmentation technique during training [35]. Another observation is that our
model gives a similar result when the scale factor for testing is smaller than
that used for training. For scale factors of ×4, ×8 and ×16, our model trained
with factor of ×16 gives the average RMSE of 9.04, 8.61 and 6.51, respectively,
whereas DJFR gives 19.12, 13.43 and 10.11, respectively. This demonstrates that
our model generalizes better over different scale factors.

5 Conclusions

We have presented a CNN architecture for joint image filtering that is generic and
applicable to a great variety of applications. Instead of regressing the filtering
results directly from the network, we use spatially-variant weighted averages
where the set of neighbors and the corresponding kernel weights are learned
end-to-end in a dense and local manner. We have also presented an efficient
implementation that gives much faster runtime than the brute-force one. Our
model generalizes well for images that have different modalities from the training
dataset, as demonstrated by our experiments. Finally, we have shown that the
weighted averaging process with sparsely sampled 3 × 3 kernels is sufficient to
set new state-of-the-art results on several tasks.
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