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We present a simple approach to predict the main features of optical spectra affected by self-phase modulation 
(SPM), which is based on regarding the spectrum modification as an interference effect. A two-wave interference 
model is found sufficient to describe the SPM-broadened spectra of initially transform-limited or up-chirped pulses, 
whereas a third wave should be included in the model for initially down-chirped pulses. Simple analytical formulae 
are derived, which accurately predict the positions of the outermost peaks of the spectra. 

1. INTRODUCTION 
Self-phase modulation (SPM) is one of those very fascinating effects 
discovered in the early days of nonlinear optics [1] and among the first 
examples of nonlinear optical phenomena to which novices of the field 
are usually exposed [2, 3]. It refers to the phenomenon by which an 
intense optical beam propagating in a Kerr medium induces through the 
nonlinearity of the medium a modulation of its phase that is 
proportional to its own intensity profile. Fiber optics is a convenient 
testbed for the experimental study of nonlinear optical phenomena 
owing to the possibility for a propagating beam to undergo large 
amounts sof nonlinearity without suffering from spatial modifications 
or thermal effects [4]. The earliest observation of SPM in optical fibers 
was made in 1978 [5], and the phenomenon has been extensively 
studied since then. For an input pulsed beam, the time-dependent phase 
change induced by SPM is associated with a modification of the optical 
spectrum, which depends on the frequency modulation (chirp) of the 
pulse electric field. If the pulse is initially Fourier-transform-limited or 
up-chirped SPM leads to spectral broadening, whereas an initially 
down-chirped pulse is spectrally compressed by the effects of SPM [5, 
6]. For strong SPM, the optical spectrum can exhibit strong oscillations. 

SPM is often regarded as being harmful for optical communication 
systems or high-power pulse generation [7]. However, when 
conveniently managed, SPM can be a precious ingredient that has 
stimulated a tremendous amount of applications, including the 
generation of ultra-short pulses [8, 9], the compensation of dispersion 
through solitonic effects [4, 10], the generation of wavelength-
multiplexed sources [11], the frequency shifting of ultra-short pulse 
sources [12], the contrast enhancement of ultra-short pulses [13], 
several applications in ultrafast optical signal processing [14, 15], and 
the characterization of optical pulses [16, 17] and waveguides [18]. 

In this paper, by extending an approach initially developed in the 
context of sinusoidally phase modulated continuous waves [19], we 
present a novel theoretical treatment of SPM based on a spectral 
interference model. The typical oscillatory character of optical spectra 
affected by SPM indeed originates from strong excursions of the 
instantaneous frequency, so that in general there are contributions from 

different times to the Fourier integral for a given frequency component. 
Depending on the exact frequency, these contributions may 
constructively add up or cancel each other [1]. After introducing the 
situation under investigation, we present the intuitive but accurate 
description of the SPM spectral patterns that is afforded by our 
proposed approach. Simple analytical formulae are derived, which 
accurately predict the positions of the outermost peaks of the spectra. In 
the last section, we discuss both qualitatively and quantitatively the 
different scenarios that are observed depending on the initial chirp of 
the pulses.  
 

2. PRINCIPLE AND SITUATION UNDER INVESTIGATION 
Pulse propagation in a single-mode optical fiber is modeled with the 
standard nonlinear Schrödinger equation [4]: 
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where (z,t) is the complex envelope of the pulse electric field, z is the 
propagation coordinate, t is the retarded time, 2 is the group-velocity 
dispersion parameter, and  is the Kerr-nonlinearity coefficient 
accounting for both the nonlinear refractive index n2 and the fiber’s 
effective cross-sectional area. We consider an initial pulse having the 

waveform     2 2

0 0,0 ( ) exp / 2t P I t C t T   , where I(t) is the 

normalized temporal intensity profile of the pulse, P0 is the peak power, 
T0 is a characteristic time associated with the pulse, and C is  a chirp 
coefficient, which can be positive or negative. When the effects of Kerr 
nonlinearity are considered over those distances and power levels such 
that we can neglect dispersion  (i.e. when the condition  

  2
0 0 21 / /P T   is satisfied), the solution to Eq. (1) is simply  

  ( , ) (0, ) exp ( , ) ,NLz t t i z t    (2) 

where NL(z,t) = B I(t) is the SPM-induced nonlinear phase shift. Here, B 
= P0 z is the maximum phase shift that occurs at the pulse center 
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located at t = 0 and is widely known as the B-integral. In the presence of 
loss or gain, the physical propagated length z is replaced with an 
effective length defined as Leff  = [1 − exp(−z)] / , where α > 0 (< 0) 
accounts for loss (gain). The temporally varying nonlinear phase implies 
a time dependence of the instantaneous optical frequency NL(t) = –
dNL/dt, which in turn translates into changes in the pulse spectrum. 
The shape of the spectrum S() is obtained by taking the  Fourier 
transform of  Eq. (2): 

  
2

( ) (0, ) exp ( ) exp( ) .S t i B I t i t dt  



   (3) 

In general, the spectrum depends on the pulse shape and the initial chirp 
imposed on the pulse. In the general case, S() cannot be calculated 
analytically.  However, for large values of the B-integral, many important 
insights into S() can be obtained using the method of stationary phase 
[20]. 

For an input pulse with a parabolic shape, the SPM-induced 
frequency chirp NL is a strictly monotonic function of time, so the 
pulse has a different instantaneous frequency at each point. In this case, 
no spectral interference occurs and, thus, the spectrum does not feature 
any oscillatory structure [21]. Conversely, for common transform-
limited bell-shaped pulses, such as Gaussian or hyperbolic secant pulses, 
NL has a non-monotonic temporal variation; it reaches maximum 
positive and minimum negative values, m and min, and approaches 
zero as t becomes infinitely large. It has therefore been proposed to 
estimate the magnitude of SPM-induced spectral broadening by simply 
calculating  = m − min. A more accurate measure of spectral 
broadening is provided by the root-mean-square (rms) spectral width 
rms [22]. The typical time dependence of NL for these bell-like pulse 
waveforms also means that for min < NL < m the same chirp occurs 
at two values of t, showing that the pulse has the same instantaneous 
frequency at two distinct points. Qualitatively speaking, these two 
points represent two waves of the same frequency but different phases 
that can interfere constructively or destructively depending on their 
relative phase difference. The characteristic oscillatory structure in the 
pulse spectrum is a result of such interference [1]. Mathematically, the 
Fourier integral in Eq. (3) gets dominant contributions at the two values 
of t at which the chirp is the same. These contributions may add up in 
phase or out of phase. Indeed, it is possible to use the stationary phase 
method to obtain an approximate expression of S() that is valid for 
large values of B [20]. Note that for initially chirped pulses, in general the 
same chirp may occur at more than two values of t. The approach that 
we propose here is to evaluate the spectrum affected by SPM by 
calculating the intensity in the interference pattern associated with the 
different instants in the pulse that have the same instantaneous 
frequency.  A measure of the spectrum extent is then provided by the 
position of the outermost peak of intensity.  
 

3. SPM PATTERN PREDICTION OF INITIALLY 
TRANSFORM-LIMITED PULSE 

A. Analysis of the spectrum of a Gaussian pulse 

1. Analysis 

In order to introduce the basis of our discussion, we first consider the 
case of the widely used Fourier-transform-limited Gaussian pulse with 
the temporal intensity profile: I(t) = G(t) = exp(−(t/T0)2), where T0 is the 
half-width at 1/e intensity point. Given the evenness of the intensity 
function and the oddness of the chirp function, we can restrict our study 

to the positive times only. The chirp (t) = NL(t) for such a pulse [Fig. 
1(b)] is  
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where Hn  is the nth-order Hermite polynomial.  The extrema of the chirp 
function can be easily found by solving the equation 
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which yields the following maximum value of  on the positive time tm:  
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Fig. 1. Temporal intensity and chirp profiles for a transform-limited 
Gaussian pulse after undergoing SPM at a B-integral of 20 rad. The 
extreme points of the chirp function and the solutions of the equation 
= 0 are indicated with red and blue lines, respectively. The cyan and 
yellow regions represent the phase difference D and the opposite of 
the total phase offset T, respectively. The approximation to the chirp 
function based on Eq. (15) and the corresponding approximation to the 
pulse profile are plotted with dashed green lines. 

 
As can be seen in Fig. 1(b), a given instantaneous frequency 0   

between 0 and m   is observed at two different instants, t1 and t2 (with 
t2> t1), whose separation t = t2 – t1 is a decreasing function of 0.  These 
instants are the two roots of the equation (t) = 0: 
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where Wn is the Lambert W function, with n  = 0, −1 for the main and 
second branch, respectively. The total phase difference T between t1 
and t2 is the result of two contributions. The first contribution D is due 
to the time delay t:  

  0 0 .D t      (8) 

This quantity can be represented graphically in Fig. 1(b) as the area of 
the cyan rectangle, and is a non-monotonic function of 0 (Fig. 2). The 
second contribution NL to the total phase offset arises from SPM: 

        0 2 1 2 1( ) ( ) ,NL NL NLt t B G t G t         (9) 

and can be represented as the opposite of the area under the curve (t) 
between t = t1 and t = t2 in Fig. 1(b). It is apparent that NL is a negative 
and monotonically increasing function of 0 that has the maximum 
negative value of −B at 0 = 0 and is zero when 0 = m. The total phase 
difference between t2 and t1 is therefore  

  0 .T D NL        (10) 

It can be geometrically interpreted as the opposite of the area of the 
region in Fig. 1(b) that is bounded by the graph of and the horizontal 
line 0 (yellow region), and it is a negative and monotonically 
increasing function of 0 with the same extrema as NL (Fig. 2). 

 
Fig. 2. Variation of the different phase differences between the two 
interfering times at the frequency 0, t1 and t2, with 0 for a transform-
limited Gaussian pulse after undergoing SPM at B = 20 rad. The phase 
differences D, NL and T as calculated from Eqs. (8), (9) and (10) 
are represented by red, blue and purple solid curves, respectively. Their 
toy-model approximations 'D, 'NL and 'T based on Eq. (17) are 
represented by dash-dotted curves. The green and cyan horizontal lines 
represent the values of the total phase offset causing constructive and 
destructive interference, respectively [Eqs. (13) and (12)]. 

 
With the knowledge of the instants t1 and t2 and the total phase 

difference T between them, we can calculate the distribution of 
intensity I(0)  in the pattern associated with the interference between 
these two times: 

   0 1 2 1 2 0( ) ( ) 2 ( ) ( ) cos .
2
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Equation (11) indicates that there is destructive interference causing 
intensity minima at frequencies for which  

 (2 1) ,
2

T m


      (12) 

with m being a negative integer number (Fig. 2, cyan lines). From Eq. 
(12), one may obtain the convenient relationship between the number 
of minima k on one side of the spectrum and the value of B derived by 
Cubeddu et al. in [20]: B = (2k-1) . Intensity maxima or constructive 
interference occur when  

 2
2

T m


     (13) 

at negative integer m. In particular, the position ωM of the outermost 
peak of intensity corresponds to m = 0 in Eq. (13): 
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     (14) 

 
Fig. 3. (a) Spectral intensity distribution I(0) calculated from Eq. (11) 
(blue solid curve) compared to the spectrum S() obtained from Eq. (3)  
(red solid curve) for a transform-limited Gaussian pulse after 
undergoing SPM at B = 20 rad. The green and cyan dotted lines 
represent the frequencies at which constructive and destructive 
interference occurs, as predicted by Eqs. (13) and (12), respectively. The 
red and purple vertical dash-dotted lines represent the maximum 
frequency m from Eq. (6) and the toy-model prediction for the position 
of the outermost spectral peak ’M [Eq. (20)].  (b) Evolutions of the 
intensities of the two interfering waves at the frequency 0, I1 = G(t1) and 
I2 = G(t2), with 0 (purple and green curves, respectively).  

 
It is worth noting that T being not a linear function of 0, the 

frequencies for which constructive and destructive interference occurs 
are not equally spaced, and the outermost intensity peak is the widest 
[23]. Figure 3 compares the spectral intensity distribution I(0) given by 
Eq. (11) with the exact spectrum S() numerically calculated from 
Eq. (3) at a level of SPM corresponding to B = 20 rad, and apparently 
indicates excellent qualitative agreement between the two spectral 
patterns. The positions of the intensity extrema predicted by Eqs. (12) 
and (13) are in quantitative agreement with the actual positions. The 
evolutions of the intensities of the two interfering waves at the 



instantaneous frequency 0, I1 = G(t1) and I2 = G(t2), with 0 that are 
plotted in Fig. 2(b) highlight that the lower 0, the higher the intensity 
difference between these two waves. This brings about a decreasing 
contrast in the interference pattern I(0) with decreasing 0.  It is also 
noteworthy that our model is intrinsically unable to predict the outer 
decreasing wings of the spectrum. 
 

We have also compared the evolutions of I(0) and S() with the 
level of SPM accumulated in the fiber. The results shown in Fig. 4(a) 
confirm both the qualitative agreement between the spectral pattern 
predicted by Eq. (11) and the numerical evaluation of the spectrum 
from Eq. (3), and the accuracy of the analytical prediction for the 
positions of the spectrum’s extrema. It is also apparent from Fig. 4(a) 
that the maximum instantaneous frequency excursion contained in the 
spectrum m or the rms spectral width rms = rms,0 [1+ (0.877 B)2]1/2  

derived by Pinault et al. in [22] (rms,0 is the initial rms spectral width of 
the pulse) may not be the most intuitive quantities to describe the 
spectrum’s expansion generated by SPM and, especially, the position of 
the outermost spectral peak that is very relevant for many recent 
applications of SPM [12, 13]. Our approach is also able to describe the 
evolution of the spectral intensity at the central frequency 0 = 0, for 
which T = −B, with the B-integral. A simple sinusoidal function can 
indeed qualitatively explain the resulting pattern: I(B, 0=0)  1+ 
sin(B)/2 [Fig. 4(b)]. This can be of interest for nonlinear signal 
processing applications based on optical band-pass filtering at the 
central frequency [14, 15]. 
 

 

 Fig. 4. (a) Evolution of the spectrum of a transform-limited Gaussian 
pulse with the B-integral accumulated in the fiber. The spectral intensity 
distribution I(0) calculated from Eq. (11) (panel 1) is compared to the 
spectrum S() obtained from Eq. (3) (panel 2). The evolutions of the 
rms spectral width rms, the position of the outermost spectral peak M 
predicted by Eq. (14), and the value predicted by the toy model ’M [Eq. 
(20)] are plotted with red, white and dark blue dash-dotted lines, 
respectively. The green and cyan dotted open circles represent the 
frequencies at which constructive and destructive interference occurs, 
as predicted by Eqs. (13) and (12), respectively. (b) Evolution of the 
spectral intensity at the central frequency with the accumulated B-
integral as obtained by numerical evaluation of Eq. (3) (red curve) and 

by the relationship: I(B, 0=0)   1+sin(B)/2 stemming from Eq. (11) 
(blue curve).  

 

2. Toy model 

One point of the analysis so far that could be slightly inconvenient is the 
use of the Lambert W function to determine the interfering instants t1 
and t2. While such a function is nowadays widely implemented in 
professional scientific software, it prevents the development of a fully 
analytical approach to the problem. Simplified but fully tractable 
expressions giving the main features of the spectral interference 
process can be obtained by expanding the chirp function (t)  in Taylor 
series about  t = tm  to second order:  
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As we can see in Fig. 1(b) (dashed green curve), this expansion provides 
a rather good approximation to the actual function in the vicinity of m. 
Within this approximation, the interfering instants t’1 and t’2 are simply 
the roots of a quadratic equation, (t’) = 0, hence they are separated 
by 
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and the linear and nonlinear phase differences between them are 
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Here, the nonlinear phase contribution ’NL has been obtained by using 
a first-order Taylor expansion of the pulse intensity profile I(t) about tm: 
I(t) = I(tm) − m (t − tm)/B [Fig. 1(a), green dashed curve]. The predictions 
from Eq. (17) show fairly good agreement with the results obtained 
from Eqs. (8), (9) and (10) as long the instantaneous frequency remains 
close to its maximum value m (Fig. 2, dash-dotted curves). Accordingly, 
Eq. (14) giving the position of the outermost spectral peak simplifies to 

  ' ' ' .
2

T M m T


         (18) 

This equation can be readily solved to yield 
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For a Gaussian pulse Eq. (19) takes the form 
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Therefore, our toy model explicitly predicts a B-dependent correction 
factor for the position of the outermost spectral peak relative to the 
maximum instantaneous frequency excursion. As can be seen in Figs. 3 
and 4 (purple dashed curves), the prediction based on Eq. (20) is 
entirely plausible, thereby being more convenient for practical 
applications than rms or m. 
  



B. Analysis of other pulse shapes  

We have also used our proposed method to describe the SPM-
broadened spectra of initially transform-limited pulses with hyperbolic 
secant, Lorentzian and super Gaussian temporal intensity profiles. In the 
case of a hyperbolic secant pulse with I(t) = sech2(t/T0), the chirp is 
given by (t) = 2 B I(t) tanh(t/T0), and attains a maximum value of 
m=3−3/2 / T0  at  tm = T0 atanh(3−1/2). The toy model supplies the 
same expression for the position of the outermost spectral peak as that 
of Eq. (20). We note that for this pulse shape, an exact calculation of the 
optical spectrum affected by SPM is available [24]. However, this 
calculation remains quite technical and not fully intuitive.  

The Lorentzian profile I(t) = (1+(t/T0)2)−4  entails the chirp (t) = 
4 B (1+(t/T0)2)−3/T0 with a maximum value of m = 25 B / (54 tm) at tm 
= T0 5−1/2. The toy-model analysis leads to the following prediction of the 
position of the outermost spectral peak: 
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The results obtained for the hyperbolic secant and Lorentzian pulse 
shapes are summarized in Fig. 5, and demonstrate the excellent ability 
of our approach to reproduce the overall shape and the extreme points 
of the spectrum. However, similarly to the case of a Gaussian pulse, the 
amplitude of the outermost peak is underestimated. This stems from 
the fact that the stationary-phase approximation ceases to be valid in the 
vicinity of m. 
 
 

 
Fig. 5. SPM patterns of transform-limited hyperbolic secant (panels 1) 
and Lorentzian (panels 2) pulses. (a) Spectral intensity distribution 
I(0)  (blue solid curve) compared to the spectrum S() obtained from 
Eq. (3)  (red solid curve) for a B-integral accumulated in the fiber of 20 
rad. (b) Evolution of the spectrum S() with the B-integral. The red and 
purple vertical dash-dotted lines represent the maximum frequency m 
and the toy-model prediction for the position of the outermost spectral 
peak ’M [Eqs. (20) and (21)]. The green and cyan dotted lines or open 
circles represent the frequencies at which constructive and destructive 
interference occurs, as predicted by Eqs. (13) and (12), respectively.  
 

Figure 6 shows the results obtained for a super-Gaussian pulse given 
by I(t) = exp(-(t/T0)2m) with m = 3. In this case, the chirp m has a 
maximum point at tm = T0 (1−1/(2m))1/2m, which can be approximated 
to T0 for large m. With this approximation, we get m = 2 B m e−1 / T0. 
Thus, using the toy model, we obtain the following expression for the 
position of the outermost spectral peak:  
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(22) 

We can see in Fig. 6 that our method can accurately predict the lateral 
extreme points of the spectrum. However, a significant discrepancy 
between the spectral intensity distribution I(0) and the actual 
spectrum S() can be observed at the low frequencies. In particular, 
S() features a marked peak at 0 = 0, which cannot be reproduced by 
our approach. In fact, most of the pulse energy remains in the central 
peak because the SPM-induced chirp is nearly zero over the central 
region of the pulse as a consequence of the nearly uniform intensity of a 
super-Gaussian pulse for |t| < T0. This central peak may make the first 
minimum from the center slightly fuzzy, hence care should be taken 
when applying the formula for the number of minima in the SPM-
broadened spectrum derived by Cubeddu et al. to experimental data. 
 
 
 

 

Fig. 6. SPM pattern of a transform-limited super-Gaussian pulse with m 
= 3. (a) Spectral intensity distribution I(0) (blue solid curve) compared 
to the spectrum S() obtained from Eq. (3)  (red solid curve) for a B-
integral accumulated in the fiber of 20 rad. (b) Evolutions of I(0) (panel 
1) and S() (panel 2) with the B-integral. The red and purple vertical 
dash-dotted lines represent the maximum frequency m and the toy-
model prediction for the position of the outermost spectral peak ’M [Eq. 
(22)]. The green and cyan dotted lines or open circles represent the 
frequencies at which constructive and destructive interference occurs, 
as predicted by Eqs. (13) and (12), respectively.  

 

 



4. SPM PATTERN PREDICTION OF LINEARLY CHIRPED 
INPUT PULSE 

A. General discussion on the appearance of spectral interference 
fringes 

In this section, we discuss the effects of an initial linear chirp on the SPM-
modified pulse spectrum. Such a chirp can be easily generated through 
propagation in a linear dispersive medium such as a pair of diffraction 
gratings, fiber Bragg gratings or a hollow core optical fiber. Linearly 
chirped pulses are widely used in chirped pulse amplification to 
mitigate undesirable SPM [7, 25]. However, the residual SPM can be 
sufficient to degrade the quality of the pulses [26]. We focus our 
discussion on an input Gaussian pulse, but the method can be extended 
to other bell-shaped waveforms [27]. Note that part of the discussion 
can also aid to qualitatively understand the initial stage of wave-
breaking occurring in a nonlinear dispersive fiber, as described by 
Anderson et al. [28]. For a Gaussian pulse with an initial linear chirp (C ≠ 
0), the total chirp after undergoing SPM is given by 
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Hence, the extreme points of the chirp te verify the following equation: 
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where R = C/B is the ratio of the initial chirp coefficient to the level of 
SPM experienced. The function H2(t/T0) G(t) is plotted in Fig. 7(a) and 
has values comprised between −2  (attained at t = 0) and 4 exp(−3/2)  
(attained at ts = T0 (3/2)1/2). In other words, for R below Rmin = −2 or 
above Rmax = 4 exp(−3/2), the chirp (t) is a strictly monotonic function 
as shown in panels b1 or b5 of Fig. 7 (blue curves). Hence, for this range 
of values of R, we should not expect spectral interference to occur and 
the spectrum should not show any oscillatory structure.  When R = C = 
0 (panel b3), we recover the case of an unchirped input pulse studied in 
Sec. 3. For −Rmin < R < 0  (see panel b4 as an example), the chirp has a 
local minimum and a local maximum, with the maximum Cm = (tCm) 
located on the trailing edge of the pulse at  
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t W

  
    

  
 (25) 

For R = Rmin, the two extrema merge and the chirp has an inflexion point 
at t = 0 (panel b5, red curve). For 0 < R < Rmax, the chirp may feature a 
minimum and a maximum on the trailing edge of the pulse as illustrated 
in panel b2. The maximum point is given by Eq. (25), while the 
minimum value Cmin = (tCmin) occurs at 
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For R = Rmax, the chirp exhibits an inflexion point at ts = tCm = tCmin (panel 
b1, red curve).  
 

 

Fig. 7. (a) Plot of H2(t/T0)G(t) for an initially chirped Gaussian pulse. The 
green dashed line is the linear approximation to the function in the 
vicinity of tm given by Eq. (26). The gray dash-dot horizontal lines 
represent the values of R used in the different subplots b.  (b) Temporal 
chirp profiles of the pulse for different values of R: (b1), R = 1.5 (blue 
curve) and R = Rmax (red curve); (b2) R = 0.5; (b3) R = 0; (b4) R = −1; (b5) 
R = −2.5 (blue curve) and R = Rmin (red curve).   

 
The different behaviors of the chirp function according to the ratio of   

its linear and nonlinear parts impose remarkably different features on 
the pulse spectrum. To illustrate this point, we have plotted in Fig. 8 the 
evolution of the spectrum with the ratio R at a level of SPM 
corresponding to B = 20 rad. The results highlight the distinctly different 
spectral regimes that are observed depending on R: for R > Rmax, the 
central part of the spectrum does not show any oscillations. For 0 < R < 
Rmax, two intense peaks are visible in the spectrum and some ripple 
develops on the spectrum’s boundaries. For Rmin < R < 0, the spectrum 
features an oscillatory structure, which is different from the sinusoidal 
variation discussed in Sec. 3. Finally, for R < Rmin, no oscillatory structure 
is visible in the spectrum and most of the pulse energy is focused on the 
center of the spectrum. Indeed, the pulse experiences spectral 
compression, a phenomenon that is well documented in the literature 
and has found many practical applications [5, 6, 29, 30]. 
 
  



 

Fig. 8. Evolution of the spectrum of a chirped Gaussian pulse with the 
ratio R = C/B for B = 20 rad, as obtained from numerical integration of 
Eq. (3). The white dotted horizontal lines represent the notable values 
of R. The green dotted horizontal lines indicate the R-values used in Figs. 
9 and 11. The red, blue, black and purple dash-dotted curves represent 
the frequencies Cm, Cmin, ’Cm  and ’CM,  respectively. 

 
In the following subsection, we discuss some simplifications of the 

spectral interference model that can be advantageously used to 
describe the SPM-induced spectral pattern of an initially chirped 
Gaussian pulse. Then, we discuss the two regimes where the pulse 
spectrum exhibits an apparent oscillatory structure and explain the 
origin of the spectral features that are induced by the initial chirp of the 
pulse. 

 
 
 

B. Simplified model 

The maximum point of the chirp tCm given by Eq. (25) is very important 
for the description of the SPM pattern. However, once again the 
presence of the Lambert W function would prevent the development of 
a fully analytical approach. We can circumvent this difficulty by 
considering an approximate formulation of the problem that is valid in 
the highly nonlinear propagation regime for which R is close to zero. To 
this end, we approximate the function H2(t/T0)G(t) around the point t = 
tm by its first-degree Taylor polynomial:  
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The green dashed line in Fig. 7(a) highlights the validity of this 
approximation over a rather wide range of possible values of R.  
Accordingly, Eq. (25) simplifies to 
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and the peak value of the chirp is obtained as 
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Equation (29) indicates that for C > 0, the maximum instantaneous 
frequency excursion contained in the pulse spectrum is increased 
relative to the case of an unchirped input pulse. Conversely, for slightly 

negative values of R, the maximum frequency is smaller than that for an 
unchirped pulse. The black dash-dotted curve in Fig. 8 confirms the 
validity of the approximate formula of Eq. (29) for small values of R.  

To estimate the position of the outermost peak of the spectrum, we 
can use the method described in Sec. 3. To be rigorous, we should 
include in the total phase difference between pulse parts having the 
same instantaneous frequency a phase term accounting for the initial 
chirp of the pulse. However, we have found that for small values of R, 
this term does not affect the prediction of the position of the outermost 
peak ’CM. Hence, for small R we can utilize Eq. (20) with m replaced by 
'Cm. The expression for ’CM so obtained is plotted in Fig. 8 with a purple 
dash-dotted curve and confirms the pertinence of the simplification 
made.  
 
 

C. Normal initial chirp 

In this section, we focus on an input Gaussian pulse with a linear normal 
(positive) chirp such that the ratio R is below Rmax. The time-dependence 
of the total chirp of the pulse for C = 4 and B = 20 rad is shown in Fig. 9. 
We can clearly see that the chirp has a local maximum Cm at tCm < ts and 
a local minimum Cmin at tCmin > ts. Accordingly, for a given instantaneous 
frequency 0 such that 0 < 0 < Cmin, only one point in the pulse 
corresponds to this frequency, hence no spectral interference occurs. By 
contrast, for Cmin < 0 < Cm, three instants: t1 < tCm, tCm < t2 < tCmin, and t3 
> tCmin have instantaneous frequency equal to 0. However, one should 
note that as t3 is very far from the center of the pulse, the pulse intensity 
at this point I3 = G(t3) is very low and can be neglected.  This reduces the 
problem to a two-wave interference process similar to the one 
discussed in Sec. 3 for the case of an unchirped input pulse. As a result, 
spectral interference only occurs at the boundaries of the spectrum as 
can be seen in Fig. 10. 
 
 
 

 
Fig. 9. Temporal intensity (panel a) and chirp (panel b) profiles for an 
initially chirped Gaussian pulse with C = 4 after undergoing SPM at a B-
integral of 20 rad. The extreme points of the chirp function and the 
solutions of the equation = 0 are indicated with red and blue lines, 
respectively. 

 



When R approaches Rmax, Cmin andCm become very close to each 
other. This results in the development of a single peak on each side of 
the spectrum, which thus acquires a ‘batman-ear’ shape. Accordingly, 
the use of a linearly chirped input pulse may be a convenient alternative 
to a triangular-shaped pulse for efficiently copying information onto 
two different frequency channels [31, 32]. In the opposite limit of R 
approaching zero, which occurs for a low input chirp or for a high level 
of SPM accumulated in the fiber, the oscillations cover the major part of 
the spectrum. 

 

 
Fig. 10. SPM pattern of an initially chirped Gaussian pulse with C = 4. (a) 
Spectral intensity distribution I(0) (blue solid curve) compared to the 
spectrum S() obtained from Eq. (3)  (red solid curve) for a B-integral 
accumulated in the fiber of 20 rad. (b) Evolutions of I(0) (panel 1) and 
S() (panel 2) with the B-integral. The red and purple vertical dash-
dotted lines represent the extreme frequencies Cm and Cmin, and the 
toy-model prediction for the position of the outermost spectral peak 
’CM, respectively. The green and cyan dotted lines or open circles 
represent the frequencies at which constructive and destructive 
interference occurs, as predicted by Eqs. (13) and (12), respectively.  

 

 

D. Anomalous initial chirp 

Finally, we discuss the case of an input Gaussian pulse with an 
anomalous (negative) chirp. As previously mentioned, for R < Rmin the 
pulse is spectrally compressed by the effects of SPM [5, 6, 29, 30]. We are 
interested here in values of R above Rmin, which correspond to the 
propagation regime in which the spectrum expands again after the 
point of maximum spectral focusing and, thus, spectral interference can 
arise. The temporal chirp profile of the pulse for C = −4 and B = 20 rad is 
shown in Fig. 11. Contrary to the case of a normal initial chirp, spectral 
interference can now occur for any value of 0 such that −Cm < 0 < Cm. 
For a given 0 > 0, the pulse has this instantaneous frequency at three 
distinct points:  0 < t1 < tCm, t2 > tCm, and t3 < −tCm. 

In Fig. 12(a) we compare the spectrum I(reconstructed from the 
interference between t1 and t2 with the actual spectrum S() obtained 
from Eq. (3). We can see that the two-wave interference model can 

conveniently reproduce the positions of the extrema of the oscillating 
pattern. However, as can also be seen in Fig. 12(b1), the details of the 
pattern are not qualitatively reflected. Indeed, S() has a more complex 
structure than a sinusoidal-like variation, exhibiting an over-
modulation and sharper features. 
 

 

 Fig. 11. Temporal intensity (panel a) and chirp (panel b) profiles for an 
initially chirped Gaussian pulse with C = −4 after undergoing SPM at a B-
integral of 20 rad. The extreme points of the chirp function and the 
solutions of the equation = 0 are indicated with red and blue lines, 
respectively. 

 
To reproduce these properties, one has to take into account the third 
wave located at t3. The resulting spectral intensity distribution is 
represented by a purple solid curve in Fig. 12(a) and is clearly in much 
better agreement with the actual spectrum than the two-wave 
interference pattern. The results shown in Fig. 12(b2) substantiate the 
necessity of including the third wave in the interference model for an 
accurate qualitative description of the spectral pattern engendered by 
SPM. 

 



 
Fig. 12. SPM pattern of an initially chirped Gaussian pulse with C = −4. 
(a) Spectral intensity distribution I(0) resulting from the interference 
of two and three waves (blue and purple solid curves respectively) 
compared to the spectrum S() obtained from Eq. (3)  (red solid curve) 
for a B-integral accumulated in the fiber of 20 rad. (b) Evolutions of I(0) 
when two and three interfering waves are considered (panels 1 and 2, 
respectively) and S() (panel 3) with the B-integral. The red and purple 
vertical dash-dotted lines represent the maximum frequency Cm, and 
the toy-model prediction for the position of the outermost spectral peak 
’CM, respectively. The green and cyan dotted lines or open circles 
represent the frequencies at which constructive and destructive 
interference occurs, as predicted by Eqs. (13) and (12), respectively.  

 

6. CONCLUSIONS 
We have described a simple theoretical approach to predict the main 
features of the spectra of optical pulses affected by SPM, which is based 
on regarding the optical spectrum modification as an interference effect. 
We have shown that a two-wave interference process is sufficient to 
describe the SPM-broadened spectra of initially Fourier-transform-
limited pulses or pulses with an initial positive linear chirp, and to 
accurately predict the extreme values of the spectra. Simplified but fully 
tractable closed formulae have been derived for the positions of the 
outermost peaks of the spectra, which provide a more plausible 
measure of the spectrum extent than the approximate or rms 
expressions for the spectral bandwidth that are commonly used. We 
have also discussed the various spectral regimes that are observed 
depending on the ratio of the initial chirp of the pulses and the level of 
SPM accumulated in the fiber, and shown that in the case of negatively 
chirped input pulses, the description of the SPM spectral patterns 
requires the inclusion of a third wave in the interference model.  

The present approach has been discussed in the context of 
dispersionless passive propagation, but its extension to include gain or 
loss is straightforward.  Our approach can also help better understand 
qualitatively the genesis of peculiar spectrum shapes of laser pulses, 
such as the batman ear spectra observed in all-normal dispersion lasers 
[33] or Mamyshev oscillators [34]. While the present discussion focuses 

on SPM, the concept can also be applied to other nonlinear modulations 
of the phase of a pulse, such as the modulation generated by cross-phase 
modulation [35] or an external modulator [36-38]. 
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