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Abstract

In this work we propose to reconstruct the historical road leading
from nonlinear oscillations to chaos theory by analyzing the research
performed on the following three devices: the series-dynamo machine,
the singing arc and the triode, over a period ranging from the end of
the XIXth century till the end of the Second World War.

Thus, it will be shown that the series-dynamo machine, i.e. an
electromechanical device designed in 1880 for experiments, enabled to
highlight the existence of sustained oscillations caused by the presence
in the circuit of a component analogous to a “negative resistance”.

The singing arc, i.e. a spark-gap transmitter used in Wireless
Telegraphy to produce oscillations and so to send messages, allowed
to prove that, contrary to what has been stated by the historiography
till recently, Poincaré made application of his mathematical concept
of limit cycle in order to state the existence of sustained oscillations
representing a stable regime of sustained waves necessary for radio
communication.

During the First World War, the singing arc was progressively re-
placed by the triode and in 1919, an analogy between series-dynamo
machine, singing arc and triode was highlighted. Then, in the following
decade, many scientists such as André Blondel, Jean-Baptiste Pomey,
Élie and Henri Cartan, Balthasar Van der Pol and Alfred Liénard pro-
vided fundamental results concerning these three devices. However, the
study of these research has shown that if they made use of Poincaré’s
methods, they did not make any connection with his works.

In the beginning of the twenties, Van der Pol started to study the
oscillations of two coupled triodes and then, the forced oscillations
of a triode. This led him to highlight some oscillatory phenomena
which have never been observed previously. It will be then recalled
that this new kind of behavior considered as “bizarre” at the end of
the Second World War by Mary Cartwright and John Littlewood was
later identified as “chaotic”.
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1 Introduction

The aim of this work is to trace the history of the foundations of Chaos
theory through the analysis of the works performed on the following three
devices: the series-dynamo machine, the singing arc and the triode, over a
period ranging from the end of the XIXth century till the end of the Second
World War.

In 1880, by sending the current produced by a dynamoelectrical into
a magnetoelectrical machine forming thus a series-dynamo machine, the
French engineer Jean-Marie Gérard Anatole Lescuyer highlighted a nonlin-
ear phenomenon that will be later considered by Paul Janet as sustained
oscillations and by Balthasar Van der Pol as relaxation oscillations1. If the
cause of this phenomenon was rapidly identified as being the presence in the
circuit of a component analogous to a “negative resistance”, its mathemat-
ical modeling was out of reach at that time.

A quarter of a century later, at the time of the emergence of Wireless
Telegraphy, it became of tremendous need to find the condition for which
the oscillations produced by a spark-gap transmitter called singing arc were
sustained. Actually, this condition representing a stable regime of sustained
waves necessary for radio communication was established by Henri Poincaré
in 1908 during a series of “forgotten lectures” he gave at the École Supérieure
des Postes et Télécommunications (today Telecom ParisTech). Contrary to
what was stated by the historiography till recently, Poincaré made thus the
first correspondence between the existence of sustained oscillations and the
concept of limit cycle that he had introduced in his second memoir “On
the curves defined by differential equations”. In other words, he proved
that the periodic solution of the nonlinear ordinary differential equation
characterizing the oscillations of the singing arc corresponds in the phase
plane to an attractive closed curve, i.e. a stable limit cycle.

During the First World War, the singing arc was progressively replaced
by the triode which was also able to sustain oscillations but even more
importantly to amplify the electric signal.

In 1919, the French engineer Paul Janet established an analogy between
the series-dynamo machine, the singing arc and the triode and stated thus
that their sustained oscillations belong to the same nonlinear phenomenon.
Then, in the following decade, many scientists such as André Blondel, Jean-

1A brief history of relaxation oscillations can be found in Ginoux and Letellier [15].
However, let’s notice that this article has been entirely republished by M. Letellier in the
chapter 2 of his last book while omitting to make correct reference to this work. For a
detailed history of relaxation oscillations, see Ginoux [13, 18, 19].
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Baptiste Pomey, Élie and Henri Cartan, Balthasar Van der Pol and Alfred
Liénard provided fundamental results concerning these three devices. How-
ever, it appears that if they made use of Poincaré’s methods, they did not
make any connection with his works.

In the beginning of the twenties, Van der Pol started to study the oscil-
lations of two coupled triodes and then, the forced oscillations of a triode.
This led him to highlight new oscillatory phenomena that he called oscil-
lation hysteresis, automatic synchronization and frequency demultiplication.
Nevertheless, in this case, if the oscillations are still sustained, the solution
is no more periodic but exhibits a new kind of behavior that will be called
“bizarre” at the end of the Second World War by Mary Cartwright and John
Littlewood and that will be later identified as “chaotic”.

2 The series-dynamo machine:
the expression of nonlinearity

At the end of the nineteenth century, magneto- or dynamo-electric machines
were used in order to turn mechanical work into electrical work and vice
versa. With the former type of machine, the magnetic field is induced by
a permanent magnet, whereas the latter uses an electromagnet. These ma-
chines produced either alternating or direct current indifferently. Thus, in
1880, a French engineer named Jean-Marie-Anatole Gérard-Lescuyer made
an experiment by associating a dynamo-electric machine used as a generator
with a magneto-electric machine, which in this case can be considered as the
motor (Fig. 1).

Figure 1: The Gérard-Lescuyer’s paradoxical experiment [25].
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Gérard-Lescuyer [20, 21] reports on the found effects in a note published
in the Comptes rendus de l’Académie des Sciences de Paris and in the Philo-
sophical Magazine in the following way:

“As soon as the circuit is closed the magnetoelectrical machine
begins to move; it tends to take a regulated velocity in accor-
dance with the intensity of the current by which it is excited;
but suddenly it slackens its speed, stops, and start again in the
opposite direction, to stop again and rotate in the same direction
as before. In a word, it receives a regular reciprocating motion
which lasts as long as the current that produces it.”

While observing the periodical reversal of the magneto-electric machine’s
circular motion, despite the direct current, he wondered about the causes
of this oscillatory phenomenon that he was unfortunately unable to isolate.
Gérard-Lescuyer [20, 21] wrote in his conclusion:

“What are we to conclude from this? Nothing, except that we
are confronted by a scientific paradox, the explanation of which
will come, but which does not cease to be interesting.”

It was actually proven by the count Théodose du Moncel [28] a few weeks
later, then by Aimé Witz [50, 51], and by Paul Janet [23], that the gap sit-
uated between the brushes of the dynamo is the source of an electromotive
force (e.m.f.), i.e. a potential difference at its terminals symbolized by a
nonlinear function of the intensity that flows through there. However, the
mathematical modeling of this e.m.f. was out of reach at that time. There-
fore the essence of Gérard-Lescuyer’s paradox is the presence of an e.m.f,
which has a nonlinear current-voltage characteristic acting as a a negative
resistance and leading to sustained oscillations.

Half a century later, the famous Dutch physicist Balthasar Van der Pol
[46] noted:

“Relaxation oscillations produced by a motor powered by a D.C.
series-dynamo. The fact that such a system is able to produce
relaxation oscillations was already briefly discussed. In an article
written by Mr. Janet (we find a reference to Gérard Lescuyer
(CR 91, 226, 1880) where this phenomenon had already been
described.”
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3 The singing arc:
Poincaré’s forgotten lectures

At the end of the nineteenth century a forerunner to the incandescent light
bulb called electric arc was used for lighthouses and street lights. Regard-
less of its weak glow it had a major drawback: the noise generated by the
electrical discharge which inconvenienced the population. In London, physi-
cist William Du Bois Duddell (1872-1917) was commissioned in 1899 by the
British authorities to solve this problem. He thought up the association of
an oscillating circuit made with an inductor L and a capacitor C (F on Fig.
2) with the electrical arc to stop the noise (see Fig. 2). Duddell [10, 11]
created a device that he named singing arc.

Figure 2: Diagram of the singing arc’s circuit, from Duddell [10, 11].

Duddell had actually created an oscillating circuit capable of producing
not only sounds (hence its name) but especially electromagnetic waves. This
device would therefore be used as an emitter for wireless telegraphy until the
triode replaced it. The singing arc or Duddell’s arc was indeed a “spark gap”
device meaning that it produced sparks which generated the propagation
of electromagnetic waves shown by Hertz’s experiments as pointed out by
Poincaré [30, p. 79]:

“If an electric arc is powered by direct current and if we put
a self-inductor and a capacitor in a parallel circuit, the result
is comparable to Hertz’s oscillator. . . These oscillations are sus-
tained exactly like those of the pendulum of a clock. We have
genuinely an electrical escapement.”
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On July 4th 1902, Henri Poincaré became Professor of Theoretical Elec-
tricity at the École Supérieure des Postes et Télégraphes (Telecom Paris-
Tech) in Paris where he taught until 1910. The director of this school,
Édouard Éstaunié (1862-1942), then asked him to give a series of conferences
every two years in May-June from 1904 to 1912. He told about Poincaré’s
first lecture of 1904:

“From the first words it became apparent that we were go-
ing to attend the research work of this extraordinary and awe-
some mathematician. . . Each obstacle encountered, a short break
marked embarrassment, then a blow of shoulder, Poincaré seemed
to defy the annoying function.”

In 1908, Poincaré chose as the subject: Wireless Telegraphy. The text of
his lectures was first published weekly in the journal La Lumière Électrique
[31] before being edited as a book the year after [32]. In the fifth and last
part of these lectures entitled: Télégraphie dirigée : oscillations entretenues
(Directive telegraphy: sustained oscillations) Poincaré stated a necessary
condition for the establishment of a stable regime of sustained oscillations
in the singing arc. More precisely, he demonstrated the existence, in the
phase plane, of a stable limit cycle.

To this aim Poincaré [31] studied Duddell’s circuit that he represented
by the following diagram (Fig. 3) consisting of an electromotive force (e.m.f.)
of direct current E, a resistance R and a self-induction, and in parallel, a
singing arc and another self-induction L and a capacitor.

Figure 3: Circuit diagram of the singing arc, from Poincaré [31, p. 390].

Then, he called x the capacitor charge, x′ the current intensity in the
branch including the capacitor, ρx′ the term corresponding to the internal
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resistance of the self and various damping and θ (x′) the term representing
the e.m.f. of the arc the mathematical modeling of which was also out of
reach for Poincaré at that time. Nevertheless, Poincaré was able to establish
the singing arc equation, i.e. the second order nonlinear differential equation
(1) for the sustained oscillations in the singing arc:

Lx′′ + ρx′ + θ
(
x′
)
+Hx = 0 (1)

Then, by using the qualitative theory of differential equations that he
developed in his famous memoirs [33, 37], he stated that:

“One can construct curves satisfying this differential equation,
provided that function θ is known. Sustained oscillations corre-
spond to closed curves, if there exist any. But every closed curve
is not appropriate, it must fulfill certain conditions of stability
that we will investigate.”

Thus, he plotted a representation of the solution of equation (1):

Figure 4: Closed curve solution of the sing arc equation,
from Poincaré [31, p. 390].

Let’s notice that this closed curve is only a metaphor of the solution since
Poincaré does not use any graphical integration method such as isoclines.
This representation led him to state the following stability condition:

“Stability condition. – Let’s consider another non-closed curve
satisfying the differential equation, it will be a kind of spiral
curve approaching indefinitely near the closed curve. If the closed
curve represents a stable regime, by following the spiral in the
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direction of the arrow one should be brought back to the closed
curve, and provided that this condition is fulfilled the closed
curve will represent a stable regime of sustained waves and will
give rise to a solution of this problem.”

Then, it clearly appears that the closed curve which represents a stable
regime of sustained oscillations is nothing else but a limit cycle as Poincaré
[34, p. 261] has introduced it in his own famous memoir “On the curves
defined by differential equations” and as Poincaré [35, p. 25] has later defined
it in the notice on his own scientific works [35]. But this, first giant step is
not sufficient to prove the stability of the oscillating regime. Poincaré had
to demonstrate now that the periodic solution of equation (1) (the closed
curve) corresponds to a stable limit cycle. So, in the next part of his lectures,
Poincaré gave what he calls a “condition de possibilité du problème”. In fact,
he established a stability condition of the periodic solution of equation (1),
i.e. a stability condition of the limit cycle under the form of the following
inequality. ∫

θ
(
x′
)
x′dt < 0 (2)

It has been proved by Ginoux [12, 13, 16, 18, 19] that this stability
condition (2) flows from a fundamental result introduced by Poincaré in the
chapter titled “Exposants caractristiques” (“Characteristics exponents”) of
his “New Methods of Celestial Mechanics” [38, Vol. I, p. 180].

Until recently the historiography considered that Poincaré did not make
any connection between sustained oscillations and the concept of limit cy-
cle he had introduced and credited the Russian mathematician Aleksandr’
Andronov [1, 2] for having been the “first” to establish this correspondence
between periodic solution and limit cycle.

Concerning the singing arc, Van der Pol [49] also noted in the beginning
of the thirties:

“In the electric field we have some very nice examples of relax-
ation oscillations, some are very old, such as spark discharge of
a plate machine, the oscillation of the electric arc studied by
Mr. Blondel in a famous memoir (1) or the experience of Mr.
JANET, and other more recent. . . ”

(1) BLONDEL, Eclair. Elec., 44, 41, 81, 1905. See also J. de Phys., 8, 153,
1919.
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4 The triode:
from periodic solution to limit cycle

In 1907, the American electrical engineer Lee de Forest (1873-1961) invented
the audion. It was actually the first triode developed as a radio receiver
detector. Curiously, it found little use until its amplifying ability was rec-
ognized around 1912 by several researchers. Then, it progressively replaced
the singing arc in the wireless telegraphy devices and underwent a consider-
able development during the First World War. Thus, in October 1914, a few
months after the beginning of the conflict, the French General Gustave Ferrié
(1868-1932), director of the Radiotélégraphie Militaire department, gathered
a team of specialists whose mission was to develop a French audion, which
should be sturdy, have regular characteristics, and be easy to produce indus-
trially. Ferrié asked to the French physicist Henri Abraham (1868-1943) to
recreate Lee de Forests’ audions. However, their fragile structure and lack of
stability made them unsuitable for military use. After several unsuccessful
attempts, Abraham created a fourth structure in December 1914, which was
put in operation from February to October 1915 (Fig. 5).

Figure 5: Picture of the original lamp T.M. made by Abraham (1915).
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The original of this valve called “Abraham lamp” is still in the Arts et
Métiers museum to this day (Fig. 5). It has a cylindrical structure, which
appears to have been designed by Abraham. In November 1917, Abraham
consequently invented with his colleague Eugene Bloch (1878-1944) a de-
vice able to measure wireless telegraphy emitter frequencies: the so-called
multivibrator (see Ginoux [13, 16, 18, 19]).

Wireless telegraphy development, spurred by war effort, went from craft
to full industrialization. The triode valves were then marketed on a larger
scale. More reliable and stable than the singing arc, the consistency of the
various components used in the triode allowed for exact reproduction of
experiments, which facilitated research on sustained oscillations.

4.1 Janet’s analogy

In April 1919, the French scientist Paul Janet (1863-1937) published an arti-
cle entitled “Sur une analogie électrotechnique des oscillations entretenues”
[24] which was of considerable importance on several levels. Firstly, it un-
derscored the technology transfer taking place, consisting in replacing an
electromechanical component (singing arc) with what would later be called
an electronic tube. This represented a true revolution since the singing arc,
because of its structure it made experiments complex and tricky, making it
almost impossible to recreate. Secondly, it revealed “technological analogy”
between sustained oscillations produced by a series dynamo machine like
the one used by Gérard-Lescuyer [20, 21] and the oscillations of the singing
arc or a three-electrode valve (triode). Janet [24, p. 764] wrote:

“It seemed to me interesting to mention the unexpected analo-
gies of this experiment with the sustained oscillations so widely
used to-day in wireless telegraphy, for example, those produced
in Duddell’s arc or in the lamp with three-electrodes lamps used
as oscillators. . . Producing and sustaining oscillations in these
systems mostly depends on the presence, in the oscillating cir-
cuit, of something comparable to a negative resistance. The
dynamo-series acts as a negative resistance, and the engine with
separated excitation acts as a capacity.”

Thus, Janet considered that in order to have analogies in the effects, i.e.
in order to see the same type of oscillations in the series-dynamo machine,
the triode and the singing arc, there must be an analogy in the causes.
Therefore, since the series-dynamo machine acts as a negative resistance,
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responsible for the oscillations, there is indeed an analogy. Consequently,
only one equation must correspond to these devices. In this article, Janet
provided the nonlinear differential equation characterizing the oscillations
noted during Gérard-Lescuyer’s experiment:

L
d2i

dt2
+
[
R− f ′ (i)

] di
dt

+
k2

K
i = 0 (3)

where R corresponds to the resistance of the series dynamo machine, L
is the self-induction of the circuit and K/k2 is analogous to a capacitor and
f(i) is the electromotive force of the series-dynamo machine. However, as
recalled by Janet [24, p. 765], its mathematical modeling was also out of
reach at that time.

“But the phenomenon is limited by the characteristic’s curva-
ture, and regular, non-sinusoidal equations actually occur. They
are governed by the equation (3), which could only be integrated
if we knew the explicit for of the function f(i).”

By replacing in Eq. (3) i with x, R with ρ, f ′(i) with θ(x), and k2/K
with H, one find again Poincaré’s singing arc equation (2). Thus, both
ordinary differential equations are analogous but are not of the same order.
Nevertheless, it appeared that Janet did make no connection with Poincaré’s
works.

4.2 Blondel’s triode equation

According to the historiography, it is common knowledge the Dutch physicist
Balathasar Van der Pol is credited for having stated the differential equation
of the triode in his famous publication entitled “On relaxation oscillations”
published in 1926 [45]. However, it was proved by Ginoux [13, 16, 17] on
the one hand that the triode equation was actually stated by Van der Pol in
1920 in a publication entitled: “A theory of the amplitude of free and forced
triode vibrations,” [40] and on the other that the French engineer André
Blondel sated the triode equation one year before him.

As previously pointed out, the main problem of these three devices was
the mathematical modeling of their oscillation characteristics, i.e., the e.m.f.
of the series-dynamo machine, of the singing arc and of the triode.

Thus, in a note published in the Comptes Rendus of the Académie des
Sciences on the 17th of November 1919, Blondel proposed to model the
oscillation characteristic of the triode as follows [3]:
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i = b1 (u+ kν)− b3 (u+ kν)3 − b5 (u+ kν)5 ... (4)

Then, substituting i by its expression in the triode equation, neglecting
the internal resistors and integrating once with respect to time, he obtained

C
d2u

dt2
−
(
b1h− 3b3h

3u2 − ...
) du
dt

+
u

L
= 0 (5)

Let’s notice that this equation is perfectly equivalent to those obtained
by Poincaré and Janet. Nevertheless, if Blondel solved the problem of the
mathematical modeling of the oscillation characteristic of the triode he did
make no connection with Poincaré’s works despite of the fact that he knew
him personally.

4.3 Pomey’s contribution

Less than on year later, the French engineer Jean-Baptiste Pomey (1861-
1943) proposed a mathematical modeling of the e.m.f. of the singing arc in
his entitled: “ Introduction à la théorie des courants téléphoniques et de la
radiotélégraphie ” and published on June 28th 1920 (this detail would be of
great importance in the following). Pomey [39, p. 375] wrote:

“For the oscillations to be sustained it is not enough to have a
periodic motion, it is necessary to have a stable motion.”

Then, he proposed the following “law” for the e.m.f. of the singing arc:

E = E0 + ai− bi3 (6)

and posing i = x′ (like Poincaré) he provided the nonlinear differential
equation of the singing arc:

Lx′′ +Rx′ +
1

C
x = E0 + ax′ − bx′3 (7)

By posing H = 1/C, ρ = R and θ (x′) = −E0 − ax′ + bx′3 it is obvious
that Eq. (1) and Eq. (7) are completely identical2. Moreover, it is striking
to observe that Pomey has used exactly the same variable x′ as Poincaré to
represent the current intensity. Here again, there is no reference to Poincaré.
This is very surprising since Pomey was present during the last lecture of
Poincaré at the École Supérieure des Postes et Télégraphes in 1912 whose

2For more details see Ginoux [16, 17, 18, 19].
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he had written the introduction. So, one can imagine that he could have
attended the lecture of 1908.

At the same time, Van der Pol [40] proposed the following mathematical
modeling of the oscillation characteristic of the triode in an article published
on July 17, 1920:

i = ψ (kv) = αv + βv2 + γv3 (8)

Van der Pol [40, p. 704] precised that, by symmetry consideration, one
can choose β = 0 and provided the triode equation:

C
d2v

dt2
−
(
α− 3γv2

) dv
dt

+
1

L
v = 0 (9)

Taking into account that β can be chosen as equal to zero, one finds
no difference between the Eq. (6) and the Eq. (8). Nevertheless, nothing
proves that Van der Pol had read Pomey’s book.

Five years later, on September 28th 1925, Pomey wrote a letter to the
mathematician Élie Cartan (1869-1951) in which he asked him to provide
a condition for which the oscillations of an electrotechnics device analogous
to the singing arc and to the triode whose equation is exactly that of Janet
(3) are sustained. Within ten days, Élie Cartan and his son Henri sent an
article entitled: “Note sur la génération des oscillations entretenues” [4] in
which they proved the existence of a periodic solution for Janet’s equation
(3). In fact, their proof was based on a diagram which corresponds exactly
to a “first return map” diagram introduced by Poincaré in his memoir “Sur
les Courbes définies par une équation différentielle” [34, p. 251].

4.4 Van der Pol’s relaxation oscillations

Van der Pol’s most famous publication is probably that entitled “On re-
laxation oscillations” [45]. However, what is least well-known is that he
published four different versions of this paper in 1926 in the following order:

1. Over Relaxatietrillingen [42] (in Dutch);

2. Over Relaxatie-trillingen [43] (in Dutch);

3. Über Relaxationsschwingungen [44] (in German);

4. On relaxation-oscillations [45] (in English).
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In these four articles, Van der Pol presents the following generic dimen-
sionless nonlinear differential equation for relaxation oscillations which is
neither attached to the triode, nor to any other device (series-dynamo ma-
chine or singing arc):

v̈ − ε(1− v2)v̇ + v = 0. (10)

Early on, Van der Pol [40, p. 179] realized that the equation (10) was
not analytically integrable:

“It has been found to be impossible to obtain an approximate
analytical solution for (10) with the supplementing condition
(ε≪ 1), but a graphical solution may be found in the following
way.”

So, he used the isoclynes method to graphically integrate the nonlinear
differential equation (10) for the relaxation oscillations.

Figure 6: Graphical integration of equation (10)

Obviously, the solution plotted on this figure is nothing else but a limit
cycle of Poincaré. Nevertheless, contrary to a widespread view, Van der
Pol didn’t recognize this signature of a periodic solution and did make no
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connection with Poincaré’s works till 1930! On the occasion of a series of
lectures that he made at the École supérieure d’Électricité on March 10th

and 11th 1930, Van der Pol wrote [49]:

“Note on each of these three figures a closed integral curve, which
is an example of what Poincaré called a limit cycle, because the
neighboring integral curves are approaching asymptotically.”

Moreover, let’s notice that he didn’t make any reference to Poincaré’s
works but to Andronov’s article [2].

4.5 Liénard’s riddle

On May 1928, the French engineer Alfred Liénard (1869-1958) published an
article entitled “Étude des oscillations entretenues” in which he studied the
solution of the following nonlinear differential equation:

d2x

dt2
+ ωf (x)

dx

dt
+ ω2x = 0 (11)

Such an equation is a generalization of the well-known Van der Pol’s
equation and of course of Janet’s equation (4). Under certain assumptions
on the function F (x) =

∫ x
0 f (x) dx less restrictive than those chosen by

Cartan [4] and Van der Pol [45], Liénard [26] proved the existence and
uniqueness of a periodic solution of Eq. (11). Then, Liénard [26, p. 906]
plotted this solution (Fig. 7) and wrote:

“All integral curves, interior or exterior, traveled in the direction
of increasing time, tend asymptotically to the curve D, we say
that the corresponding periodic motion is a stable motion.”

Then, Liénard [26, p. 906] explained that the condition for which the
“periodic motion” is stable is given by the following inequality:∫

Γ

F (x) dy > 0 (12)

By considering that the trajectory curve describes the closed curve clock-
wise in the case of Poincaré and counter clockwise in the case of Liénard, it is
easy to show that both conditions (2) and (12) are completely identical3 and
represents an analogue of what is now called “orbital stability”. Again, one

3For more details see Ginoux [13, 16, 17, 18, 19].
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Figure 7: Closed curve solution of Eq. (10), Liénard [26].

can find no reference to Poincaré’s works in Liénard’s paper. Moreover, it is
very surprising to observe that he didn’t used the terminology “limit cycle”
to describe its periodic solution. All these facts constitutes the Liénard’s
riddle.

4.6 Andronov’s note at the Comptes Rendus

On Monday 14 October 1929, the French mathematician Jacques Hadamard
(1865-1963) presented to the Académie des Sciences de Paris a note which
was sent to him by Aleksandr Andronov and entitled “Poincaré’s limit cycles
and the theory of self-sustained oscillation”. In this work, Andronov [2] pro-
posed to transform the second order nonlinear differential equation modeling
the sustained oscillations by the series-dynamo machine, the singing arc or
the triode into the following set of two first order differential equations:

dx

dt
= P (x, y) ;

dy

dt
= Q (x, y) (13)

Then, he explained that the periodic solution of this system (13) is ex-
pressed in terms of Poincaré’s limit cycles:

“This results in self-oscillations which emerge in the systems
characterized by the equation of type (13) corresponding math-
ematically to Poincaré’s stable limit cycles.”
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It is important to notice that due to the imposed format of the Comptes
Rendus (limited to four pages), Andronov did not provide any demonstra-
tion. He just claimed that the periodic solution of a non-linear second order
differential equation defined by (13) “corresponds” to Poincaré’s stable limit
cycles. Then, Andronov provided a stability condition for the stability of
the limit cycle:

∫ 2π

0
[fx (R cos ξ,−R sin ξ; 0) cos ξ + gy (R cos ξ,−R sin ξ; 0) sin ξ] dξ < 0

(14)
In fact, this condition is based on the use of characteristic exponents

introduced by Poincaré in his so-called New Methods on Celestial Mechanics
[38, Vol. I, p. 161] and after by Lyapounov in his famous textbook General
Problem of Stability of the Motion [27]. That’s the reason why Andronov will
call later the stability condition (14): stability in the sense of Lyapounov or
Lyapounov stability. It has been stated by Ginoux [12, 13, 16, 18, 19] that
both stability condition of Poincaré (2) and of Andronov (14) are totally
identical. Thus by comparing Andronov’s previous sentence with that of
Poincaré (see above), it clearly appears that Andronov has stated the same
correspondence as Poincaré twenty years after him. Nevertheless, it seems
that Andronov may not have read Poincaré’s article since at that time even
if the first volume of his complete works had been already published it didn’t
contained Poincaré’s lectures on Wireless Telegraphy.

4.7 The first “lost” International Conference on Nonlinear
Oscillations

From 28 to 30 January 1933 the first International Conference of Nonlinear
Oscillations was held at the Institut Henri Poincaré (Paris) organized at the
initiative of the Dutch physicist Balthasar Van der Pol and of the Russian
mathematician Nikoläı Dmitrievich Papaleksi. This event, of which virtually
no trace remains, was reported in an article written in Russian by Papaleksi
at his return in USSR. This document, recently rediscovered by Ginoux [14],
has revealed, on the one hand, the list of participants who included French
mathematicians: Alfred Liénard, Élie and Henri Cartan, Henri Abraham,
Eugène Bloch, Léon Brillouin, Yves Rocard . . . and, on the other hand the
content of presentations and discussions. The analysis of the minutes of
this conference highlights the role and involvement of the French scientific
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community in the development of the theory of nonlinear oscillations4.
According to Papaleksi [29, p. 211], during his talk, Liénard recalled the

main results of his study on sustained oscillations:

“Starting from its graphical method for constructing integral
curves of differential equations, he deduced the conditions that
must satisfy the nonlinear characteristic of the system in order
to have periodic oscillations, that is to say for that the integral
curve to be a closed curve, i.e. a limit cycle.”

This statement on Liénard must be considered with great caution. In-
deed, one must keep in mind that Papaleksi had an excellent understanding
of the work of Andronov [2] and that his report was also intended for mem-
bers of the Academy of the USSR to which he must justified his presence
in France at this conference in order to show the important diffusion of the
Soviet work in Europe. Despite the presence of MM. Cartan, Lienard, Le
Corbeiller and Rocard it does not appear that this conference has gener-
ated, for these scientists, a renewed interest in the problem of sustained
oscillations and limit cycles.

5 The triode:
from limit cycle to “bizarre” solutions

At the end of the First World War, the development of wireless telegraphy
led the engineers and scientists to turn to the study of self-sustained os-
cillations in a three-electrode lamp subjected to a periodic “forcing” or a
“coupling‘”. According to Mrs. Mary Lucy Cartwright [9]:

“The non-linearity [in the Van der Pol equation] may be said to
control the amplitude in the sense that it allows it to increase
when it is small but prevents it becoming too large. The general
solution cannot be obtained by the combination of two linearly
independent solutions and similar difficulties arise when we add a
forcing term to this equation. This was brought out very clearly
by the work of van der Pol and Appleton, partly in collabora-
tion, and partly independently, in a series of papers on radio
oscillations published between 1920 and 1927. To me the work
of the radio engineers is much more interesting and suggestive

4For more details see Ginoux [13, 16, 14, 18, 19].
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than that of the mechanical engineers. The radio engineers want
their systems to oscillate, and to oscillate in a very orderly way,
and therefore they want to know not only whether the system
has a periodic solution, but whether it is stable, what its period
and amplitude and harmonic content are, and how these vary
with the parameters of the equation, and they sometimes want
the period to be determined with a very small error. In the early
days they wanted to explain why the amplitude was limited in
a certain way and why in some cases the period lengthened as
the harmonic content increased and not in others. The desire
to know why and the insistence on how the various quantities
such as amplitude and frequency vary with the parameters of
the equation over fairly wide ranges meant that numerical and
graphical solutions either failed to provide the answer or were far
too cumbersome. Further, unless one knows something about the
general behavior of the solutions, the numerical work, which is
only approximate, may be misleading.”

Thus, in the beginning of the 1920s, Van der Pol [40] studied the oscil-
lations of a forced triode, i.e. a triode powered by a voltage generator with
an f.e.m. of type v (t) = Esin (ω1t) the equation of which reads then:

v̈ − α
(
1− v2

)
v̇ + ω2

0v = ω2
1Esin (nω1t) with ε =

α

ω0
≪ 1 (15)

Four years later, while using the method of “slowly-varying amplitude”
that he had developed, Van der Pol [41] was thus able on the one hand to
obtain more directly the various approximations of the amplitude of this
forced system, and on the other hand, to construct a solution to the equa-
tion more easily than by using the classical Poincar-Lindstedt or Fourier
methods5. In this paper, Van der Pol [47] highlights the fact that when
the difference in frequency of the two signals is inferior to this value an
automatic synchronization phenomenon occurs and the two circuits oscil-
late with the same frequency. This led him to evidence the phenomenon of
frequency entrainment, which he defined thus:

“Hence the free frequency undergoes a correction in the direc-
tion of the forced frequency, giving the impression as if the free
frequency were being attracted by the forced frequency.”

5The English version of this article was published in 1927. See Van der Pol [47].
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In 1927, Van der Pol and his colleague Jan Van der Mark [48] published
an article titled “Frequency Demultiplication,” in which they again studied
the forced oscillations of a triode, but in the field of relaxation oscillations.
Then, they explained that the automatic synchronization phenomenon, ob-
served in the case of the forced oscillations of a triode, can also occur for
a range of the parameter corresponding to the relaxation oscillations, i.e.
for ε ≫ 1, but in a much wider frequency field. They also reported that
the resonance phenomenon is almost non-existent in forced relaxation os-
cillations, and that consequently, the sinusoidal e.m.f. inducing the forcing
influences the period (or frequency) of the oscillations more than it does
their amplitude, and added:

“It is found that the system is only capable of oscillating with dis-
crete frequencies, these being determined by whole sub-multiples
of the applied frequency.”

In their article, Van der Pol and Van der Mark [48] proposed, in order
to evidence the frequency demultiplication phenomenon, the following con-
struction (see Fig. 8) on which we can see a “jump” of the period for each
increase in the value of the capacitor’s capacitance.

Figure 8: Representation of the phenomenon of frequency demultiplication,
from Van der Pol et Van der Mark [48, p. 364].
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In order to evidence this frequency demultiplication phenomenon, Van
der Pol and Van der Mark used a phone. They then described the phe-
nomenon what they heard in the receiver:

“Often an irregular noise is heard in the telephone receivers be-
fore the frequency jumps to the next lower value. However, this
is a subsidiary phenomenon, the main effect being the regular
frequency multiplication.”

This irregular noise they heard was actually the sound manifestation
of the transition which was taking place. Indeed, as the frequency varied,
the solution to the differential equation (15), which had been until now
represented by a limit cycle, i.e. by a periodic attractor, would draw a
“strange attractor” transcribing the chaotic behavior of the solution. Van
der Pol seemed to have reached the limits of deterministic physics with how
far he went in the exploration of nonlinear and non-autonomous systems. He
“flirted”, as Mary Lucy Cartwright and John Edensor Littlewood [5, 6, 7, 8]
did twenty years later with the first signs of chaos, when they called “bizarre”
the behavior of the solution to the differential equation (15) for specific
values of the parameters. Indeed, according to Guckenheimer et al. [22]:

“Van der Pol’s work on nonlinear oscillations and circuit the-
ory provided motivation for the seminal work of Cartwright and
Littlewood. In 1938, just prior to World War II, the British
Radio Research Board issued a request for mathematicians to
consider the differential equations that arise in radio engineer-
ing. Responding to this request, Cartwright and Littlewood be-
gan studying the forced van der Pol equation and showed that it
does indeed have bistable parameter regimes. In addition, they
showed that there does not exist a smooth boundary between the
basins of attraction of the stable periodic orbits. They discovered
what is now called chaotic dynamics by detailed investigation of
this system.”

6 Conclusion

Thus, the analysis of the research performed on the following three devices:
the series-dynamo machine, the singing arc and the triode, over a period
ranging from the end of the XIXth century till the end of the Second World
War, has enabled to reconstruct the historical road leading from nonlinear
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oscillations to chaos theory. The series-dynamo machine has highlighted a
new kind of oscillations generated by the presence of a nonlinear component
in the circuit, i.e. a negative resistance. Poincaré’s work on the singing arc
has provided an analytical condition for the sustaining of these oscillations,
i.e. for the existence of a stable limit cycle. Moreover, this has proved that
Poincaré has established twenty years before Andronov the correspondence
between periodic solution and stable limit cycle. In his research on the tri-
ode, Blondel has solved the question of the mathematical modeling of its
oscillation characteristic, i.e. of its negative resistance and stated thus, one
year before Van der Pol, the triode’s equation. Then, Janet highlighted an
analogy between the oscillations sustained by the series-dynamo machine,
the singing arc and the triode and Van der Pol deduced that they were
belonging to the same oscillatory phenomenon that he called relaxation os-
cillations. Though he plotted the solution of the equation that now bears
his name, he didn’t recognize that it was obviously a Poincaré’s limit cycle.
Thereafter, Cartan and then Liénard proved the existence and uniqueness of
this periodic solution but did not make either a connection with Poincaré’s
works. Immediately after Andronov established this connection, Van der
Pol and Papaleksi organized the first International Conference on Nonlin-
ear Oscillations in Paris. Nevertheless, this meeting did not lead to any
development or research in this field. At the same time, Van der Pol and
Van der Mark highlighted that the forced triode was the source of a strange
phenomenon that they called frequency demultiplication. At the end of the
Second World War, Cartwright and Littlewood investigated this system and
considered its oscillations as “bizarre”. Many years later, it appeared that
they had actually observed the first chaotic behavior.
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générateurs, Comptes-Rendus de l’Académie des Sciences, 169, 943-
948 (17 November 1919).

[4] E. & H. Cartan, Note sur la génération des oscillations entretenues,
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p1 (t) + kp2 (t); k > 0, f (y) ≥ 1, Annals of Mathematics, 48, 472-494
(1947).

[7] M.L. Cartwright & J. Littlewood, Errata, Annals of Mathematics, 49,
1010 (1948).

[8] M.L. Cartwright & J. Littlewood, Addendum, Annals of Mathematics,
50, 504-505 (1949).

[9] M.L. Cartwright, Non-Linear Vibrations: A Chapter in Mathematical
History. Presidential Address to the Mathematical Association, Jan-
uary 3, 1952, The Mathematical Gazette, 36 316, 81-88 (May, 1952).

[10] W. du Bois Duddell, On Rapid Variations in the Current through the
Direct-Current Arc, Journal of the Institution of Electrical Engineers,
30, 148, 232-283 (1900).

[11] W. du Bois Duddell, On Rapid Variations in the Current through the
Direct-Current Arc, The Electrician, 46, 269-273 & 310-313 (1900).

[12] J.M. Ginoux & L. Petitgirard, Poincaré’s forgotten conferences on
wireless telegraphy, International Journal of Bifurcation & Chaos, 20,
11, 3617-3626 (2010).

[13] J.M. Ginoux, Analyse mathématiques des phénomènes oscillatoires
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Rendus de l’Académie des Sciences, 168, 226-227 (16 juillet 1880).

[21] J.M.A. Gérard-Lescuyer, On an electrodynamical paradox, Philosoph-
ical Magazine, v, 10, 215-216 (1880).

[22] J. Guckenheimer, K. Hoffman & W. Weckesser, The Forced van der
Pol Equation I: The Slow Flow and Its Bifurcations, SIAM Journal
Applied Dynamical Systems, 2, 1, 1-35 (2003)
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259-266, 291-297, 323-327, 355-359 & 387-393 (1908).

[32] H. Poincaré, Conférences sur la télégraphie sans fil, La Lumière
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