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In a previous paper we have proposed a new method for proving the
existence of “canard solutions” for three and four-dimensional singularly per-
turbed systems with only one fast variable which improves the methods used
until now. The aim of this work is to extend this method to the case of
four-dimensional singularly perturbed systems with two slow and two fast
variables. This method enables to state a unique generic condition for the
existence of “canard solutions” for such four-dimensional singularly perturbed
systems which is based on the stability of folded singularities (pseudo singular
points in this case) of the normalized slow dynamics deduced from a well-
known property of linear algebra. This unique generic condition is identical
to that provided in previous works. Applications of this method to the fa-
mous coupled FitzHugh-Nagumo equations and to the Hodgkin-Huxley model
enables to show the existence of “canard solutions” in such systems.
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1. INTRODUCTION

In the beginning of the eighties, Benôıt and Lobry [5], Benôıt [6] and
then Benôıt [7] in his PhD-thesis studied canard solutions in R3. In the
article entitled “Systèmes lents-rapides dans R3 et leurs canards,” Benôıt
[6, p. 170] proved the existence of canards solution for three-dimensional
singularly perturbed systems with two slow variables and one fast variable
while using “Non-Standard Analysis”according to a theorem which stated
that canard solutions exist in such systems provided that the pseudo sin-
gular point1 of the slow dynamics, i.e., of the reduced vector field is of
saddle type. Nearly twenty years later, Szmolyan and Wechselberger [25]
extended “Geometric Singular Perturbation Theory2” to canards problems
in R3 and provided a “standard version” of Benôıt’s theorem [6]. Very re-
cently, Wechselberger [39] generalized this theorem for n-dimensional sin-
gularly perturbed systems with k slow variables and m fast (Eq. (1)). The
method used by Szmolyan and Wechselberger [25] and Wechselberger [39]
require to implement a “desingularization procedure” which can be sum-
marized as follows: first, they compute the normal form of such singularly
perturbed systems which is expressed according to some coefficients (a and
b for dimension three and ã, b̃ and c̃j for dimension four) depending on the
functions defining the original vector field and their partial derivatives with
respect to the variables. Secondly, they project the “desingularized vector
field” (originally called “normalized slow dynamics” by Eric Benôıt [6, p.
166]) of such a normal form on the tangent bundle of the critical manifold.
Finally, they evaluate the Jacobian of the projection of this “desingular-
ized vector field” at the folded singularity (originally called pseudo singular
points by José Argémi [1, p. 336]). This lead Szmolyan and Wechsel-
berger [25, p. 427] and Wechselberger [39, p. 3298] to a “classification
of folded singularities (pseudo singular points)”. Thus, they showed that
for three-dimensional singularly perturbed systems such folded singularity
is of saddle type if the following condition is satisfied: a < 0 while for
four-dimensional singularly perturbed systems such folded singularity is of
saddle type if ã < 0. Then, Szmolyan and Wechselberger [25, p. 439] and
Wechselberger [39, p. 3304] established their Theorem 4.1. which state that
“In the folded saddle and in the folded node case singular canards perturb to
maximal canard for sufficiently small ε”. However, in their works neither
Szmolyan and Wechselberger [25] nor Wechselberger [39] did not provide
(to our knowledge) the expression of these constants (a and ã) which are
necessary to state the existence of canard solutions in such systems.
In a previous paper entitled: “Canards Existence in Memristor’s Cir-

cuits” (see Ginoux & Llibre [17]) we first provided the expression of these

1This concept has been originally introduced by José Argémi [1]. See Sec. 1.8.
2See Fenichel [12, 15], O’Malley [23], Jones [20] and Kaper [21]
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constants and then showed that they can be directly determined starting
from the normalized slow dynamics and not from the projection of the
“desingularized vector field” of the normal form. This method enabled to
state a unique “generic” condition for the existence of “canard solutions”
for such three and four-dimensional singularly perturbed systems which is
based on the stability of folded singularities of the normalized slow dynam-
ics deduced from a well-known property of linear algebra. This unique
condition which is completely identical to that provided by Benôıt [6] and
then by Szmolyan and Wechselberger [25] and finally by Wechselberger [39]
is “generic” since it is exactly the same for singularly perturbed systems of
dimension three and four with only one fast variable.
The aim of this work is to extend this method to the case of four-

dimensional singularly perturbed systems with k = 2 slow and m = 2 fast
variables. Since the dimension of the system is m = k +m, such problem
is known as “canards existence in R2+2”. Moreover, in this particular case
where k = m = 2, the folded singularities of Wechselberger [39, p. 3298]
are nothing else but the pseudo singular points of the late José Argémi [1]
as we will see below. Following the previous works, we show that for such
four-dimensional singularly perturbed systems pseudo singular points are
of saddle type if ã < 0. Then, according Theorem 4.1. of Wechselberger
[39, p. 3304] we provide the expression of this constant ã which is neces-
sary to establish the existence of canard solutions in such systems. So, we
can state that the condition ã < 0 for existence of canards in such R2+2 is
“generic” since it is exactly the same for singularly perturbed systems of
dimension three and four with only one fast variable.
The outline of this paper is as follows. In Sec. 1, definitions of singularly

perturbed system, critical manifold, reduced system, “constrained system”,
canard cycles, folded singularities and pseudo singular points are recalled.
The method proposed in this article is presented in Sec. 2 for the case
of four-dimensional singularly perturbed systems with two fast variables.
In Sec. 3, applications of this method to the famous coupled FitzHugh-
Nagumo equations and to the Hodgkin-Huxley model enables to show the
existence of “canard solutions” in such systems.

2. DEFINITIONS

2.1. Singularly perturbed systems

According to Tikhonov [37], Jones [20] and Kaper [21] singularly per-
turbed systems are defined as:

x⃗′ = εf⃗ (x⃗, y⃗, ε) ,

y⃗′ = g⃗ (x⃗, y⃗, ε) .
(1)
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where x⃗ ∈ Rk, y⃗ ∈ Rm, ε ∈ R+, and the prime denotes differentiation
with respect to the independent variable t′. The functions f⃗ and g⃗ are
assumed to be C∞ functions3 of x⃗, y⃗ and ε in U × I, where U is an open
subset of Rk × Rm and I is an open interval containing ε = 0.

In the case when 0 < ε ≪ 1, i.e. ε is a small positive number, the
variable x⃗ is called slow variable, and y⃗ is called fast variable. Using
Landau’s notation: O (εp) represents a function f of u and ε such that
f(u, ε)/εp is bounded for positive ε going to zero, uniformly for u in the
given domain.

In general we consider that x⃗ evolves at an O (ε) rate; while y⃗ evolves
at an O (1) slow rate. Reformulating system (1) in terms of the rescaled
variable t = εt′, we obtain

˙⃗x = f⃗ (x⃗, y⃗, ε) ,

ε ˙⃗y = g⃗ (x⃗, y⃗, ε) .
(2)

The dot represents the derivative with respect to the new independent
variable t.

The independent variables t′ and t are referred to the fast and slow
times, respectively, and (1) and (2) are called the fast and slow systems,
respectively. These systems are equivalent whenever ε ̸= 0, and they are
labeled singular perturbation problems when 0 < ε ≪ 1. The label “singu-
lar” stems in part from the discontinuous limiting behavior in system (1)
as ε → 0.

2.2. Reduced slow system

In such case system (2) leads to a differential-algebraic system (D.A.E.)
called reduced slow system whose dimension decreases from k +m = n to
m. Then, the slow variable x⃗ ∈ Rk partially evolves in the submanifold
M0 called the critical manifold4. The reduced slow system is

˙⃗x = f⃗ (x⃗, y⃗, ε) ,

0⃗ = g⃗ (x⃗, y⃗, ε) .
(3)

2.3. Slow Invariant Manifold

The critical manifold is defined by

M0 :=
{
(x⃗, y⃗) : g⃗ (x⃗, y⃗, 0) = 0⃗

}
. (4)

3In certain applications these functions will be supposed to be Cr, r > 1.
4It represents the approximation of the slow invariant manifold, with an error of O(ε).
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Such a normally hyperbolic invariant manifold (4) of the reduced slow
system (3) persists as a locally invariant slow manifold of the full problem
(1) for ε sufficiently small. This locally slow invariant manifold is O(ε)
close to the critical manifold.
When Dx⃗f⃗ is invertible, thanks to the Implicit Function Theorem, M0

is given by the graph of a C∞ function x⃗ = G⃗0 (y⃗) for y⃗ ∈ D, where
D ⊆ Rk is a compact, simply connected domain and the boundary of D is
a (k − 1)–dimensional C∞ submanifold5.

According to Fenichel [12, 15] theory if 0 < ε ≪ 1 is sufficiently small,

then there exists a function G⃗ (y⃗, ε) defined on D such that the manifold

Mε :=
{
(x⃗, y⃗) : x⃗ = G⃗ (y⃗, ε)

}
, (5)

is locally invariant under the flow of system (1). Moreover, there exist
perturbed local stable (or attracting) Ma and unstable (or repelling) Mr

branches of the slow invariant manifold Mε. Thus, normal hyperbolicity
of Mε is lost via a saddle-node bifurcation of the reduced slow system (3).
Then, it gives rise to solutions of “canard” type.

2.4. Canards, singular canards and maximal canards

A canard is a solution of a singularly perturbed dynamical system (1)
following the attracting branch Ma of the slow invariant manifold, passing
near a bifurcation point located on the fold of this slow invariant manifold,
and then following the repelling branch Mr of the slow invariant manifold.
A singular canard is a solution of a reduced slow system (3) following the

attracting branch Ma,0 of the critical manifold, passing near a bifurcation
point located on the fold of this critical manifold, and then following the
repelling branch Mr,0 of the critical manifold.
A maximal canard corresponds to the intersection of the attracting and

repelling branches Ma,ε ∩ Mr,ε of the slow manifold in the vicinity of a
non-hyperbolic point.
According to Wechselberger [39, p. 3302]:

“Such a maximal canard defines a family of canards nearby which are
exponentially close to the maximal canard, i.e. a family of solutions of (1)
that follow an attracting branch Ma,ε of the slow manifold and then follow,
rather surprisingly, a repelling/saddle branch Mr,ε of the slow manifold for
a considerable amount of slow time. The existence of this family of canards
is a consequence of the non-uniqueness of Ma,ε and Mr,ε. However, in the
singular limit ε → 0, such a family of canards is represented by a unique
singular canard.”

5The set D is overflowing invariant with respect to (2) when ε = 0. See Kaper [21]
and Jones [20].
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Canards are a special class of solution of singularly perturbed dynami-
cal systems for which normal hyperbolicity is lost. Canards in singularly
perturbed systems with two or more slow variables (x⃗ ∈ Rk, k > 2) and
one fast variable (y⃗ ∈ Rm, m = 1) are robust, since maximal canards
generically persist under small parameter changes6.

2.5. Constrained system

In order to characterize the “slow dynamics”, i.e. the slow trajectory
of the reduced slow system (3) (obtained by setting ε = 0 in (2)), Floris
Takens [28] introduced the “constrained system” defined as follows:

˙⃗x = f⃗ (x⃗, y⃗, 0) ,

Dy⃗ g⃗. ˙⃗y = −(Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

(6)

Since, according to Fenichel [12, 15], the critical manifold g⃗ (x⃗, y⃗, 0) may
be considered as locally invariant under the flow of system (1), we have:

dg⃗

dt
(x⃗, y⃗, 0) = 0 ⇐⇒ Dx⃗g⃗. ˙⃗x+Dy⃗ g⃗. ˙⃗y = 0⃗.

By replacing ˙⃗x by f⃗ (x⃗, y⃗, 0) leads to:

Dx⃗g⃗.f⃗ (x⃗, y⃗, 0) +Dy⃗ g⃗. ˙⃗y = 0⃗.

This justifies the introduction of the constrained system.
Now, let adj(Dy⃗ g⃗) denote the adjoint of the matrix Dy⃗ g⃗ which is the

transpose of the co-factor matrix Dy⃗ g⃗, then while multiplying the left hand
side of (6) by the inverse matrix (Dy⃗ g⃗)

−1 obtained by the adjoint method
we have:

˙⃗x = f⃗ (x⃗, y⃗, 0) ,

det(Dy⃗ g⃗) ˙⃗y = −(adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

(7)

2.6. Normalized slow dynamics

Then, by rescaling the time by setting t = −det(Dy⃗ g⃗)τ we obtain the fol-
lowing system which has been called by Eric Benôıt [6, p. 166] “normalized
slow dynamics”:

6See Benôıt [6, 9], Szmolyan and Wechselberger [25] and Wechselberger [38, 39].
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˙⃗x = −det(Dy⃗ g⃗)f⃗ (x⃗, y⃗, 0) ,

˙⃗y = (adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) ,

0⃗ = g⃗ (x⃗, y⃗, 0) .

(8)

where the overdot now denotes the time derivation with respect to τ .
Let’s notice that José Argémi [1] proposed to rescale time by setting

t = −det(Dy⃗ g⃗)sgn(det(Dy⃗ g⃗))τ in order to keep the same flow direction in
(8) as in (7).

2.7. Desingularized vector field

By application of the Implicit Function Theorem, let suppose that we
can explicitly express from Eq. (4), say without loss of generality, x1

as a function ϕ1 of the other variables. This implies that M0 is locally
the graph of a function ϕ1 : Rk → Rm over the base U = (χ⃗, y⃗) where
χ⃗ = (x2, x3, ..., xk). Thus, we can span the “normalized slow dynamics”
on the tangent bundle at the critical manifold M0 at the pseudo singular
point. This leads to the so-called desingularized vector field :

˙⃗χ = −det(Dy⃗ g⃗)f⃗ (χ⃗, y⃗, 0) ,

˙⃗y = (adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (χ⃗, y⃗, 0) .
(9)

2.8. Pseudo singular points and folded singularities

As recalled by Guckenheimer and Haiduc [18, p. 91], pseudo-singular
points have been introduced by the late José Argémi [1] for low-dimensional
singularly perturbed systems and are defined as singular points of the “nor-
malized slow dynamics” (8). Twenty-three years later, Szmolyan andWech-
selberger [25, p. 428] called such pseudo singular points, folded singularities.
In a recent publication entitled “A propos de canards” Wechselberger [39,
p. 3295] proposed to define such singularities for n-dimensional singularly
perturbed systems with k slow variables and m fast as the solutions of the
following system:

det(Dy⃗ g⃗) = 0,

(adj(Dy⃗ g⃗).Dx⃗g⃗.f⃗) (x⃗, y⃗, 0) = 0⃗,

g⃗ (x⃗, y⃗, 0) = 0⃗.

(10)

Thus, for dimensions higher than three, his concept encompasses that of
Argémi. Moreover, Wechselberger [39, p. 3296] proved that folded singu-
larities form a (k − 2)-dimensional manifold. Thus, for k = 2 the folded
singularities are nothing else than the pseudo singular points defined by
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Argémi [1]. While for k > 3 the folded singularities are no more points
but a (k−2)-dimensional manifold. Moreover, let’s notice on the one hand
that the original system (1) includes n = k+m variables and on the other
hand, that the system (10) comprises p = 2m + 1 equations. However, in
the particular case k = m = 2, two equations of the system (10) are linearly
dependent. So, such system only comprisesp = 2m = 2k equations. So, all
the variables (unknowns) of system (10) can be determined. The solutions
of this system are called pseudo singular points. We will see in the next Sec.
2 that the stability analysis of these pseudo singular points will give rise to
a condition for the existence of canard solutions in the original system (1).

3. FOUR-DIMENSIONAL SINGULARLY PERTURBED
SYSTEMS WITH TWO FAST VARIABLES

A four-dimensional singularly perturbed dynamical system (2) with k = 2
slow variables and m = 2 fast may be written as:

ẋ1 = f1 (x1, x2, y1, y2) , (11a)

ẋ2 = f2 (x1, x2, y1, y2) , (11b)

εẏ1 = g1 (x1, x2, y1, y2) , (11c)

εẏ2 = g2 (x1, x2, y1, y2) , (11d)

where x⃗ = (x1, x2)
t ∈ R2, y⃗ = (y1, y2) ∈ R2, 0 < ε ≪ 1 and the functions

fi and gi are assumed to be C2 functions of (x1, x2, y1, y2).

3.1. Critical Manifold

The critical manifold equation of system (11) is defined by setting ε = 0
in Eqs. (11c & 11d). Thus, we obtain:

g1 (x1, x2, y1, y2) = 0, (12a)

g2 (x1, x2, y1, y2) = 0. (12b)

By application of the Implicit Function Theorem, let suppose that we can
explicitly express from Eqs. (12a & 12b), say without loss of generality, x1

and y1 as functions of the others variables:

x1 = ϕ1 (x2, y1, y2) , (13a)

y1 = ϕ2 (x1, x2, y2) . (13b)
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3.2. Constrained system

The constrained system is obtained by equating to zero the time deriva-
tive of g1,2 (x1, x2, y1, y2):

dg1
dt

=
∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2 +
∂g1
∂y1

ẏ1 +
∂g1
∂y1

ẏ2 = 0 (14a)

dg2
dt

=
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2 +
∂g2
∂y1

ẏ1 +
∂g2
∂y1

ẏ2 = 0 (14b)

Eqs. (14a & 14b) may be written as:

∂g1
∂y1

ẏ1 +
∂g1
∂y1

ẏ2 = −
(
∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
(15a)

∂g2
∂y1

ẏ1 +
∂g2
∂y1

ẏ2 = −
(
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
(15b)

By solving the system of two equations (15a & 15b) with two unknowns
(ẏ1, ẏ2) we find:

ẏ1 =
−
(

∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y2

+
(

∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y2

det
[
J(y1,y2)

] , (16a)

ẏ2 =
−
(

∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y1

+
(

∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y1

det
[
J(y1,y2)

] . (16b)

So, we have the following constrained system:

ẋ1 = f1 (x1, x2, y1, y2) ,

ẋ2 = f2 (x1, x2, y1, y2) ,

ẏ1 =
−
(

∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y2

+
(

∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y2

det
[
J(y1,y2)

] ,

ẏ2 =
−
(

∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y1

+
(

∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y1

det
[
J(y1,y2)

] ,

0 = g1 (x1, x2, y1, y2) ,

0 = g2 (x1, x2, y1, y2) .

(17)
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3.3. Normalized slow dynamics

By rescaling the time by setting t = −det
[
J(y1,y2)

]
τ we obtain the “nor-

malized slow dynamics”:

ẋ1 = −f1 (x1, x2, y1, y2) det
[
J(y1,y2)

]
= F1 (x1, x2, x3, y1) ,

ẋ2 = −f2 (x1, x2, y1, y2) det
[
J(y1,y2)

]
= F2 (x1, x2, x3, y1) ,

ẏ1 =

(
∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y2

−
(
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y2

= G1 (x1, x2, x3, y1) ,

ẏ2 =

(
∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y1

−
(
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y1

= G2 (x1, x2, x3, y1) ,

0 = g1 (x1, x2, y1, y2) ,

0 = g2 (x1, x2, y1, y2) .

(18)

where the overdot now denotes the time derivation with respect to τ .

3.4. Desingularized system on the critical manifold

Then, since we have supposed that x1 and y1 may be explicitly expressed
as functions of the others variables (13a & 13b), they can be used to project
the normalized slow dynamics (18) on the tangent bundle of the critical
manifold. So, we have:

ẋ2 = −f2 (x1, x2, y1, y2) det
[
J(y1,y2)

]
= F2 (x2, y2) ,

ẏ2 = (
∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2)
∂g2
∂y1

− (
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2)
∂g1
∂y1

= G2 (x2, y2) .
(19)

3.5. Pseudo singular points

Pseudo-singular points are defined as singular points of the “normalized
slow dynamics”, i.e. as the set of points for which we have:

det
[
J(y1,y2)

]
= 0, (20a)(

∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y2

−
(
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y2

= 0, (20b)(
∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y1

−
(
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y1

= 0, (20c)

g1 (x1, x2, y1, y2) = 0, (20d)

g2 (x1, x2, y1, y2) = 0. (20e)
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Remark 1. Let’s notice on the one hand that Eqs. (20b) & (20c) are
linearly dependent and on the other hand that contrary to previous works
we don’t use the “desingularized vector field” (19) but the “normalized
slow dynamics” (18).

The Jacobian matrix of system (18) reads:

J(F1,F2,G1,G2) =



∂F1

∂x1

∂F1

∂x2

∂F1

∂y1

∂F1

∂y2

∂F2

∂x1

∂F2

∂x2

∂F2

∂y1

∂F2

∂y2

∂G1

∂x1

∂G1

∂x2

∂G1

∂y1

∂G1

∂y2

∂G2

∂x1

∂G2

∂x2

∂G2

∂y1

∂G2

∂y2


(21)

3.6. Extension of Benôıt’s generic hypothesis

Without loss of generality, it seems reasonable to extend Benôıt’s generic
hypotheses introduced for the three-dimensional case to the four-dimensional
case. So, first, let’s suppose that by a “standard translation” the pseudo
singular point can be shifted at the origin O(0, 0, 0, 0) and that by a “stan-
dard rotation” of y1-axis that the slow manifold is tangent to (x2, x3, y1)-
hyperplane, so we have

f1 (0, 0, 0, 0) = g1 (0, 0, 0, 0) = 0

∂g1
∂x2

∣∣∣∣
(0,0,0,0)

=
∂g1
∂x3

∣∣∣∣
(0,0,0,0)

=
∂g1
∂y1

∣∣∣∣
(0,0,0,0)

= 0
(22)

Then, let’s make the following assumptions for the non-degeneracy of the
folded singularity :

f2 (0, 0, 0, 0) ̸= 0 ;
∂g1
∂x1

∣∣∣∣
(0,0,0,0)

̸= 0 ;
∂2g1
∂y21

∣∣∣∣
(0,0,0,0)

̸= 0. (23)

According to these generic hypotheses Eqs. (22-23), the Jacobian matrix
(21) reads:
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J(F1,F2,G1,G2) =



0 0 0 0

−f2
∂P

∂x1
−f2

∂P

∂x2
−f2

∂P

∂y1
−f2

∂P

∂y2

a31 a32 a33 a34

a41 a42 a43 a44


(24)

where

P = det
[
J(y1,y2)

]
,

a3i = −f2
∂g2
∂x2

∂2g1
∂y2∂xi

+
∂g2
∂y2

(
f2

∂2g1
∂x2∂xi

+
∂g1
∂x1

∂f1
∂xi

)
for i = 1, 2,

a3i = −f2
∂g2
∂x2

∂2g1
∂y2∂yi

+
∂g2
∂y2

(
f2

∂2g1
∂x2∂yi

+
∂g1
∂x1

∂f1
∂yi

)
for i = 3, 4,

a4i = f2
∂g2
∂x2

∂2g1
∂y1∂xi

− ∂g2
∂y1

(
f2

∂2g1
∂x2∂xi

+
∂g1
∂x1

∂f1
∂xi

)
for i = 1, 2,

a4i = f2
∂g2
∂x2

∂2g1
∂y1∂yi

− ∂g2
∂y1

(
f2

∂2g1
∂x2∂yi

+
∂g1
∂x1

∂f1
∂yi

)
for i = 3, 4.

Thus, we have the following Cayley-Hamilton eigenpolynomial associated
with such a Jacobian matrix (24) evaluated at the pseudo singular point,
i.e., at the origin:

λ4 − σ1λ
3 + σ2λ

2 − σ3λ+ σ4 = 0 (25)

where σ1 = Tr(J) is the sum of all first-order diagonal minors of J , i.e.,
the the trace of the Jacobian matrix J , σ2 represents the sum of all second-
order diagonal minors of J and σ3 represents the sum of all third-order
diagonal minors of J . It appears that σ4 = |J | = 0 since one row of the
Jacobian matrix (24) is null. So, the eigenpolynomial reduces to:

λ
(
λ3 − σ1λ

2 + σ2λ− σ3

)
= 0 (26)

But, according to Wechselberger [39], σ3 vanishes at a pseudo singular
point as it’s easy to prove it. So, the eigenpolynomial (26) is reduced to

λ2
(
λ2 − σ1λ+ σ2

)
= 0 (27)

Let λi be the eigenvalues of the eigenpolynomial (27) and let’s denote
by λ3,4 = 0 the obvious double root of this polynomial. We have:
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σ1 = Tr(J(F1,F2,G1,G2)) = λ1 + λ2 =
∂g2
∂x1

∂g1
∂y1

∂f1
∂y2

,

σ2 =

3∑
i=1

∣∣∣J ii
(F1,F2,G1,G2)

∣∣∣ = λ1λ2

=

(
∂g1
∂y1

)2
[
f2
2

(
∂2g2
∂x2

2

∂2g2
∂y22

−
(

∂2g2
∂x2∂y2

)2
)

+f2
∂g2
∂x1

(
∂2g2
∂y22

∂f1
∂x2

− ∂2g2
∂x2∂y2

∂f1
∂y2

)]
(28)

where σ1 = Tr(J(F1,F2,G1,G2)) = p is is the sum of all first-order diagonal
minors of J(F1,F2,G1,G2), i.e. the trace of the Jacobian matrix J(F1,F2,G1,G2)

and σ2 =
∑3

i=1

∣∣∣J ii
(F1,F2,G1,G2)

∣∣∣ = q represents the sum of all second-order

diagonal minors of J(F1,F2,G1,G2). Thus, the pseudo singular point is of
saddle-type iff the following conditions C1 and C2 are verified:

C1 : ∆ = p2 − 4q > 0,

C2 : q < 0.
(29)

Condition C1 is systematically satisfied provided that condition C2 is
verified. Thus, the pseudo singular point is of saddle-type iff q < 0.

3.7. Canard existence in R2+2

Following the works of Wechselberger [39] it can be stated, while using a
standard polynomial change of variables, that any n-dimensional singularly
perturbed systems with k slow variables (k > 2) and m fast (m > 1) (1)
can be transformed into the following “normal form”:

ẋ1 = ãx2 + b̃y2 +O
(
x1, ϵ, x

2
2, x2y2, y

2
2

)
,

ẋ2 = 1 +O (x1, x2, y2, ϵ) ,

ϵẏ1 = c̃y1 +O
(
ϵx1, ϵx2, ϵy2, x

2
1, x

2
2, y

2
2 , x2y2

)
,

ϵẏ2 = −
(
x1 + y22

)
+O

(
ϵx1, ϵx2, ϵy2, ϵ

2, x2
1y2, y

3
2 , x1x2y2

)
.

(30)

We establish in Appendix A for any four-dimensional singularly per-
turbed systems (11) with k = 2 slow and m = 2 fast variables that
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ã =
1

2

[
f2
2

(
∂2g2
∂x2

2

∂2g2
∂y22

−
(

∂2g2
∂x2∂y2

)2
)

+ f2
∂g2
∂x1

(
∂2g2
∂y22

∂f1
∂x2

− ∂2g2
∂x2∂y2

∂f1
∂y2

)]

b̃ = − ∂g2
∂x1

∂f1
∂y2

,

c̃ =
∂g1
∂y1

.

Thus, in his paper Wechselberger [39, p. 3304] provided in the framework
of “standard analysis” a generalization of Benôıt’s theorem [6] for any n-
dimensional singularly perturbed systems with k slow variables (k > 2)
and m fast (m > 1). According to his Theorem 4.1 presented below he
proved the existence of canard solutions for the original system (1).

Theorem 2.

In the folded saddle case of system (30) singular canards perturb to maxi-
mal canards solutions for sufficiently small ε ≪ 1.

Proof. See Wechselberger [39].

Since our method doesn’t use the “desingularized vector field” (19) but
the “normalized slow dynamics” (18), we have the following proposition:

Proposition 3.

If the normalized slow dynamics (18) has a pseudo singular point of saddle
type, i.e. if the sum σ2 of all second-order diagonal minors of the Jacobian
matrix of the normalized slow dynamics (18) evaluated at the pseudo sin-
gular point is negative, i.e. if σ2 < 0 then, according to Theorem 2, system
(11) exhibits a canard solution which evolves from the attractive part of the
slow manifold towards its repelling part.

Proof.
By making some smooth changes of time and smooth changes of co-

ordinates (see Appendix A) we brought the system (11) to the following
“normal form”:

ẋ1 = ãx2 + b̃y2 +O
(
x1, ϵ, x

2
2, x2y2, y

2
2

)
,

ẋ2 = 1 +O (x1, x2, y2, ϵ) ,

ϵẏ1 = c̃y1 +O
(
ϵx1, ϵx2, ϵy2, x

2
1, x

2
2, y

2
2 , x2y2

)
,

ϵẏ2 = −
(
x1 + y22

)
+O

(
ϵx1, ϵx2, ϵy2, ϵ

2, x2
1y2, y

3
2 , x1x2y2

)
,

Then, we deduce that the condition for the pseudo singular point to be
of saddle type is ã < 0. According to Eqs. (29) it is easy to verify that
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σ1 = Tr(J(F1,F2,G1,G2)) = λ1 + λ2 = −b̃c̃,

σ2 =

3∑
i=1

∣∣∣J ii
(F1,F2,G1,G2)

∣∣∣ = λ1λ2 = 2ãc̃2.

So, the condition for which the pseudo singular point is of saddle type,
i.e. σ2 < 0 is identical to that proposed by Wechselberger [39, p. 3298] in
his theorem, i.e. ã < 0.

So, Prop. 3 can be used to state the existence of canard solution for such
systems. Application of Proposition 3 to the coupled FitzHugh-Nagumo
equations, presented in Sec. 4, which is a four-dimensional singularly per-
turbed system with two slow and two fast variables will enable to prove,
as many previous works such as those of Tchizawa & Campbell [30] and
Tchizawa [30, 31, 32, 33, 34, 35], the existence of “canard solutions” in
such system. According to Tchizawa [36], it is very important to notice, on
the one hand that the fast equation has 2-dimensional in the system R2+2

and, on the other hand that the fast system can give attractive, repulsive or
attractive-repulsive at each pseudo singular point. Then, Tchizawa [36] has
established that the jumping direction can be shown using the eigenvectors.
In the same way we will find again the results of Rubin et al. [24] concern-
ing the existence of “canard solutions” in the Hodgkin-Huxley model but
with a set of more realistic parameters used in Chua et al. [10, 11].



16 J.M. GINOUX AND J. LLIBRE

4. COUPLED FITZHUGH-NAGUMO EQUATIONS

The FitzHugh-Nagumo model [16, 22] is a simplified version of the Hodgkin-
Huxley model [19] which models in a detailed manner activation and deac-
tivation dynamics of a spiking neuron. By coupling two FitzHugh-Nagumo
models Tchizawa & Campbell [29] and Tchizawa [30, 35] obtained the fol-
lowing four-dimensional singularly perturbed system with two slow and
two fast variables:

dx1

dt
=

1

c
(y1 + bx1) , (31a)

dx2

dt
=

1

c
(y2 + bx2) , (31b)

ε
dy1
dt

= x1 −
y31
3

+ y2, (31c)

ε
dy2
dt

= x2 −
y32
3

+ y1. (31d)

where 0 < ε ≪ 1 and b is the “canard parameter” or “duck parameter”
while c is a scale factor.

4.1. Slow manifold and contrained system

The slow manifold equation of system (31) is defined by setting ε = 0 in
Eqs. (31c & 31d). Thus, we obtain:

dx1

dt
=

1

c
(y1 + bx1) ,

dx2

dt
=

1

c
(y2 + bx2) ,

dy1
dt

= −

1

c
(y2 + bx2) +

y22
c
(y1 + bx1)

y21y
2
2 − 1

,

dy2
dt

= −

1

c
(y1 + bx1) +

y21
c
(y2 + bx2)

y21y
2
2 − 1

,

0 = x1 −
y31
3

+ y2,

0 = x2 −
y32
3

+ y1.

(32)
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4.2. Normalized slow dynamics

Then, by rescaling the time by setting t = −det
[
J(y1,y2)

]
τ = −(y21y

2
2−1)

we obtain the “normalized slow dynamics”:

dx1

dt
= −1

c
(y1 + bx1)

(
y21y

2
2 − 1

)
= F1 (x1, x2, y1, y2) ,

dx2

dt
= −1

c
(y2 + bx2)

(
y21y

2
2 − 1

)
= F2 (x1, x2, y1, y2) ,

dy1
dt

=
1

c
(y2 + bx2) +

y22
c
(y1 + bx1) = G1 (x1, x2, y1, y2) ,

dy2
dt

=
1

c
(y1 + bx1) +

y21
c
(y2 + bx2)G2 (x1, x2, y1, y2) ,

0 = x1 −
y31
3

+ y2,

0 = x2 −
y32
3

+ y1.

(33)

4.3. Pseudo singular points

From Eqs. (20), the pseudo-singular points of system (31) are defined
by:

det
[
J(y1,y2)

]
= y21y

2
2 − 1 = 0, (34a)(

∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y2

−
(
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y2

(34b)

=
1

c
(y2 + bx2) +

y22
c
(y1 + bx1) = 0,(

∂g1
∂x1

ẋ1 +
∂g1
∂x2

ẋ2

)
∂g2
∂y1

−
(
∂g2
∂x1

ẋ1 +
∂g2
∂x2

ẋ2

)
∂g1
∂y1

(34c)

=
1

c
(y1 + bx1) +

y21
c
(y2 + bx2) = 0,

g1 (x1, x2, y1, y2) = x1 −
y31
3

+ y2 = 0, (34d)

g2 (x1, x2, y1, y2) = x2 −
y32
3

+ y1 = 0. (34e)

According to Tchizawa & Campbell [29] and Tchizawa [30, 31], there are
six pseudo singular points, the last four are depending on the parameter b.
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(x̃1, x̃2, ỹ1, ỹ2) =

(
±4

3
,∓4

3
,±1,∓1

)
, (35a)

(x̃1, x̃2, ỹ1, ỹ2) =

±

√
3−

√
9−4b2

b

(
3 + 2

√
9− 4b2

)
3
√
2b

,

∓

√
3−

√
9−4b2

b

(
9− 8b2 + 3

√
9− 4b2

)
6
√
2b2

,

∓

√
3−

√
9− 4b2

2b
, ∓

√
2b√

3−
√
9− 4b2

)
, (35b)

(x̃1, x̃2, ỹ1, ỹ2) =

±
(
3− 2

√
9− 4b2

)√
3+

√
9−4b2

b

3
√
2b

,

∓

√
3+

√
9−4b2

b

(
9− 8b2 − 3

√
9− 4b2

)
6
√
2b2

,

∓

√
3−

√
9− 4b2

2b
, ∓

√
2b√

3−
√
9− 4b2

)
. (35c)

4.4. Canard existence in coupled FitzHugh-Nagumo equations

The Jacobian matrix of system (33) evaluated at the pseudo singular
points (35a) reads:

J(F1,F2,G1,G2) =



0 0
2(3 + 4b)

3c
−2(3 + 4b)

3c

0 0 −2(3 + 4b)

3c

2(3 + 4b)

3c

b

c

b

c

1

c
− 3+8b

3c

b

c

b

c
−3 + 8b

3c

1

c


(36)

Remark 4. Although the pseudo singular points have not been shifted
at the origin extension of Benôıt’s generic hypotheses (22-23) are satisfied.
In other words, we have σ4 = σ3 = 0.

According to Eqs. (28) we find that:
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p = σ1 = Tr(J) = +
2

c
,

q = σ2 = −16b(3 + 4b)

9c2

(37)

Thus, according to Prop. 3, the pseudo singular points are of saddle-type
if and only if:

−16b(3 + 4b)

9c2
< 0

So, we have the following conditions C1 and C2:

C1 : ∆ =
4(3 + 8b)2

9c2
> 0,

C2 : q = −16b(3 + 4b)

9c2
< 0.

(38)

Let’s choose arbitrarily b as the “canard parameter” or “duck parame-
ter”. Obviously, it appears that the condition C1 is still satisfied. Finally,
the pseudo singular points are of saddle-type if and only if we have:

b > 0 or b < −3

4
. (39)

Remark 5. Let’s notice that the pseudo singular points are of node-

type if −3

4
< b < 0 as stated by Tchizawa & Campbell [29] and Tchizawa

[30, 31].

The Jacobian matrix J(F1,F2,G1,G2) of system (33) evaluated at the pseudo
singular points (35b) reads:



0 0 − 4
√
9−4b2

3c − 2(−9+4b2+3
√
9−4b2)

3bc

0 0
2(−9+4b2+3

√
9−4b2)

3bc
4
√
9−4b2

3c

3+
√
9−4b2

2c
b
c

3+
√
9−4b2

2bc
3−4

√
9−4b2

3c

b
c

3−
√
9−4b2

2c
3+4

√
9−4b2

3c
3−

√
9−4b2

2bc


(40)

Remark 6. Although, the pseudo singular points have not been shifted
at the origin extension of Benôıt’s generic hypotheses (22-23) are satisfied.
In other words, we have σ4 = σ3 = 0.
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According to Eqs. (28) we find that:

p = σ1 = Tr(J) = +
3

bc
,

q = σ2 =
16
(
9− 4b2

)
9c2

(41)

Thus, according to Prop. 3, the pseudo singular points are of saddle-type
if and only if:

16
(
9− 4b2

)
9c2

< 0

∆ = p2 − 4q > 0 and q < 0.

So, we have the following conditions C1 and C2:

C1 : ∆ =

(
3

bc

)2

−
64
(
9− 4b2

)
9c2

> 0,

C2 : q =
16
(
9− 4b2

)
9c2

< 0.

(42)

Let’s choose arbitrarily b as the “canard parameter” or “duck param-
eter”. Obviously, it appears that if the condition C2 is verified then the
condition C1 is de facto satisfied. Finally, the pseudo singular points are
of saddle-type if and only if we have:

b >
3

2
or b < −3

2
. (43)

Remark 7. Because of the symmetry of this coupled FitzHugh-Nagumo
equations, the Jacobian matrix of system (33) evaluated at the pseudo
singular points (35c) provides the same result as just above.
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5. HODGKIN-HUXLEY MODEL

The original Hodgkin-Huxley model [19] is described by the following
system of four nonlinear ordinary differential equations:

dV

dt
=

1

CM

[
I − ḡKn4(V − VK)− ḡNam

3h(V − VNa)− ḡL(V − VL)
]
(44a)

dn

dt
= αn(V )(1− n)− βn(V )n (44b)

dm

dt
= αm(V )(1−m)− βm(V )m (44c)

dh

dt
= αh(V )(1− h)− βh(V )h (44d)

where:

αn(V ) = 0.01(V + 10)/

(
exp

V + 10

10
− 1

)
, (45a)

βn(V ) = 0.125 exp (V/80) , (45b)

αm(V ) = 0.1(V + 25)/

(
exp

V + 25

10
− 1

)
, (45c)

βm(V ) = 4 exp(V/18), (45d)

αh(V ) = 0.07 exp(V/20), (45e)

βn(V ) = 1/

(
exp

V + 30

10
+ 1

)
(45f)

The first equation (44a) results from the application of Kirchhoff’s law
to the space clamped squid giant axon. Thus, the total membrane current
CMdV/dt for which CM represents the specific membrane capacity and V
the displacement of the membrane potential from its resting value, is equal
to the sum of the following intrinsic currents:

IK = ḡKn4(V − VK)

INa = ḡNam
3h(V − VNa)

IL = ḡL(V − VL)

where IK is a delayed rectifier potassium current, INa is fast sodium
current and IL is the “leakage current”. The parameter I is the total
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membrane current density, inward positive, i.e. the total current injected
into the space clamped squid giant axon and VK , VNa and VL are the equi-
librium potentials of potassium, sodium and “leakage current” respectively.
The maximal specific conductances of the ionic currents are denoted ḡK ,
ḡNa and ḡL respectively. Functions αn,m,h and βn,m,h are gates’ opening
and closing rates depending on V . Variable m denotes the activation of
the sodium current, variable h the inactivation of the sodium current and
variable n the activation of the potassium current. These dimensionless
gating variables vary between [0, 1].
Let’s notice that the variables and symbols in Eqs. (44 & 45) originally

chosen by Hodgkin-Huxley and are different from those found in recent
literatures where the reference polarity of the voltage V , and the reference
direction of the current I are defined as the negative of the voltages and
currents. We have opted to adopt the reference assumption in Hodgkin &
Huxley [19] for ease in comparison of our results with those from Hodgkin
and Huxley7. The parameter values are exactly those chosen in the original
Hodgkin-Huxley [19] works:

CM = 1.0 µF/cm2

VNa = −115 mV

VK = 12 mV

VL = −10.613 mV

ḡNa = 120 mS/cm2

ḡK = 36 mS/cm2

ḡL = 0.3 mS/cm2

According to Suckley and Biktashev [26] and Suckley [27], dimensionless
functions n̄, h̄ and m̄ called gates’ instant equilibrium values, i.e., steady-
state relation for gating variable n, h and m respectively as well as τn,
τh and τm called gates dynamics time scales in ms, i.e., time constant for
gating variable n, h and m respectively may be defined as follows:

7For more details see Chua et al. [10, 11]
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n̄(V ) =
αn(V )

αn(V ) + βn(V )
(46a)

h̄(V ) =
αh(V )

αh(V ) + βh(V )
(46b)

m̄(V ) =
αm(V )

αm(V ) + βm(V )
(46c)

τn(V ) =
1

αn(V ) + βn(V )
(46d)

τh(V ) =
1

αh(V ) + βh(V )
(46e)

τm(V ) =
1

αm(V ) + βm(V )
(46f)

By using Eqs. 46, the original Hodgkin-Huxley model [19] reads:

dV

dt
=

1

CM

[
I − ḡKn4(V − VK)− ḡNam

3h(V − VNa)− ḡL(V − VL)
]
(47a)

dn

dt
=

n̄− n

τn
(47b)

dh

dt
=

h̄− h

τh
(47c)

dm

dt
=

m̄−m

τm
(47d)

Now, in order to apply the singular perturbation method to the Hodgkin-
Huxley model, two small multiplicative parameters ε ≪ 1 are introduced.
According to Suckley and Biktashev [26], Suckley [27] and Rubin andWech-
selberger [24], the existence of two different time scales of evolution for the
couples of dynamic variables (n, h) and (m,V ) enables to justify such an
introduction. So, in order to differentiate slow variables from fast variables,
Suckley and Biktashev [26], Suckley [27] and Rubin and Wechselberger [24]
have plotted the inverse of “time constant for gating variable i”, i.e., τi

−1

according to V with i = n, h,m. In Fig. 1, they have been plotted for
the original functions αi and βi (Eqs. 45a). However, let’s notice that this
plot is exactly the same as those presented by Rubin and Wechselberger
[24] (Fig. 1) for a nondimensionalized three-dimensional Hodgkin-Huxley
singularly perturbed system obtained after the following variable changes:
V → −V and Ī → −Ī, then V → V + 65 and finally V → V/100.
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Τn
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-1
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FIG. 1. Graph of 1/τi (ms−1) against V (mV ).
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Fig. 1 shows a plot of the functions τi
−1 according to V with i = n, h,m

over the physiological range. We observe that τm
−1 is of an order of

magnitude bigger than τh
−1 and τn

−1, which are of comparable size. In-
deed, we can deduce that the values of times scales are approximately
τm

−1 ≈ 10ms−1 while τn
−1 ≈ τh

−1 ≈ 1ms−1. Then, it appears that m
corresponds to the fast variable while n and h correspond to slow vari-
ables. Moreover, since the activation of the sodium channel m is directly
related to the dynamics of the membrane (action) potential V , Rubin and
Wechselberger [24] consider that m and V evolve on the same fast time
scale. So, the Hodgkin-Huxley model may be transformed into a singularly
perturbed system with two time scales in which the slow variables are (n, h)
and the fast variables are (m,V ).

So, according to Awiszus et al. [2], Suckley and Biktashev [26], Suckley
[27] and Rubin and Wechselberger [24] small multiplicative parameters 0 <
ε ≪ 1 in the original vector field of the Hodgkin-Huxley Eqs. (47) may be
identified while factorizing the right hand side of Eq. (47a) by ḡNa and set:

ḡNa → ḡNa

ḡNa
= 1, ḡK → ḡK

ḡNa
= 0.3, ḡL → ḡL

ḡNa
= 0.0025.

other parameters are kept as for the original Hodgkin-Huxley model [19]:

CM = 1.0 µF/cm2, V̄Na = −115 mV , V̄K = 12 mV , V̄L = −10.613 mV.

Then, by posing Ī → Ī

ḡNa
, ε =

CM

ḡNa
=

1

120
and (n, h,m, V ) = (x1, x2, y1, y2)

to consistent with the notations of Sec. 3, we obtain:

dx1

dt
=

x̄1 − x1

τ1
= f1 (x1, x2, y1, y2) (48a)

dx2

dt
=

x̄2 − x2

τ2
= f1 (x1, x2, y1, y2) (48b)

ε
dy1
dt

=
ȳ1 − y1

τ3
= g1 (x1, x2, y1, y2) (48c)

ε
dy2
dt

= Ī − ḡKx4
1(y2 − VK)− ḡNay

3
1x2(y2 − VNa)− ḡL(y2 − VL)

= g2 (x1, x2, y1, y2) (48d)
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where (x̄1, x̄2, ȳ1) = (n̄, h̄, m̄) and τ1,2,3 = τn,h,m.

Let’s notice that the multiplicative parameter ε has been introduced ar-
tificially in Eq. (48c). This is due to the fact that it has been stated above
that the time scale of variable m, i.e., y1 is tenth times greater than the
time scale of variables n and h, i.e. of variables x1 and x2. Moreover,
this parameter is identical to those use in Eq. (48d) since it has been also
considered that m and V , i.e., y1 and y2 evolve on the same fast time scale.

According to the Geometric Singular Perturbation Theory, the zero-order
approximation in ε of the slow manifold associated with the Hodgkin-
Huxley model (48) is obtained by posing ε = 0 in Eqs. (48c & 48d).
So, the slow manifold is given by:

x2 =
Ī − ḡKx4

1(y2 − VK)− ḡL(y2 − VL)

ḡNaȳ31(y2 − VNa)
(49a)

y1 = ȳ1(y2) (49b)

Then, the fast foliation is within the planes x1 = constant and x2 =
constant.

The fold curve is defined as the location of the points where g1 (x1, x2, y1, y2) =
0, g2 (x1, x2, y1, y2) = 0 and det

[
J(g1,g2)

]
= 0. For the Hodgkin-Huxley

model (48), the fold curve is thus given by Eqs. (49a & 49b) and by the
determinant of the Jacobian matrix of the following fast foliation:

dy1
dt

=
ȳ1 − y1

τ3
= g1 (x1, x2, y1, y2) (50a)

dy2
dt

= Ī − ḡKx4
1(y2 − VK)− ḡNay

3
1x2(y2 − VNa)− ḡL(y2 − VL)

= g2 (x1, x2, y1, y2) (50b)

The Jacobian matrix of the fast foliation (50) reads:

J(g1,g2) =

 ȳ1
′τ3 − τ ′3(ȳ1 − y1)

τ23
− 1

τ3

−(ḡKx4 + ḡNay
3
1x2 + ḡL) −3ḡNay

2
1x2(y2 − VNa)

 (51)

where the (′) denotes the derivative with respect to y2. Then, taking
into account Eqs. (49b), i.e., y1 = ȳ1 we have:
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J(g1,g2) =

 ȳ1
′

τ3
− 1

τ3

−(ḡKx4
1 + ḡNaȳ

3
1x2 + ḡL) −3ḡNaȳ

2
1x2(y2 − VNa)

 (52)

So, the determinant of the Jacobian matrix of the fast foliation (50) is:

det
(
J(g1,g2)

)
= − 1

τ3

[
ḡKx4

1 + ḡNaȳ
3
1x2 + ḡL + 3ḡNaȳ1

′ȳ21x2(y2 − VNa)
]
(53)

Thus, the condition for the fold curve is det
(
J(g1,g2)

)
= 0, which gives:

ḡKx4
1 + ḡNaȳ

3
1x2 + ḡL + 3ḡNaȳ1

′ȳ21x2(y2 − VNa) = 0 (54)

Therefore:

x2 = − ḡKx4
1 + ḡL

ḡNaȳ21 (ȳ1 + 3ȳ1′(y2 − VNa))
(55)

By subtracting Eq. (49a) from Eq. (55) we obtain x1:

x1 = x1f =

[
−Ī [ȳ1 + 3ȳ1

′(y2 − VNa)] + ḡL(VNa − VL)ȳ1 + 3ȳ1
′(y2 − VNa)(y2 − VL)

ḡK [(VK − VNa)ȳ1 − 3ȳ1′(y2 − VNa)(y2 − VK)]

]1/4
(56)

Plugging this value of x1 (56) into Eq. (55) provides:

x2 = x2f =
Ī + ḡL(VK − VL)

ḡNaȳ21 [(VNa − VK)ȳ1 + 3ȳ1′(y2 − VNa)(y2 − VK)]
(57)

So, the fold curve is given by the set of parametric equations (56-57) in
terms of y2.

The pseudo singular points are given by Eqs. (20) which reads for the
Hodgkin-Huxley model (48):
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ȳ1 − y1
τ3

= 0, (58a)

Ī − ḡKx4
1(y2 − VK)− ḡNay

3
1x2(y2 − VNa)− ḡL(y2 − VL) = 0, (58b)[

4ḡKx3
1(y2 − VK)(x1 − x̄1)

τ1
+

ḡNay
3
1(y2 − VNa)(x2 − x̄2)

τ2

]
= 0, (58c)[

4ḡKx3
1(y2 − VK)(x1 − x̄1)

τ1
+

ḡNay
3
1(y2 − VNa)(x2 − x̄2)

τ2

]
1

τ3
= 0, (58d)

τ3
(
ḡKx4

1 + ḡNay
3
1x2 + ḡL

)
+ 3ḡNay

2
1x2(y2 − VNa)(τ3y

′
1 + (y1 − ȳ1)τ

′
3) = 0.
(58e)

Let’s notice that Eqs. (58c) and (58d) are identical. Moreover, the
definition of τ3 (46f) enables to simplify the above system (58). Thus, we
have:

Ī − ḡKx4
1(y2 − VK)− ḡNaȳ

3
1x2(y2 − VNa)− ḡL(y2 − VL) = 0, (59a)

4ḡKx3
1(y2 − VK)(x1 − x̄1)

τ1
+

ḡNaȳ
3
1(y2 − VNa)(x2 − x̄2)

τ2
= 0, (59b)

ḡKx4
1 + ḡNaȳ

3
1x2 + ḡL + 3ḡNaȳ

2
1 ȳ

′
1x2(y2 − VNa) = 0. (59c)

Moreover, Eqs. (59a) and (59c) indicate that the pseudo singular point
belongs to the slow manifold and to the fold curve. So, let’s replace in Eq.
(59b) the variables x1 and x2 by the variables x1f and x2f given by Eq.
(56) and Eq. (57) respectively which represent the parametric equations of
fold curve.

4gKx3
1f(y2 − VK)(x1f − x̄1)

τ1
+

ȳ31(y2 − VNa)(x2f − x̄2)

τ2
= 0. (60)

Thus, it appears that Eq. (60) depends on the variable y2, on the func-
tions gates dynamics time scales τ1(y2) and τ2(y2) and on the bifurcation
parameter Ī. According to Rubin and Wechselberger [24], the function
y2(Ī), solution of (60) is independent of time multiplicative constants k1
and k2 that one could set in factor of τ1(y2) and τ2(y2).

So, following their works, let’s plot the function y2(Ī) solution of (60) for
various values of these time constants by posing successively in (60) k1 = 1,
3, 4.75 and 7 and while fixing k2 = 1. The result is presented in Fig. 2.
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kn=7

kn=1 kn=3

kn=4.75

-20 -15 -10 -5 0

-5

0
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-

y 2

FIG. 2. Function y2(Ī) for various values of parameter kn = 1, 3, 4.75, 7
exhibiting the the bifurcation parameter value ĪC ≈ −4.8.
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Let’s notice that this plot8 is exactly the same as those presented by
Rubin and Wechselberger [24] (Fig. 8-9) for a nondimensionalized three-
dimensional Hodgkin-Huxley singularly perturbed system which had been
obtained after the following variable changes: V → −V and Ī → −I, then
V → V + 65 and finally V → V/100.
We observe from Fig. 2 that the bifurcation parameter value ĪC ≈ −4.8

is exactly identical (in absolute value) to those obtained by Rubin and
Wechselberger [24]. Numerical resolution9 of Eq. (60) provides a better
approximation of the bifurcation parameter value:

ĪC = −4.82988 µA

This value corresponds to a voltage y2 = −3.18136 mV .

For Ī ≈ −4.1, the coordinate of the pseudo singular point can be com-
puted numerically:

(x1, x2, y1, y2) = (0.362513, 0.521793, 0.0733782,−2.81908)

According to Proposition 3 we can state that the eigenpolynomial of the
Jacobian matrix associated with the “normalized slow dynamics” of the
Hodgkin-Huxley model (48) reads:

λ4 − σ1λ
3 + σ2λ

2 − σ3λ+ σ4 = 0

for which it is easy to prove that σ4 = σ3 = 0. So, this eigenpolynomial
reduces to:

λ2
(
λ2 − σ1λ+ σ2

)
= 0

According to Eqs. (28) we find that:

p = Tr(J) = 144.933,

q = σ2 = −362.924

Thus, according to Prop. 3, the pseudo singular points is of saddle-
type. Moreover, numerical computation of the eigenvalues of this Jacobian
matrix evaluated at the pseudo singular point provides:

8The function y2(Ī) solution of (59) has been plotted with Mathematica c⃝ while using
the ContourPlot function used for representing implicit function since such function
cannot be expressed explicitly.

9This resolution has been made while using the function FindRoot in Mathematica c⃝.
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(λ1, λ2, λ3, λ4) = (−2.46224, 147.396, 0, 0)

So, according to Proposition 3, this pseudo singular point is of saddle-
type and canard solution may occur in the four-dimensional Hodgkin-
Huxley singularly perturbed system (48) for the original set of parameter
values.

In Fig. 3, 4 & 5 canard solution of the four-dimensional Hodgkin-Huxley
singularly perturbed system for the “canard value” of Ī ≈ −4.1 has been
plotted in the (x1, x2, y2) phase-space and then in the (x1, y2) phase plane.
The green point represents the pseudo singular point. The trajectory curve,
i.e., the canard solution has been plotted in red while the fold curve is in
yellow. We observe on Fig. 3 that when the trajectory curve reaches the
fold at the pseudo singular point it “jump” suddenly to the other part
of the slow manifold before being reinjected towards the pseudo singular
point.
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FIG. 3. Phase portrait, canard solution and slow manifold of the Hodgkin-Huxley
system (48) in the (n, h, V ) phase space.
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FIG. 4. Phase portrait, canard solution and slow manifold of the Hodgkin-Huxley
system (48) in the (V, n) phase plane.
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FIG. 5. Phase portrait, canard solution and slow manifold of the Hodgkin-Huxley
system (48) in the (V, h) phase plane.
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6. DISCUSSION

In a previous paper entitled: “Canards Existence in Memristor’s Cir-
cuits” (see Ginoux & Llibre [17]) we have proposed a new method for
proving the existence of “canard solutions” for three and four-dimensional
singularly perturbed systems with only one fast variable which improves the
methods used until now. This method enabled to state a unique “generic”
condition for the existence of “canard solutions” for such three and four-
dimensional singularly perturbed systems which is based on the stabil-
ity of folded singularities of the normalized slow dynamics deduced from
a well-known property of linear algebra. This unique condition which is
completely identical to that provided by Benôıt [6] and then by Szmolyan
and Wechselberger [25] and finally by Wechselberger [39] was considered
as “generic” since it was exactly the same for singularly perturbed systems
of dimension three and four with only one fast variable. In this work we
have extended this new method to the case of four-dimensional singularly
perturbed systems with two slow and two fast variables and we have stated
that the condition for the existence of “canard solutions” in such systems
is exactly identical to those proposed in our previous paper. This result
confirms the genericity of the condition (σ2 < 0) we have highlighted and
provides a simple and efficient tool for testing the occurrence of “canard
solutions” in any three or four-dimensional singularly perturbed systems
with one or two fast variables. Applications of this method to the famous
coupled FitzHugh-Nagumo equations and to the Hodgkin-Huxley model
has enabled to show the existence of “canard solutions” in such systems.
However, in this paper, only the case of pseudo singular points or folded
singularities of saddle-type has been analyzed. Of course, the case of of
pseudo singular points or folded singularities of node-type and focus-type
could be also studied with the same method.
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sions related with this work. The authors are partially supported by a
MINECO/FEDER grant number MTM2008-03437. The second author
is partially supported by a MICINN/FEDER grants numbers MTM2009-
03437 and MTM2013-40998-P, by an AGAUR grant number 2014SGR-
568, by an ICREA Academia, two FP7+PEOPLE+2012+IRSES numbers
316338 and 318999, and FEDER-UNAB10-4E-378.



36 J.M. GINOUX AND J. LLIBRE

APPENDIX

Change of coordinates leading to the normal forms of four-dimensional
singularly perturbed systems with two fast variables are given in the fol-
lowing section.

Normal form of 4D singularly perturbed systems

with two fast variables

Let’s consider the four-dimensional singularly perturbed dynamical sys-
tem (11) with k = 2 slow variables and m = 2 fast and let’s make the
following change of variables:

x1 = α2x, x2 = αy, y1 = α2z, y2 = αu where α ≪ 1. (A-1)

By taking into account extension of Benôıt’s generic hypothesis Eqs.
(22,23) and while using Taylor series expansion the system (11) becomes:

ẋ =
∂f1
∂y

y +
∂f1
∂u

u,

ẏ = f2 (x, y, z, u) ,( ε
α

)
ż =

∂g1
∂z

z +
1

2

∂2g1
∂y2

y2 +
1

2

∂2g1
∂u2

u2 +
∂2g1
∂y∂u

yu,( ε
α

)
u̇ =

∂g2
∂x

x+
1

2

∂2g2
∂y2

y2 +
1

2

∂2g2
∂u2

u2 +
∂2g2
∂y∂u

yu.

(A-2)

Then, let’s make the standard polynomial change of variables:

X = Ax+By2,

Y =
y

f2
,

Z = Cy +Dz + Eu,

U = Fy +Gu.

(A-3)

From (A-3) we deduce that:
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x =
X −Bf2

2Y
2

A
,

y = f2Y,

z =
1

D

[
Z − Cf2Y − E

G
(U − Ff2Y )

]
,

u =
U − Ff2Y

G
.

(A-4)

The time derivative of system (A-3) gives:

Ẋ = Aẋ+ 2Byẏ,

Ẏ =
ẏ

f2
,

Ż = Cẏ +Dż + Eu̇,

U̇ = F ż +Gu̇.

(A-5)

Then, multiplying the third and fourth equation of (A-5) by (ε/α) and
while replacing in (A-5) ẋ, ẏ, ż and u̇ by the right-hand-side of system
(A-2) leads to:

Ẋ = Aẋ+ 2Byẏ,

Ẏ =
ẏ

f2
,( ε

α

)
Ż =

( ε
α

)
Cẏ +

( ε
α

)
Dż +

( ε
α

)
Eu̇,( ε

α

)
U̇ =

( ε
α

)
F ẏ +

( ε
α

)
Gu̇.

(A-6)

Since ε/α ≪ 1, the first terms of the right-hand-side of the third and
fourth equation of (A-16) can be neglected. So we have:

Ẋ = A

(
∂f1
∂y

y +
∂f1
∂u

u

)
+ 2Bf2y,

Ẏ = 1,( ε
α

)
Ż = D

(
∂g1
∂z

z +
1

2

∂2g1
∂y2

y2 +
1

2

∂2g1
∂u2

u2 +
∂2g1
∂y∂u

yu

)
+ E

(
∂g2
∂x

x+
1

2

∂2g2
∂y2

y2 +
1

2

∂2g2
∂u2

u2 +
∂2g2
∂y∂u

yu

)
,( ε

α

)
U̇ = G

(
∂g2
∂x

x+
1

2

∂2g2
∂y2

y2 +
1

2

∂2g2
∂u2

u2 +
∂2g2
∂y∂u

yu

)
.

(A-7)
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Then, by replacing in (A-7) x, y, z and u by the right-hand-side of (A-
4) and by identifying with the following system in which we have posed:
(ε/α) = ϵ:

Ẋ = ãY + b̃U +O
(
X, ϵ, Y 2, Y U, U2

)
,

Ẏ = 1 +O (X,Y, U, ϵ) ,

ϵŻ = c̃Z +O
(
ϵX, ϵY, ϵU,X2, y2U,U2, Y U

)
,

ϵU̇ = −
(
X + U2

)
+O

(
ϵX, ϵY, ϵU, ϵ2, X2U,U3, XY U

)
,

(A-8)

we find:

ã = A

(
∂f1
∂y

− F

G

∂f1
∂u

)
f2 + 2Bf2

2 ,

b̃ =
A

G

∂f1
∂u

,

c̃ =
∂g1
∂z

.

(A-9)

where

A =
1

2

∂g2
∂x

∂2g2
∂u2

,

B =
1

4

[
∂2g2
∂u2

∂2g2
∂y2

−
(

∂2g2
∂y∂u

)2
]
,

G = −1

2

∂2g2
∂u2

.

(A-10)

Finally, we deduce:

ã =
1

2

[
f2
2

(
∂2g2
∂x2

2

∂2g2
∂y22

−
(

∂2g2
∂x2∂y2

)2
)

+ f2
∂g2
∂x1

(
∂2g2
∂y22

∂f1
∂x2

− ∂2g2
∂x2∂y2

∂f1
∂y2

)]

b̃ = − ∂g2
∂x1

∂f1
∂y2

,

c̃ =
∂g1
∂y1

.

(A-11)

This is the result we established in Sec. 2.7.
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8. E. Benôıt, Canards et enlacements, Publications de l’Institut des Hautes Etudes
Scientifiques, 72 (1990) 63–91.
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