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The Slow Invariant Manifold

of the

Lorenz-Krishnamurthy Model

Abstract

During this last decades, several attempts to construct slow invariant manifold

of the Lorenz-Krishnamurthy five-mode model of slow-fast interactions in the atmo-

sphere have been made by various authors. Unfortunately, as in the case of many

two-time scales singularly perturbed dynamical systems the various asymptotic pro-

cedures involved for such a construction diverge. So, it seems that till now only the

first-order and third-order approximations of this slow manifold have been analyti-

cally obtained. While using the Flow Curvature Method we show in this work that

one can provide the eighteenth-order approximation of the slow manifold of the

generalized Lorenz-Krishnamurthy model and the thirteenth-order approximation

of the “conservative” Lorenz-Krishnamurthy model. The invariance of each slow

manifold is then established according to Darboux invariance theorem.

Key words: Lorenz-Krishnamurthy model; Flow Curvature Method; Darboux

invariance; Fenichel theory; slow invariant manifold

1 Introduction

The classical geometric theory developed originally by Andronov [1], Tikhonov

[34] and Levinson [23] stated that singularly perturbed systems possess invari-
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ant manifolds on which trajectories evolve slowly and toward which nearby

orbits contract exponentially in time (either forward and backward) in the

normal directions. These manifolds have been called asymptotically stable (or

unstable) slow manifolds. Then, Fenichel [7–10] theory 1 for the persistence of

normally hyperbolic invariant manifolds enabled to establish the local invari-

ance of slow manifolds that possess both expanding and contracting directions

and which were labeled slow invariant manifolds. During the last century, var-

ious methods have been developed in order to determine the slow invariant

manifold analytical equation associated with singularly perturbed systems. The

seminal works of Wasow [37], Cole [5], O’Malley [30,31] and Fenichel [7–10]

to name but a few, gave rise to the so-called Geometric Singular Perturbation

Method. According to this theory, existence as well as local invariance of the

slow manifold of singularly perturbed systems have been stated.

Then, the determination of the slow manifold analytical equation turned into

a regular perturbation problem [30, p. 112] in which one generally expected

the asymptotic validity of such expansion to breakdown [31].

1 This theory was independently established in Hirsch, et al. [19]
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In recent publications a new approach to n–dimensional singularly perturbed

systems of ordinary differential equations with two time scales, called Flow

Curvature Method [12–17] has been developed. It consists in considering the

trajectory curves integral of such systems as curves in Euclidean n–space.

Based on the use of local metrics properties of curvatures inherent to Differ-

ential Geometry, this method which does not require the use of asymptotic

expansions, states that the location of the points where the local curvature

of the trajectory curves of such systems is null defines a (n− 1)–dimensional

manifold associated with this system and called flow curvature manifold. The

invariance of this manifold is then stated according to a theorem introduced

by Gaston Darboux [6] in 1878.

The laws governing the behavior of the atmosphere permit the simultaneous

presence of oscillation modes such as quasi-geostrophic modes and inertial-

gravity modes. The former which have periods of few days are generally re-

ferred as Rossby Waves while the latter whose periods are of few hours are

called Gravity Waves. In 1980, a nine-dimensional primitive equation (PE)

model of the atmosphere enabling to superpose Rossby and Gravity Waves

was originally proposed by the late Edward Norton Lorenz [26]. Few years

later, Lorenz [27] simplified the nine-dimensional model to a five-dimensional

model by truncating to just five modes: three Rossby Waves coupled to two

Gravity Waves. This five-dimensional model can be considered as a two-time

scales singularly perturbed dynamical system with three slow variables (Rossby

Waves) and two fast variables (Gravity Waves) in accordance with physical

observations of atmospheric behavior. In numerical weather prediction a prob-

lem arises because raw fields data can not be used as initial conditions for such

model, since even when the initial wind and pressure fields are both fairly re-
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alistic, Gravity Waves will occur, if the fields are not in “proper balance”.

According to Camassa [3, p. 357]: “Small errors in the “proper balance” be-

tween these two time scales lead to abnormal evolution of gravity waves, which

in turn causes appreciable deviation of weather forecasts from actual observa-

tion on the time scale of gravity waves.”. To solve this initialization problem,

existence of a slow manifold 2 , consisting of trajectory curves (orbits) for which

Gravity Waves motion is absent, was first postulated for such model. Then, an

iteration scheme was developed to find from the state (point in phase space)

specified by field data a corresponding initial state on this slow manifold, so

that weather forecasts with these initial states can be accurate on the same

time scale as Rossby Waves. In their paper, Lorenz and Krishnamruthy [28]

identified the variables representing Gravity Wave activity as the ones which

can exhibit fast oscillations, and defined the slow manifold as an invariant

manifold in the five dimensional phase space for which fast oscillations never

develop. However, in a subsequent paper, Lorenz and Krishnamruthy [28] iden-

tified a trajectory curve (orbit) which by construction has to lie on the slow

manifold. They followed its evolution numerically to show that sooner or later

fast oscillations developed, thereby implying, as pointed out by the title of

their article, that a slow manifold according to the definition does not exist

for this model. Such a result gave rise to a series of articles published from 1991

to 1996 by S.J. Jacobs [20], J.P. Boyd [2], A.C. Fowler and G. Kember [11],

R. Camassa and Siu-Kei Tin [4] in which their authors proved the existence

of a slow manifold for the Lorenz-Krishnamurthy model (LK). These latter

proposed a generalized LK model. More recently, M. Phani Sudheer, Ravi S.

Nanjundiah A.S. Vasudeva Murthy [32] “revisited” the same model and pro-

2 This concept has been introduced by C. E. Leith [24] in 1980.
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vided an approximation of its slow manifold while using Girimaji’s technique

of local reduction. Then, J. Vanneste [36] studied a “conservative form” of the

Lorenz-Krishnamurthy model and developed distinct methods to derive the

leading-order asymptotics of the late coefficients in the power-series expansion

used for the construction of its slow manifold. But, to our knowledge, only the

first-order and third-order approximations of this slow manifold have been an-

alytically obtained. So, the aim of this paper is to show that while using the

Flow Curvature Method one can provide the eighteenth-order approximation

of the slow manifold of the generalized Lorenz-Krishnamurthy model and the

thirteenth-order approximation of the “conservative” Lorenz-Krishnamurthy

model. The invariance of each slow manifold is then established according to

Darboux invariance theorem.

This paper is organize as follows. The classical definitions of singularly per-

turbed systems are briefly recalled in Sec. 2. Foundations of the Flow Cur-

vature Method are summarized in Sec. 3. More particularly, the definition

of the flow curvature manifold which provides an approximation of the slow

manifold associated with singularly perturbed systems is presented in Prop. 1.

Then, invariance of the flow curvature manifold is stated according to Dar-

boux theorem and to Prop. 2. In Sec. 4, application of the Flow Curvature

Method enables to provide the eighteenth-order approximation of the slow

manifold associated with the generalized Lorenz-Krishnamurthy model [4] and

the thirteenth-order approximation of the conservative Lorenz-Krishnamurthy

model [36]. The invariance of each slow manifold is then established according

to Darboux invariance theorem and to Prop. 2.

5



2 Singularly perturbed dynamical systems

Following the approach of C.K.R.T. Jones [21] and Kaper [22] some funda-

mental concepts and definitions for systems of ordinary differential equations

with two time scales, i.e., for singularly perturbed dynamical systems are briefly

recalled.

In the following we consider a dynamical systems theory for systems of differ-

ential equations of the form:


~x′ = ~f (~x, ~z, ε)

~z′ = ε~g (~x, ~z, ε)

(1)

where ~x ∈ Rm, ~z ∈ Rp, ε ∈ R+, and the prime denotes differentiation with

respect to the independent variable t. The functions ~f and ~g are assumed to

be C∞ functions 3 of ~x, ~z and ε in U×I, where U is an open subset of Rm×Rp

and I is an open interval containing ε = 0.

In the case when ε � 1, i.e., is a small positive number, the variable ~x is

called fast variable, and ~z is called slow variable. Using Landau’s notation:

O(εl) represents a real polynomial in ε of l degree, with l ∈ Z, it is used to

consider that generally ~x evolves at an O (1) rate; while ~z evolves at an O (ε)

slow rate.

Reformulating the system (1) in terms of the rescaled variable τ = εt, we

obtain:

3 In certain applications these functions will be supposed to be Cr, r > 1
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ε~̇x = ~f (~x, ~z, ε)

~̇z = ~g (~x, ~z, ε)

(2)

The dot (·) represents the derivative with respect to the new independent

variable τ .

The independent variables t and τ are referred to the fast and slow times,

respectively, and (1) and (2) are called the fast and slow systems, respectively.

These systems are equivalent whenever ε 6= 0, and they are labeled singular

perturbation problems when ε � 1, i.e., is a small positive parameter. The

label “singular” stems in part from the discontinuous limiting behavior in the

system (1) as ε→ 0.

In such case, the system (1) reduces to an m-dimensional system called reduced

fast system, with the variable ~z as a constant parameter:


~x′ = ~f (~x, ~z, 0)

~z′ = ~0

(3)

System (2) leads to the following differential-algebraic system called reduced

slow system which dimension decreases from m+ p to p:


~0 = ~f (~x, ~z, 0)

~̇z = ~g (~x, ~z, 0)

(4)
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By exploiting the decomposition into fast and slow reduced systems (3) and

(4), the geometric approach reduced the full singularly perturbed system to

separate lower-dimensional regular perturbation problems in the fast and slow

regimes, respectively.

3 Fenichel geometric theory

Fenichel geometric theory for general systems (1), i.e., a theorem providing

conditions under which normally hyperbolic invariant manifolds in system (1)

persist when the perturbation is turned on, i.e., when 0 < ε � 1 is briefly

recalled in this subsection. This theorem concerns only compact manifolds

with boundary.

3.1 Normally hyperbolic manifolds

Let’s make the following assumptions about system (1):

(H1) The functions ~f and ~g are C∞ in U × I, where U is an open subset of

Rm × Rp and I is an open interval containing ε = 0.

(H2) There exists a set M0 that is contained in
{

(~x, ~y) : ~f (~x, ~y, 0) = ~0
}

such

that M0 is a compact manifold with boundary and M0 is given by the graph

of a C∞ function ~y = ~Y0 (~x) for ~x ∈ D, where D ⊆ Rp is a compact, simply

connected domain and the boundary of D is an (p− 1) dimensional C∞ sub-

manifold. Finally, the set D is overflowing invariant with respect to (2) when

ε = 0.
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(H3) M0 is normally hyperbolic relative to (3) and in particular it is required

for all points ~p ∈M0, that there are k (resp. l) eigenvalues of D~y
~f (~p, 0) with

positive (resp. negative) real parts bounded away from zero, where k + l = m.

3.2 Fenichel persistence theory for singularly perturbed systems

For compact manifolds with boundary, Fenichel’s persistence theory states

that, provided the hypotheses (H1)− (H3) are satisfied, the system (1) has a

slow (or center) manifold, and this slow manifold has fast stable and unstable

manifolds.

Theorem for compact manifolds with boundary:

Let system (1) satisfy the conditions (H 1) − (H3). If ε > 0 is sufficiently

small, then there exists a function ~Y (~x, ε) defined on D such that the man-

ifold Mε =
{

(~x, ~y) : ~y = ~Y (~x, ε)
}

is locally invariant under (1). Moreover,

~Y (~x, ε) is Cr for any r < +∞, and Mε is CrO (ε) close to M0. In addi-

tion, there exist perturbed local stable and unstable manifolds of Mε. They are

unions of invariant families of stable and unstable fibers of dimensions l and k,

respectively, and they are CrO (ε) close for all r < +∞ , to their counterparts.

Proof. For proof of this theorem see Fenichel [7–10].

The label slow manifold is attached to Mε because the magnitude of the vector

field restricted to Mε is O (ε), in terms of the fast independent variable t.

So persistent manifolds are labeled slow manifolds, and the proof of their per-

sistence is carried out by demonstrating that the local stable and unstable

manifolds of M0 also persist as locally invariant manifolds in the perturbed
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system, i.e., that the local hyperbolic structure persists, and then the slow

manifold is immediately at hand as a locally invariant manifold in the trans-

verse intersection of these persistent local stable and unstable manifolds.

3.3 Geometric singular perturbation theory

Earliest geometric approaches to singularly perturbed systems have been de-

veloped by Cole [5], O’Malley [30,31], Fenichel [7–10] for the determination of

the slow manifold equation.

Generally, Fenichel theory enables to turn the problem for explicitly finding

functions ~y = ~Y (~x, ε) whose graphs are locally invariant slow manifolds Mε

of system (1) into regular perturbation problem [30, p. 112]. Invariance of the

manifold Mε implies that ~Y (~x, ε) satisfies:

D~x
~Y (~x, ε) ~f

(
~x, ~Y (~x, ε) , ε

)
= ε~g

(
~x, ~Y (~x, ε) , ε

)
(5)

According to Guckenheimer et al. [18, p. 131], this (partial) differential equa-

tion for ~Y (~x, ε) cannot be solved exactly. So, its solution can be approximated

arbitrarily closely as a Taylor series at (~x, ε) =
(
~0, 0

)
.

Then, the following perturbation expansion is plugged:

~Y (~x, ε) = ~Y0 (~x) + ε~Y1 (~x) +O
(
ε2
)

(6)

into (5) to solve order by order for ~Y (~x, ε). The Taylor series expansion [31]

for ~f
(
~x, ~Y (~x, ε) , ε

)
and ~g

(
~x, ~Y (~x, ε) , ε

)
up to terms of order two in ε reads:
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~f
(
~x, ~Y (~x, ε) , ε

)
= ~f

(
~x, ~Y0 (~x) , 0

)
+ ε

D~y
~f
(
~x, ~Y0 (~x) , 0

)
~Y1 (~x) +

∂ ~f

∂ε

(
~x, ~Y0 (~x) , 0

)
~g
(
~x, ~Y (~x, ε) , ε

)
= ~g

(
~x, ~Y0 (~x) , 0

)
+ ε

(
D~y~g

(
~x, ~Y0 (~x) , 0

)
~Y1 (~x) +

∂~g

∂ε

(
~x, ~Y0 (~x) , 0

))

• At order ε0, Eq. (5) gives:

D~x
~Y0 (~x) ~f(~x, ~Y0 (~x) , 0) = ~0 (7)

which defines ~Y0 (~x) due to the invertibility of D~y
~f and the Implicit Function

Theorem.

• The next order ε1 provides:

D~x
~Y0 (~x)

D~y
~f(~x, ~Y0 (~x) , 0) ~Y1 (~x) +

∂ ~f

∂ε

 = ~g(~x, ~Y0 (~x) , 0) (8)

which yields ~Y1 (~x) and so forth.

So, regular perturbation theory makes it possible to build an approximation

of locally invariant slow manifolds Mε. Thus, in the framework of the Geomet-

ric Singular Perturbation Method, three conditions are needed to characterize

the slow manifold associated with singularly perturbed system: existence, lo-

cal invariance and determination. Existence and local invariance of the slow

manifold are stated according to Fenichel theorem for compact manifolds with

boundary while asymptotic expansions provide its equation up to the order of

the expansion.
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4 Flow Curvature Method

In this section, one of the main results of the Flow Curvature Method and based

on the use of local properties of curvatures inherent to Differential Geometry

is briefly presented (for more details see [12,16]). According to this method,

the highest curvature of the flow, i.e. the (n−1)th curvature of trajectory curve

integral of n–dimensional singularly perturbed dynamical systems (1) defines

a (n − 1)–dimensional manifold associated with this system and called flow

curvature manifold. We have the following result:

4.1 Slow manifold equation

Proposition 1 The location of the points where the (n−1)th curvature of the

flow, i.e. the curvature of the trajectory curve ~X, integral of any n–dimensional

singularly perturbed dynamical systems (1) vanishes, provides a k–order ap-

proximation in ε of its slow manifold Mε the equation of which reads

φ( ~X, ε) = ~̇X · ( ~̈X ∧
...
~X ∧ . . . ∧

(n)

~X ) = det( ~̇X, ~̈X,
...
~X, . . . ,

(n)

~X ) = 0 (9)

where
(n)

~X represents the time derivatives up to order n of ~X = (~x, ~z)t.

Note.

k-order approximation depends on the number of ε contained in the vector

field. We will see in Sec. 4 that for the Lorenz-Krishnamurthy model k = 18.
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Proof.

While the slow invariant manifold analytical equation (6) given by the Ge-

ometric Singular Perturbation Method is an explicit equation, the slow in-

variant manifold analytical equation (9) obtained according to the Flow Cur-

vature Method is an implicit equation. So, in order to compare the latter

with the former it is necessary to plug the following perturbation expansion:

~Y (~x, ε) = ~Y0 (~x) + ε~Y1 (~x) + O (ε2) into (9). Thus, solving order by order for

~Y (~x, ε) will transform (9) into an explicit analytical equation enabling the com-

parison with (6). The Taylor series expansion for φ( ~X, ε) = φ(~x, ~Y (~x, ε) , ε)

up to terms of order one in ε reads:

φ( ~X, ε) = φ(~x, ~Y0 (~x) , 0) + εD~yφ(~x, ~Y0 (~x) , 0)~Y1 (~x) + ε
∂φ

∂ε
(~x, ~Y0 (~x) , 0) (10)

• At order ε0, Eq. (10) gives:

φ
(
~x, ~Y0 (~x) , 0

)
= 0 (11)

which defines ~Y0 (~x) due to the invertibility of D~yφ and application of the

Implicit Function Theorem.

• The next order ε1, provides:

D~yφ(~x, ~Y0 (~x) , 0)~Y1 (~x) +
∂φ

∂ε
(~x, ~Y0 (~x) , 0) = ~0 (12)

which yields ~Y1 (~x) and so forth.
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In order to prove that this equation is completely identical to Eq. (8), let’s

rewrite it as follows:

~Y1 (~x) = −
[
D~yφ(~x, ~Y0 (~x) , 0)

]−1 ∂φ
∂ε

(~x, ~Y0 (~x) , 0)

By application of the chain rule, i.e., the derivative of φ(~x, ~Y0 (~x) , 0) with

respect to the variable ~y and then with respect to ε, it can be stated that:

~Y1 (~x) = −
[
(D~x

~f)(D~y
~f)
]−1

(D~y
~f)~g(~x, ~Y0(~x), 0)−

[
D~y

~f
]−1

Dε
~f(~x, ~Y0 (~x) , 0)

But, according to the Implicit Function Theorem we have:

(D~x
~f) = −(D~y

~f)(D~x~y) = −(D~y
~f)(D~x

~Y0(~x))

Then, by replacing into the previous equation we find:

~Y1 (~x) =
[
(D~y

~f)(D~x
~Y0(~x))(D~y

~f)
]−1

(D~y
~f)~g(~x, ~Y0(~x), 0)−

[
D~y

~f
]−1

Dε
~f(~x, ~Y0 (~x) , 0)

After simplifications, we have:

~Y1 (~x) =
[
D~x

~Y0 (~x)D~y
~f(~x, ~Y0 (~x) , 0)

]−1
~g(~x, ~Y0 (~x) , 0)−

[
D~y

~f(~x, ~Y0 (~x) , 0)
]−1 ∂ ~f

∂ε
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Finally, Eq. (12) may be written as:

D~x
~Y0 (~x)

D~y
~f(~x, ~Y0 (~x) , 0) ~Y1 (~x) +

∂ ~f

∂ε

 = ~g(~x, ~Y0 (~x) , 0)

Thus, identity between the “slow manifold” equation given by the Geometric

Singular Perturbation Method and by the Flow Curvature Method is proved

up to first order term in ε.

Note. Let’s notice that the slow invariant manifold equation (9) associated

with n–dimensional singularly perturbed systems defined by the Flow Curva-

ture Method is a tensor of order n. As a consequence, it can only provide an

approximation of n–order in ε of the slow invariant manifold equation (6).

Nevertheless, it is easy to show that the Lie derivative of the “slow manifold”

equation (9) obtained by the Flow Curvature Method can be written as:

L ~Xφ( ~X, ε) = ~̇X · ( ~̈X ∧
...
~X ∧ . . . ∧

(n+1)

~X ) = det( ~̇X, ~̈X,
...
~X, . . . ,

(n+1)

~X ) = 0 (13)

where
(n+1)

~X represents the time derivatives up to order (n+ 1) of ~X = (~x, ~y)t.

So, Eq. (13) defines a tensor of order n+1 which provides an approximation of

(n+1)-order in ε of the slow invariant manifold equation (6). Thus, by taking

the successive Lie derivatives of the “slow manifold” equation (9) we improve

the order of the approximation up to an order corresponding to that of the Lie

derivative. As an example, according to Prop. 1, the “slow manifold” equation

of a two-dimensional singularly perturbed dynamical system reads:

φ( ~X, ε) = det( ~̇X, ~̈X) = 0
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where ~X = (x, y)t. This second-order tensor only provides a first order ap-

proximation in ε of the slow invariant manifold equation (6). While its Lie

derivative

L ~Xφ( ~X, ε) = det( ~̇X,
...
~X) = 0

which is third-order tensor gives a second-order approximation in ε. Thus,

by applying a mathematical induction, the proof above can be extended to

high-order approximations in ε.

4.2 Invariance of the slow manifold

The local invariance of the slow manifold analytical equation defined by Flow

Curvature Method may be stated while using the Tangent Linear System Ap-

proximation (T.L.S.A.) associated with Darboux Invariance Theorem. Tan-

gent Linear System Approximation has been introduced by Rossetto et al. [33]

in order to compute the slow manifold equation of singularly perturbed sys-

tems. This approximation consists in replacing, in the vicinity of the singular

approximation, the singularly perturbed system by the corresponding tangent

linear system. Tangent Linear System Approximation may thus be viewed as

a local invariance condition of the slow manifold.

4.2.1 Tangent linear system approximation (T.L.S.A.)

The tangent linear system approximation (T.L.S.A.) states that, in the vicinity

of the singular approximation associated with singularly perturbed systems (1),

the functional jacobian matrix of such systems is locally stationary, i.e.,
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dJ

dt
= 0 (14)

4.2.2 Lie Derivative - Darboux Invariance Theorem

Let φ a C1 function defined in a compact E included in R and ~X (t) the

integral of the dynamical system defined by (1). The Lie derivative is defined

as follows:

L ~Xφ = ~̇X ·
−→
∇φ =

n∑
i=1

∂φ

∂xi
ẋi =

dφ

dt
(15)

Darboux Invariance Theorem:

An invariant manifold is defined by φ( ~X, ε) = 0 where φ is a C1 in an open

set U and such there exists a C1 function denoted k( ~X) and called cofactor

which satisfies

L ~Xφ( ~X, ε) = k( ~X)φ( ~X, ε) for all ~X ∈ U (16)

Proof.

The proof of this theorem is in Darboux [6]. However, let’s prove that both

Darboux and Fenichel’s invariance are exactly identical.

According to Fenichel’s persistence theorem a slow invariant manifold Mε may

be written as an explicit function: ~y = ~Y (~x, ε) the invariance of which implies

that ~Y (~x, ε) satisfies:
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D~x
~Y (~x, ε) ~f(~x, ~Y (~x, ε) , ε) = ε~g(~x, ~Y (~x, ε) , ε) (17)

Let’s write the slow manifold Mε as an implicit function by posing:

φ(~x, ~y, ε) = ~y − ~Y (~x, ε) (18)

According to Darboux Invariance Theorem Mε is invariant if and only if:

L~V φ(~x, ~y, ε) = k(~x, ~y, ε)φ(~x, ~y, ε) (19)

Plugging Eq. (18) into the Lie derivative (19) leads to:

L~V φ(~x, ~y, ε) = ~̇y −D~x
~Y (~x, ε) ~̇x = k(~x, ~y, ε)φ(~x, ~y, ε)

which may be written according to Eq. (1):

L~V φ(~x, ~y, ε) = ε~g(~x, ~y, ε)−D~x
~Y (~x, ε) ~f(~x, ~y, ε) = k(~x, ~y, ε)φ(~x, ~y, ε)

Evaluating this Lie derivative in the location of the points where φ(~x, ~y, ε) = 0,

i.e. ~y = ~Y (~x, ε) leads to:

L~V φ(~x, ~Y (~x, ε) , ε) = ε~g(~x, ~Y (~x, ε) , ε)−D~x
~Y (~x, ε) ~f(~x, ~Y (~x, ε) , ε) = 0

which is exactly identical to Eq. (5) proposed by Fenichel.
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Now, let’s prove the invariance of the flow curvature manifold (9), i.e., the

invariance of the “slow manifold equation” defined by Prop. 1.

Proposition 2 The flow curvature manifold defined by φ( ~X) = 0 where φ is

a C1 in an open set U is invariant with respect to the flow of (1) if there exists

a C1 function denoted k( ~X) and called cofactor which satisfies:

L~V φ( ~X) = k( ~X)φ( ~X) (20)

for all ~X ∈ U and where L~V φ = ~V · ~∇φ =
n∑
i=1

∂φ

∂xi
ẋi =

dφ

dt
.

Proof. Lie derivative of the flow curvature manifold (9) reads:

L~V φ( ~X) = ~̇X · ( ~̈X ∧
...
~X ∧ . . . ∧

(n+1)

~X ) (21)

From the identity ~̈X = J ~̇X where J is the functional jacobian matrix associ-

ated with any n–dimensional singularly perturbed system (1) we find that:

(n+1)

~X = Jn ~̇X if
dJ

dt
= 0 (22)

where Jn represents the nth power of J , e.g., ~̈X = J ~̇X,
...
~X = J ~̈X, . . .

Then, it follows that:

(n+1)

~X = J
(n)

~X (23)

Replacing
(n+1)

~X in Eq. (14) with Eq. (16) we have:
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L~V φ( ~X) = ~̇X · ( ~̈X ∧
...
~X ∧ . . . ∧ J

(n)

~X ) (24)

The right hand side of this Eq. (24) can be written:

J ~̇X·( ~̈X ∧
...
~X ∧ . . . ∧

(n)

~X )+ ~̇X·(J ~̈X ∧
...
~X ∧ . . . ∧

(n)

~X )+. . .+ ~̇X·( ~̈X ∧
...
~X ∧ . . . ∧ J

(n)

~X )

According to Eq. (23) all terms are null except the last one. So, by taking into

account identity (42) established in Appendix we find:

L~V φ( ~X) = Tr (J) ~̇X · ( ~̈X ∧
...
~X ∧ . . . ∧

(n)

~X ) = Tr (J)φ( ~X) = k( ~X)φ( ~X)

where k( ~X) = Tr (J) represents the trace of the functional jacobian matrix.

So, according to Prop. 2 invariance of the slow manifold analytical equation of

any n–dimensional singularly perturbed dynamical system is established pro-

vided that the functional jacobian matrix is locally stationary.

5 The Lorenz-Krishnamurthy Slow Invariant Manifold

Let’s consider the model introduced by the late E.N. Lorenz [27] and usually

referred to as the Lorenz five-mode model [2] or as the Lorenz-Krishnamurthy

model [27–29]. This model, obtained by truncation of the rotating shallow-

water equations, governs the dynamics of a triad of vortical modes, with am-

plitudes (u, v, w), coupled to a gravity mode described by (x, y). In 1996, Ca-

massa et al. [4] proposed a generalized LK model presented in the next section.
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Starting from this model we will provide the eighteenth-order approximation

of its slow manifold while using the Flow Curvature Method, the invariance of

which will be established according to Darboux theroem. Moreover, by posing

δ = 0 in our slow manifold analytical equation we will find again the first-order

approximation of the slow manifold given by Camassa et al. [4, p. 3263].

5.1 The generalized LK model

According to Camassa et al. [4], the Lorenz-Krishnamurthy model [28] can be

written as:



ẋ = −y − κx

ẏ = x+ εuv − κy

u̇ = −vw + εvy − αu

v̇ = uw − εuy − αv + αF

ẇ = −uv − αw

(25)

where ε > 0 is the coupling parameter between the Rossby Wave (u, v, w) and

Gravity Wave (x, y), α is a parameter introduced to model the dissipation

and controls the damping of Rossby mode, while κ controls the damping of

the gravity mode. F > 0 represents the forcing parameter which is assumed

to be much smaller than unity. By posing α = a, ε = b and κ = α in Eqs. (25)

one finds again the Lorenz-Krishnamurthy model [28]. Then, by making the

following variables changing:
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x→ δ2x, y → δ2y, u→ δu, v → δv, w → δw

and while posing for convenience α = δ2, Camassa et al. [4] obtained the

following system:



ẋ = −y − κx

ẏ = x+ εuv − κy

u̇ = δ(−vw + δεvy − δu)

v̇ = δ(uw − δεuy − δv + F )

ẇ = −δ(uv + δw)

(26)

Note.

Reformulating the fast system (26) in terms of the rescaled variable τ = δt

we obtain a two-time scales singularly perturbed dynamical system of the same

form as the slow system (2) for which variables ~x = (x, y)t and ~z = (u, v, w)t

are respectively fast and slow.
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δẋ = −y − κx

δẏ = x+ εuv − κy

u̇ = −vw + δεvy − δu

v̇ = uw − δεuy − δv + F

ẇ = −(uv + δw)

(27)

In the first article in which he introduced his five-mode model, Lorenz [23, p.

1548] wrote:

“In the trivial case where the Rossby and gravity waves are completely

uncoupled, i.e., where the system of equations degenerates into two sys-

tems, one governing Rossby waves and one governing gravity waves, the

slow manifold obviously exists and is obtained simply by equating all of the

gravity-waves variables to zero.”

Following this idea Camassa et al. [4, p. 3263] gave the zero-order approxima-

tion in δ of the slow manifold associated with the system (27):

x = −ε uv

1 + κ2
+O(δ)

y = κε
uv

1 + κ2
+O(δ)

(28)

This slow manifold parametrized as a graph over the (u, v, w) space is also

called singular approximation (see Sec. 2 for definition) since it is obtained by

posing δ = 0 in the two first equations of system (27).
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After the publication of the article entitled “On the Nonexistence of a Slow

Manifold” in which Lorenz and Krishnamurthy [28] concluded that the slow

manifold of such model “does not exist”, Jacobs [20], Boyd [2], Fowler and

Kember [20] and then Camassa and Tin [4] proved the existence of a slow

manifold in this model and gave approximations of its equation at first orders

while using the “singular perturbation scheme known as the method of mul-

tiple scales. 4 ”. Although these authors stated that a slow manifold can be

constructed via formal series, such a long and tedious asymptotic procedure

of systematic identification order-by-order is expected to diverge as previously

recalled. Recently, Sudheer et al. [32] and Vanneste [36] have proposed alter-

native techniques for the construction of the slow manifold of such model.

We will show now that one can obtain high-orders approximation of this slow

manifold while using the Flow Curvature Method.

Thus, according to Prop. 1 the slow manifold equation (9) associated with the

generalized LK model (27) reads 5 :

φ( ~X, δ) = det( ~̇X, ~̈X,
...
~X,

....
~X ,

.....

~X ) = 0 (29)

where ~X = (~x, ~z)t. Then, it can be verified that the time derivative of the

functional jacobian matrix of system (26) evaluated when δ → 0 is a zero

matrix. So, from Darboux Invariance Theorem we can conclude that in the

δ-vicinity of the singular approximation the slow manifold is invariant.

4 Boyd [2, p. 1058]
5 See http://ginoux.univ-tln.fr for complete equation.
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The implicit equation (29) is a polynomial of degree 10 for u, v and w, of

degree 5 for x and 11 for y and represents the eighteenth-order approximation

in δ of the slow manifold of the generalized LK model (27).

By posing δ = 0 in the above Eq. (29) we find that:

φ( ~X, 0) = v(u2 − w2)
[
(x+ ε

uv

1 + κ2
)2 + (y − κε uv

1 + κ2
)2
]

= 0 (30)

This equation is made of a product of invariant manifolds as it is easy to verify

according to Darboux Invariance Theorem. Let’s compute the Lie derivative

of the first and second term, when δ → 0 we have:

L ~X(v) = 0

L ~X(u2 − w2) = 0

(31)

Let’s notice that the third term of Eq. (30) is nothing else but the zero-order

approximation in δ (singular approximation) of the slow manifold (see Eq.

(28)) given by Camassa et al. [4, p. 3263] which is also invariant when δ → 0.

But, according to Leith [24, p. 960], the decomposition into fast and slow

modes enables to define a three-dimensional submanifold of the state space

parametrized by (u, v, w) and that he called slow manifold. So, let’s pose x→ 0

and y → 0 in the above Eq. (29) we find that:

φ(u, v, w, δ) = u2w2(v2δ2(1 + ε2)− (δ2 − κ)2)− w2(u2 + v2w2δ2)

+ u4(1 + (δ2 − κ)2) + uvwδ(δ2 − κ)(2w2 − u2(2 + ε2)) = 0

(32)
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In addition to the invariant manifolds (31) highlighted above we find another

manifold. Let’s compute its Lie derivative when δ → 0 we obtain:

L ~Xφ(u, v, w, 0) = u2(u2 − w2)(1 + κ2) (33)

Thus, we deduce that this manifold is locally invariant, i.e. is invariant in the

vicinity of the manifold defined by u2 − w2 = 0.

Now, by posing in system (27) κ = α = 0 we obtain the approximation

of zero forcing and dissipation, i.e. the“conservative form” of the Lorenz-

Krishnamurthy model studied by Vanneste [36]. Then, still using the Flow

Curvature Method, we will provide the thirteenth-order approximation of the

slow manifold associated with this model the invariance of which will be estab-

lished according to Darboux theorem. Moreover, by posing ε = 0 in our slow

manifold analytical equation we will find again the first-order approximation

of the slow manifold given by Vanneste [36].
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5.2 The conservative LK model

Thus, by using the same variables changing as previously and by posing δ = ε

and b = ε in system (27), Vanneste [36] obtained the following two-time scales

singularly perturbed dynamical system:



εẋ = −y

εẏ = x+ buv

u̇ = −vw + bεvy

v̇ = uw − bεuy

ẇ = −uv

(34)

where parameters b and ε control the strength of the coupling and the gravity-

wave frequency, x and y are fast modes while u, v and w are the slow modes.

At the beginning of his paper Vanneste [36] gives the zero-order approxima-

tion in ε (singular approximation) of the slow manifold associated with the

conservative LK model (34) by posing ε = 0:

x = −buv,

y = 0.

(35)

Thus, as previously noticed by Lorenz [27] and recalled by Camassa [3] and

Vanneste [36] this model has an invariant manifold the equation of which is:
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u2 + v2 = Cte (36)

Now, by using the Flow Curvature Method, i.e. according to Prop. 1 the slow

manifold equation (9) associated with conservative LK model (34) reads 6 :

φ( ~X, ε) = det( ~̇X, ~̈X,
...
~X,

....
~X ,

.....

~X ) = 0 (37)

As previously, it can be verified that the time derivative of the functional

jacobian matrix of the fast system (26) (from which the slow system (34) has

been deduced) is a zero matrix when ε → 0. So, from Darboux Invariance

Theorem we can conclude that in the ε-vicinity of the singular approximation

the slow manifold is invariant.

The implicit equation (37) is a polynomial of degree 9 for u, v and w, of degree

5 for x and 11 for y and represents the thirteenth-order approximation in ε of

the slow manifold of the conservative LK model (34).

By posing ε = 0 in the above Eq. (37) we find that:

φ( ~X, 0) = (u2 − w2)(v2 + w2)((x+ buv)2 + y2) = 0 (38)

This slow manifold is made of a product of invariant manifolds as it is easy

to verify according to Darboux Invariance Theorem. Let’s compute the Lie

derivative of the first and second term when ε→ 0 we have:

6 See http://ginoux.univ-tln.fr for complete equation
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L ~X(u2 − w2) = 0

L ~X(v2 + w2) = 0

(39)

Let’s notice that the third term of Eq. (38) is nothing else but the zero-order

approximation in ε (singular approximation) of the slow manifold (see Eq.

(35)) given by Vanneste [36] which is also invariant when ε→ 0.

As previously, the decomposition into fast and slow modes enables to define

a three-dimensional submanifold of the state space parametrized by (u, v, w)

and that he called slow manifold. So, let’s pose x→ 0 and y → 0 in the above

Eq. (37) we find that:

φ(u, v, w, ε) = (u2 + v2)(u2w2 − u4 + ε2v2w2(w2 − (1 + b2)u2)) = 0 (40)

In addition to the quadratic invariant manifolds (36-39) highlighted above we

find another manifold. Let’s compute its Lie derivative when ε→ 0 we obtain:

L ~X(u2w2 − u4 + ε2v2w2(w2 − (1 + b2)u2)) = 2uvw(u2 − w2) (41)

Thus, we deduce that this manifold is locally invariant, i.e. is invariant in the

vicinity of the manifold defined by u2 − w2 = 0.

29



The slow manifold implicit equation (40) associated with the conservative LK

model (34) has been plotted in Fig. 1 in the (u, v, w) phase-space. Numerical

integration of this model with a set of initial conditions (x0, y0, u0, v0, w0) =

(2, 2,−2, 1.97, 2) taken on this slow manifold (in blue on Fig. 1) enables to

highlight that the trajectory curves (in red on Fig. 1) “visit” every part of this

hypersurface and stay in its ε-vicinity. The fixed point located at the origin

has been plotted in green in the center of this figure.

Fig. 1. The conservative LK model slow invariant manifold in (u, v, w)-space
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6 Discussion

In this work the Flow Curvature Method has enabled to provide the eighteenth-

order approximation of the slow manifold of the generalized LK model and the

thirteenth-order approximation of the conservative LK model the invariance

of which has been stated according to Darboux invariance theorem.
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APPENDIX

The identity involved in the proof of the invariance of the slow manifold (Sec.

4.2.2) is stated in this appendix.

J~a1. (~a2 ∧ ~a3 ∧ . . . ∧ ~an) + ~a1. (J~a2 ∧ ~a3 ∧ . . . ∧ ~an)

+ . . .+ ~a1. (~a2 ∧ ~a3 ∧ . . . ∧ J~an) = Tr (J)~a1. (~a2 ∧ . . . ∧ ~an) (42)

Proof. The proof is based on inner product properties.

To the functional jacobian matrix J is associated an eigenbasis:
{
~Yλ1 , ~Yλ2 , . . . , ~Yλn

}
.

Let suppose that there exists a transformation 7 such that:

to each vector ~ai corresponds the eigenvector ~Yλi with i = 1, . . . , n.

Each inner product of the left hand side Eq. (42) may be transformed into

J~a1 · (~a2 ∧ ~a3 ∧ . . . ∧ ~an) = λ1~a1 · (~a2 ∧ ~a3 ∧ . . . ∧ ~an) = λ1~a1 · (~a2 ∧ ~a3 ∧ . . . ∧ ~an)

~a1 · (J~a2 ∧ ~a3 ∧ . . . ∧ ~an) = ~a1 · (λ2~a2 ∧ ~a3 ∧ . . . ∧ ~an) = λ2~a1 · (~a2 ∧ ~a3 ∧ . . . ∧ ~an)

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

~a1 · (~a2 ∧ ~a3 ∧ . . . ∧ J~an) = ~a1 · (~a2 ∧ ~a3 ∧ . . . ∧ λn~an) = λn~a1 · (~a2 ∧ ~a3 ∧ . . . ∧ ~an)

Making the sum of these factors the proof is stated.

7 By considering that each vector ~ai may be spanned on the eigenbasis, calculus is

longer and tedious but leads to the same result.
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