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Abstract— The recent growth of multimedia requires an
extensive use of metadata for their management. However,
a uniform access to metadata is necessary in order to take
advantage of them. In this context, several techniques for
achieving metadata interoperability have been developed.
Most of these techniques focus on matching schemas defined
by using one schema description language. The few existing
matching systems that support schemas from different
languages present some limitations, especially when using se-
mantic and structural information. In this paper we present
a new integration system supporting schemas from different
description languages. Moreover, the proposed matching
process makes use of several types of information (linguistic,
semantic and structural) in a manner that increases the
matching accuracy.

I. INTRODUCTION

The ubiquitous presence of multimedia in our lives has
generated an increasing interest in the use of metadata
to improve the efficiency and effectiveness of retrieval,
filtering and managing procedures of these types of con-
tents. Metadata is a machine processable data that is
used for the interpretation and the processing of multi-
media content for their adaptation, filtering, or semantic
knowledge extraction. Metadata describes different types
of information: multimedia contents (e.g., video, image,
audio, etc.), semantics of these contents (e.g., concept in
image, context of video, etc.), characteristics of devices
consuming or transmitting these contents (e.g., networks,
TV, mobile, etc.) and consumer characteristics (e.g., con-
sumer profile, consumer preference, etc.).

Metadata has extensive use in real world applications.
Multimedia services platform often combine metadata
issue from several domains. For instance, The BBC1

offers an online program information service for its TV
and radio channels, where The TV-Anytime and MPEG-
7 standards [15] were chosen for representing program
information and audio-visual metadata respectively. HAR-
MONY2 (part of International Digital Libraries Initiative)
is another example of a framework that combines meta-
data from several domain. The framework addresses the
challenge of describing networked collections of highly
complex and mixed-media digital objects. HARMONY
uses RDF, XML, Dublin Core, MPEG-7 and INDECS
standards for achieving its goals.

By anticipating the increase of metadata in the up-
coming years, we can foresee that it will become more
and more difficult to achieve a uniform access to media

1http://backstage.bbc.co.uk/feeds/tvradio/doc.html
2http://www.ilrt.bris.ac.uk/discovery/harmony/

objects since a multimedia object can be described using
different metadata standards, developed by independent
communities. So, a given user or service cannot extract a
given attribute without a ability of interpretation. In this
context, metadata interoperability becomes crucial.

Over the last decades, a various of interoperability tech-
niques have been proposed and are analyzed in [14]. Most
of these works focus on the creation of a core ontology
which contains common information on metadata to be in-
tegrated. This ontology acts as a mediated schema, which
is the common interface used for querying all metadata
encoded in different formats. After designing this core
ontology, a manual mapping is performed between the
latter and other metadata formats [1].

The works mentioned above have not been a real
success since the integration process is performed man-
ually, which is costly and time consuming. Besides, the
integration must be updated every time a new metadata
format appears. In this context, several semi-automatic
techniques have been developed to facilitate the integra-
tion process. Schema matching techniques play a central
role in these approaches [27].

Due to the complexity of schema matching, it was
mostly performed manually by human experts. However,
manual reconciliation tends to be a slow and inefficient
process especially in large-scale schemas (e.g., MPEG-
7, MPEG-21, etc.) and dynamic environments such as
multimedia where new metadata standards are appearing
constantly. Another problem that should be taken into
consideration is that metadata are heterogeneous on two
levels: schema and schema definition language. The struc-
tural and semantic heterogeneity on the schema level oc-
curs when the same information is represented differently
on different schemas (e.g., naming conflicts, multilateral
correspondence, abstraction level incompatibility, etc.).
The schema definition language heterogeneity is due to
the substantial structural and semantic discrepancies of
schema definition languages. For instance, several XML
Schema structural descriptions can not be expressed using
RDF Schema (RDFS) and several semantic descriptions
of the latter are not supported by XML Schema (XSD)
[14].

This paper aims at automating the integration process of
metadata in order to achieve interoperability. This is done
by proposing a new integration system named MuMIe
(Multi-level Metadata Integration). The proposed system
can be used to help developers in their integration process
(semi-automatic integration). However, if we consider the
definitions given in the [14], where the authors define



interoperability as the ability to exchange metadata be-
tween two or more systems without or with minimal loss
of information and without any special effort on either
system, we can say that the proposed solution can be
considered as automatic solution in the case of a high
matching accuracy.

MuMIe works on the schema level and schema def-
inition language level. Moreover, our system combines
several types of semantic and structural information so
as to increases the matching accuracy. The paper is
organized as follows: Section II discusses the limitations
of existing schema matching techniques and describes
related work. In Section III, we describe the proposed
integration system. An evaluation study is presented in
Section IV. Finally, Section V gives concluding remarks
and future work.

II. RELATED WORK

Since metadata heterogeneity can occur on the schema
definition language and the schema levels, it is necessary
to specify the mappings for each level. In order to perform
the mapping for the schema definition language level,
several methods have been developed. Examples include
the work done in [12] [32], in which the authors propose
conversion rules for XML Schemas to OWL. These rules
insure the capture of a part of XML Schema implicit
semantics. The authors in [11] describe the conversion of
schemas into an object-oriented representation and pro-
pose a methodology for translating schemas and convert-
ing relational instance data. The Ontology definition meta-
model specification [17] offers a set of metamodels and
mappings for translating between the UML metamodel
and ontology languages such as RDF Schema and OWL.
the authors in [23] present an approach for automatically
generating RDF Schema from XML Schema specifica-
tion. Other approaches for language translation have been
proposed, some of them are analyzed in [14]. Because
of the substantial structural and semantic discrepancies
among schema definition languages, the works mentioned
previously have not been very successful as the translation
from one language into another causes the loss of valuable
semantic and structural information.

Concerning the heterogeneity problem on the schema
level, tools and mechanisms are needed in order to achieve
interoperability. These tools and mechanisms must resolve
the semantic and structural heterogeneity of schemas and
align terms between metadata. To do so, several schema
matching techniques have been proposed over the last
decade, but up to now few existing systems aim at being
general and support schemas from different languages,
among them we can note: Similarity Flooding [22](rela-
tional, XML and RDF), Cupid [20](relational and XML),
S-Match [13] (relational, XML and Ontologies) and Clio
[24] [26](relational and XML). These approaches do
not make use of most of the structural and semantic
information (e.g., equivalence properties, generalization
features, disjointness classes, etc.). Consequently, it is

difficult to detect the complex matching such as one-to-
many and many-to-many. Moreover, the main drawback
of these methods is how to use the structural information.
For instance, the authors in [20] consider that much of
the information content is represented in leaves and that
the leaves have less variations between schemas than the
internal structures. Thus, the similarity of inter-nodes is
based on the similarity of their leaf sets. This is not always
true as we can find equivalent concepts occurring in
completely different structures, and completely indepen-
dent concepts that belong to isomorphic structures. The
drawback of the method developed in [22] is that is based
on the idea of similarity propagation, the basic concept
behind the algorithm is that adjacency contributes to
similarity propagation. Thus, the algorithm will perform
unexpectedly in cases when adjacency information is not
preserved. The approach proposed in [24] only makes
use of parent-child relationship to calculate structural
similarity contexts. The work done in [13] is limited to
a tree-like structure and does not consider properties or
roles.

Motivated by the above challenges, we discuss below
a simplified approach for achieving the interoperability
on two levels. The approach can be used to integrate
several heterogeneous schemas, defined using different
definition languages. We combine several syntactic, se-
mantic and structural resources available on schemas to
detect the mappings between metadata terms. Moreover,
our approach overcomes the structural gap of the match-
ing systems mentioned above by using several similarity
contexts [16].

III. PROPOSED APPROACH

This section shows the two main parts of the proposed
system. The first one is the projection step which is
responsible for achieving interoperability on the language
level. This is done by the transformation of all schemas
into a common representation model. The second part is
the matching step which is responsible for finding the
correspondences between metadata terms by using several
types of information.

A. Projection

As mentioned in Section II, up to now, few existing
matching systems support schemas from different lan-
guages. In this section, we propose transformation rules
that allow the projection of different schema languages
on the same representation space. This space is an ab-
stract model that serves as a foundation to represent
conceptually several types of schemas whatever their
description language. We model schemas as a directed
labeled graph (Section III-A.1) and save semantic and
structural information in order to use them for the match-
ing process (Section III-A.2). Figure 1 illustrates the
projection process. Note that examples on this paper are
limited to three description languages (XML Schema,
RDF Schema and OWL) [9] [6] [21], since they are



commonly used by metadata communities and present a
significant heterogeneity (a high structural description for
XSD and a high semantic expressiveness for RDF Schema
and OWL).
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Figure 1. Illustration of the projection step.

1) Schema Graph Representation: Due to the high
heterogeneity of schema definition languages, it is not
possible to find one representation model which supports
all schema features. In our approach, we model these
schemas as a directed labeled graphs representing only ba-
sic schema concepts and properties linking between them.
These two entities are the common and basic information
for all description languages. In order to create the graph,
the description concepts of schema definition languages
must be known. For instance, all classes (rdfs:class) and
properties (rdf :property) in RDF Schema must be repre-
sented by nodes. Table I shows the basic concepts and
properties for the three different languages. Concerning
the languages based on taxonomy classification (e.g.,
XML Schema), we use the idea proposed in [23] to
capture the semantics of implicit properties. So, the name
of property node is the combination of parent and child
nodes.

We categorize nodes into normal nodes and property
nodes. Normal nodes correspond to the basic concepts
(e.g., xsd:complexType, rdfs:class, xsd:element, etc.) and
property nodes correspond to properties linking between
schema concepts (e.g., rdf :property, owl:ObjectProperty,
etc.). Figure 2 illustrates a schema graph example of the
RDF metamodel described in Figure 3.

2) Semantic and Structural Information: Different
types of structural and semantic information can be
specified with the different schema definition languages.
However, not all of this information is necessary for the
matching process. In our approach, we make use of a
part of this information that can help to detect mappings
between metadata terms. The datatype comparison for

TABLE I.
LANGUAGE MAPPING RULES

Node
Types

XSD RDFS OWL

Normal xsd:element rdfs:class owl:class
Nodes xsd:attribute

xsd:attributeGroup
xsd:group

Property parentName and rdf:property owl:objectProperty
Nodes childName

 

Image

URI

hasReference

Person

CreatedBy

Figure 2. A schema graph example.

<rdf:RDF> 

------------------- 

<rdfs:Class rdf:about="Image"> 

 <rdfs:subClassOf rdf:resource="&abs;Object"/> 

</rdfs:Class> 

<rdf:Property rdf:about="hasReference"> 

 <rdfs:domain rdf:resource="Image"/> 

 <rdfs:range rdf:resource="URI"/> 

</rdf:Property> 

<rdf:Property rdf:about="createdBy"> 

 <rdfs:range rdf:resource="Image"/> 

 <rdfs:domain rdf:resource="Person"/> 

</rdf:Property> 

-------------------- 

</rdf:RDF> 

Figure 3. RDF fragment example.

instance is ignored because we can find a node ni which
matches another node nj but one of them corresponds
to a leaf node (simple type) and the other is a complex
node (complex type). Moreover, datatype is not available
on all schema definition languages (e.g., all simple types
are rdfs:literal for RDF Schema). Element cardinalities
are also another example of ignored information. Table II
shows the semantic and structural information used in our
matching process. Examples of utilization of some types
of this information are given in Section III-B.2

TABLE II.
SEMANTIC AND STRUCTURAL INFORMATION USED ON THE

MATCHING PROCESS

XSD xsd:restriction, xsd:abstraction,
xsd:extension, xsd:substitutionGroup

RDFS rdfs:seeAlso, rdfs:isDefinedBy, rdfs:subClassOf
OWL owl:unionOf, owl:complementOf, owl:intersectionOf,

owl:TransitiveProperty, owl:someValuesFrom,
owl:equivalentClass, owl:disjointWith, rdfs:subClassOf

owl:distinctMembers, owl:differentFrom
owl:AllDifferent, owl:sameAs, owl:equivalentProperty
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Figure 4. Matching process phases

B. Matching System

In this section, we describe the different steps of the
proposed matching system as shown in Figure 4. The
system is composed of three main parts: pre-processing,
linguistic and structural similarity computation. The sys-
tem takes as input two schemas presented as directed
labeled graphs as well as the structural and semantic
information got from the projection step. Then, all irrel-
evant node names in both schema graphs are eliminated
and the useful words are normalized (Section III-B.1).
After the pre-processing step, the system calculates the
linguistic similarity between nodes in both schemas by
exploiting the semantics of their corresponding names
and comments as well as semantic information obtained
from the projection step (Section III-B.2). Finally, the
structural similarity is computed and the correct mappings
are selected according to the linguistic and structural
similarity scores (Section III-B.3).

1) Pre-Processing: In this step, we start by parsing
all entities involved in the matching process, includ-
ing normal nodes, property nodes as well as comments
(i.e: textual description available on xsd:documentation,
rdfs:comment, etc.) corresponding to these entities. Then,
node names and comments are normalized in order to
make their semantics useful for the linguistic similarity
calculation step.

a) Node Names: Normally, each entity in the graph is
modeled by a node with a name. A node name is a string,
without blank characters (space), that may be a word, a
term, or an expression (a combination of words). In order

to calculate the similarity between node names, a normal-
ization step is necessary. First, each entity name is broken
into a set of tokens M with a customizable tokenizer using
punctuation, upper case, special symbols, and digits, e.g.
MediaRegionLocator becomes (Media, Region, Locator).
Once the tokenization step is over, tokens are lemmatized.
Namely, they are morphologically analyzed in order to
find all their possible basic forms. Thus, for instance,
Locations is associated with its singular form, Location. A
user-defined dictionary is also used to deal with acronyms
and abbreviations, e.g., ID becomes Identifier.

b) Comments: As mentioned above, comments are used
as other semantic information. This can be performed
via information retrieval techniques. To do so, comments
must be linguistically filtered by eliminating the words
carrying little useful information, such as articles, prepo-
sitions, conjunctions, pronouns and modal verbs [30].

2) Linguistic Similarity Computation: This phase con-
cerns with the linguistic similarity computation between
every graph node pairs belonging to two schemas to
be mapped. In order to form the linguistic similarity
matrix, a string-based technique is used to map the node
names. WordNet is used for the explicitation of the
words’ meaning [10]. In addition to the node names,
comments are used as a second semantic resource for
the matching process. We apply the TF/IDF technique
[30] to these comments in order to extract the most
pertinent information. The linguistic similarity score is the
weighted sum of both similarities. Finally, the semantic
and structural information got from the projection step are
used in order to deduce other mappings.



a) Name Matching: The purpose of this phase is to find
an initial matching by calculating the similarity distance
between the names of all node pairs in the two schemas
to be mapped. Each node is represented by a set of
tokens. Because of the richness of natural language, we
first start with the explicitation of tokens’ meaning by
using WordNet [19]. Several synonyms can be found for
a given term. This helps to resolve problems of termino-
logical conflicts occurring when metadata standards are
developed by different communities which may describe
the same information using different terms. For instance,
some multimedia metadata communities [31] use the term
”type” to describe the type of a given content. Some others
[17] use the terms ”format” or ”genre” to describe the
same information. Each node ni represented by a set of
tokens Mi will have a set of synonyms synset for each
token mi after the explicitation step. M

′

i is the final result
that regroups all synsets returned by Mi explicitation.

M
′
i = Mi

⋃
{mk|∃mj ∈Mi

⋂
mk ∈ synset(mj)} (1)

The explicitation is a necessary step because it gives all
possible interpretations for each token. However, since a
term with multiple senses belongs to multiple synsets, the
explicitation process can also result in a wide enlargement
of the field of words meaning. Word sense disambiguation
(WSD) is a needed operation which allows the selection
of the real meaning of a node (the correct synset). In
order to achieve WSD we use the method proposed in
[18] and enhanced in [25]. This method takes advantage
of the network of relations provided in WordNet measure
of semantic relatedness between word senses based on the
notion of extended gloss overlap (the similariry between
text descriptions corresponding to sysnsets). The extended
gloss overlap measure takes two synsets as an input,
describing two adjacent nodes and computes a gloss
overlap score. Synsets which have a maximum score are
considered as the best corresponding ones to the nodes
they describe [18] [25].

Once the explicitation step is performed, we compute
the similarity Sname between all node pairs belonging to
the two schemas to be mapped. To do so, for each node
pair (n1, n2) we calculate Sname by using Jaro-Winkler
metric (JW) [4] between each token mi ∈ M

′

1 and all
tokens mj ∈ M2 (and vice versa) [19]. The Jaro-Winkler
distance is given by:

JW (mi,mj) =
1

3
(

r

|mi|
+

r

|mj |
− r − t

r
) (2)

where r is the number of matching characters, t is the
number of transpositions and (|mi|, |mj |) are the number
of string characters corresponding to tokens (mi, mj).
We choose Jaro-Winkler distance in our matching precess
based on the comparative study done in [7] where the
authors made an evaluation of several string distances on
the matching process.

We take the maximum score (MJW) of each token mi:

MJW (mi,M
′
) = maxmj∈M

′JW (mi,mj) (3)

Finally, the average of the best similarities is calculated
to get the name similarity between nodes:

Sname(n1, n2) =

∑
mi∈M1

MJW (mi,M
′
2) +

∑
mj∈M2

MJW (mj,M
′
1)

|M1| + |M2|
(4)

where |M1| and |M2| are the number of tokens in M1

and M2.
b) Comment Matching: Due to the use of technical

vocabularies by multimedia metadata communities, node
names do not always provide a sufficient semantics. The
comments related to each entity are also another semantic
resource. We apply the TF/IDF technique [30] used in
the information retrieval domain in order to calculate the
similarity between comments. To do so, all comments
on the two schemas to be mapped are considered as
documents, each node will be represented by a vector
whose coordinates are the results of TF/IDF. Hence, the
similarity between two nodes is the distance between
vectors corresponding to their comments.

In order to illustrate how to calculate these vectors, let
us consider v = (w1, w2,...., wP ), a vector representing a
certain node n. P = |U | is the number of distinct words
in all comments in the two schemas to be mapped. The
ith element wi in the vector v, which represents the node
n in a schema, is calculated as follows:

wi = tfi ∗ idfi (5)

idfi = log2
N

bi
(6)

where tfi is the term frequency. tfi represents the number
of times that the ith word in U appears in the comment
corresponding to ni. idfi (inverse document frequency)
is the inverse of the percentage of the concepts which
contain the word wi. N is the number of comments
in U in both schemas. bi is the number of comments
which contain the word wi at least one time. As we have
mentioned previously, the similarity Scomment between
two nodes ni and nj is the distance between vectors
corresponding to their comments vi and vj . This distance
is a cosine similarity σ [28]. It is calculated as follows:

σ(vi, vj) =

∑P
k=1 wikwjk√∑P

k=1(wik)
2 ∗

∑P
k=1(wjk)

2

(7)

The result of above processes is a linguistic similarity
matrix lSim, where:

lSim(ni, nj) = µ1∗Sname(ni, nj)+µ2∗Scomment(ni, nj)
(8)

µ1 + µ2 = 1 and (µ1, µ2) ≥ 0
c) Semantic and Structural Information Utilization:

Structural and semantic information obtained from the
projection step (Section III-A) are used in our system
to detect other mapping candidates, especially complex
ones (n:m mappings). In the following, we present some
examples of such features and show how they can be used
to deduce other mapping candidates:
• Generalization Features: The generalization

relationship between two types indicates that one



type is a subset of another (e.g., xsd:extension,
rdfs:subClassOf, xsd:abstraction, etc.) [9] [21]. This
information can successfully help the matching
algorithm to infer complex matches. Let us consider
that the attribute ms: Agent is defined at the schema
to be matched with MPEG-7 schema, this attribute
linguistically map to mpeg7:AgentType complex
element (lSim between both node is greater than
a given threshold). In this context, the union of
two complex elements mpeg7:PersonType and
mpeg7:OrganizationType is also considered
as a mapping candidates for ms:Agent. This
is done because mpeg7:OrganizationType
and mpeg7:PersonType are extensions of
mpeg7:AgentType. Other structural properties
are used (e.g., owl:disjointWith, owl: unionOf, etc.)

• Semantic Features: Let us consider that ni and nj
are two nodes linguistically matched, and nk is an-
other node corresponding to a class having an equiv-
alence property with the one corresponding to ni
(e.g., owl: equivalentProperty, owl:equivalentClass,
xsd:substitutionGroup, etc.) [9] [21]. This informa-
tion allows us to deduce that nk is another mapping
candidate for nj . Other semantic properties are also
used (e.g., owl:sameAs, owl:differentFrom, etc.)

The use of semantic and structural information helps to
discover more mappings but may also increase the number
of false positive mappings that can be eliminated in the
structural similarity computation step (Section III-B.3).

3) Structural Similarity Computation: The linguistic
similarity computation may provide several node candi-
dates. There can be multiple matching candidates which
differ in the structure but have a high linguistic similar-
ity value. For instance, mpeg7: MediaRelTimePoint and
mpeg7: MediaRelIncrTimePoint [15] are two elements
which may map to the same entity ms:MediaTimePoint
defined in the mediated schema. Thus, in order to deal
with this case, the structural similarity is computed in or-
der to prune these false positive candidates. Our structural
matching algorithm is based on the node context, which
is reflected by its ancestors and its descendants. In this
paper, as in [16], we consider three kinds of node contexts
depending on their position in the ontology tree: ancestor
context, immediate descendant context and leaf context.
The context of a node is a combination of these three
contexts.

a) Ancestor Context Similarity Measure: The ancestor
context of a node ni is defined as the path pi extending
from the root node of the schema to ni. Consequently,
in order to compare two ancestor contexts, we essentially
need to compare their corresponding paths. The authors
in [16] have introduced the concepts of path context
coefficient to capture the degree of similarity in the paths
of two elements. However, this solution has no high
matching accuracy. For this reason, we use the ideas of
path similarity measure described in [8]. The authors in
[8] have relaxed the matching condition by allowing the
matching of paths even if their source nodes do not match

and their nodes appear in a different order. In addition,
paths can also be matched even if there are additional
nodes within the path, meaning that the child-parent edge
constraint is relaxed into ancestor-child constraint. Such
relaxations are inspired by ideas in query answering to
approximate answering of queries. The authors in [8]
consider two paths p1 and p2 being matched, p2 is the best
match candidate for p1 if it fulfils the following criteria:
• The path p1 includes most of the nodes of p2 in the

right order.
• The occurrences of the p1 nodes are closer to the

beginning of p2 than to the tail, meaning that the
optimal matching corresponds to the leftmost align-
ment.

• The occurrences of the p1 nodes in p2 are close
to each other, which means that the minimum of
intermediate non matched nodes in p2 are desired.

• If several matching candidates that match exactly the
same nodes in p1 exist, p2 is the shortest one.

In order to answer to the creteria mentioned above,
four parameters have been defined in [8]: lcsn(pi, pj),
the longest common subsequences between two paths nor-
malized by the length of the first path, pos(pi, pj) which
considers that the optimal matching between (pi, pj) is
the matching that starts on the first element of pi and
continues without gaps, gap(pi, pj) used to ensure that
the occurrences of two path nodes are close to each other,
and ld(pi, pj) used to give higher values to source paths
whose length is similar to target paths.

Based on the criteria for the paths matching mentioned
above, we introduce a new adaptation and relaxation of
the approach as follows:
• For the fourth parameters, the longest common sub-

sequence(lcs) must be calculated according to the
linguistic similarity matrix computed in the previous
step. It means that two nodes (ni, nj) are considered
identical if their lSim(ni, nj) is greater than a given
threshold e.g. 0.80. That is, ordinary string compar-
ison is now relaxed into string and text comparison
(lSim) that is based on similarity threshold.

• The parameters in [8] have been defined for XML
which is based on a taxonomy classification (rela-
tions between nodes are not labeled, generally con-
tainment type). Therefore, the transformation of all
schemas into a directed labeled graphs needs more
relaxation for the lcs calculation. For instance, let
us consider the two RDF triples (Objet, ContentOn,
URL) and (Object, hasReference, URL). We can
easily note that the predicate value of the first triple
matches the subject value (Content is equivalent to
Object). However, the predicate value in the second
triple matches the object (Reference is equivalent
to URL). We introduce another type of relaxation
by considering triple predicates (property nodes)
as nodes which are switchable with the immediate
child node or the immediate parent node (object
or subject according to RDF interpretation). To do
so, we consider each path as a set of segments



p = {g1, ...., gN}, each segment is composed of two
adjacent nodes (nk, nk+1)(one of them in a property,
see Figure 5). In this context, lcs

′
is the new value

of longest common subsequence between two paths
after the relaxation step. Its calculation is showed in
Algorithm 1.

Algorithm 1 lcs
′

calculation
1: Input parameters (p1, p2).
2: Each path is a set of segments p1 = {g11 , ...., gN1 },
p2 = {g12 , ...., gM2 }.

3: Each segment is a composed of two adjacent nodes
gi = (ni, ni+1).

4: int lcs
′

= 0. int i = 0.
5: calculate lcs(p1, p2).
6: lcs

′
= lcs(p1, p2).

7: for all segments g1i (i ∈ N) do
8: switch nodes (ni, ni+1) of segment g1i and update

p1.
9: calculate lcs(p1, p2)

10: if (lcs(p1, p2) > lcs
′
) then

11: lcs
′
= lcs(p1, p2)

12: pass to the after next segment (i := i + 2).
13: else
14: return (ni, ni+1) to their previous positions and

update p1.
15: pass to the next segment (i := i + 1).
16: end if
17: end for
18: return lcs

′

After the relaxations introduced above, the new ver-
sion of equations presented in [8] becomes:

lcsn(pi, pj) = |lcs′(pi, pj)|/|pi| (9)

pos(pi, pj) = 1− ((ap− aop)/(|pj | − 2 ∗ aop+ 1))
(10)

gap(pi, pj) = gaps/(gaps+ lcs′(pi, pj)) (11)

ld(pi, pj) = (|pj | − lcs′(pi, pj))/|pj | (12)
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If we consider the two paths showed in Figure 5 as the
path being matched, the longest common subsequence is
5 instead of 0 after the two steps of relaxation introduced
above.

Finally, the similarity ps between two paths (pi, pj)
is obtained by combining the scores resulting from the
equations (9, 10, 11 and 12):

ps(pi, pj) =δlcnn(pi, pj) + ϕpos(pi, pj)− θgap(pi, pj)−
λld(pi, pj) (13)

where δ, ϕ, θ and λ are positive parameters representing
the comparative importance of each factor. These param-
eters are given based on experimental results from [8]: δ
= 0.75; ϕ = 0.25; θ=0.25; λ=0.2.

Finally, the ancestor context similarity ancSim between
two nodes (ni, nj) is the path similarity of their an-
cestors (pi, pj) weighted by their linguistic similarity
lSim(ni, nj):

ancSim(ni, nj) = ps(ni, nj) ∗ lSim(ni, nj) (14)

b) Immediate Descendant Context Similarity Measure:
To obtain the immediate descendant context similarity
immSim between two nodes (ni, nj), we compare their
two immediate descendant sets S = {s1, s2, · · · , sn} and
S

′
= {s′1, s

′

2, · · · , s
′

m} (immediate descendant nodes are
normal nodes, property nodes are included only for path
similarity calculation). This is done by using the similarity
SimI between each pair of children in the two sets. Where:

SimI(s
′
i, sj) = ps(s

′
i, sj) ∗ lSim(s

′
i, sj) (15)

ps(s
′

i, sj) is the similarity between paths extending from
(s

′

i, sj) to (ni, nj).
Then, we select the matching pairs with maximum

similarity values.

MaxSimI(si, S
′
) = max

s
′
j∈S

′SimI(si, s
′
j) (16)

MaxSimI(s
′
i, S) = maxsj∈SSimI(s

′
i, sj) (17)

Finally, the average of the best similarity values is taken
to get the immediate descendant similarity value immSim:

immSim(ni, nj) =

∑|S|
i=1

MaxSimI(si, S
′
) +

∑|S
′
|

i=1
MaxSimI(s

′
i, S)

|S′ | + |S|
(18)

c) Leaf Context Similarity Measure: The leaf context
of a node ni is defined as the set of leaf nodes of subtrees
rooted at ni. If li ∈ leaves(ni) is a leaf node, then the
context of li is given by the path pi from ni to li. The
leaf context is given by:

leafSim(li, lj) = ps((pi, pj)) ∗ lSim(li, lj) (19)

To obtain the leaf context similarity between two leaves
li ∈ leaves(ni) and lj ∈ leaves(nj), we compute the
leaf similarity leafSim between each pair of leaves in
the two leaf sets. We then select the matching pairs with
the maximum similarity values. The average of the best
similarity values is taken (see Section III-B.3b)



d) Node Similarity: The node similarity nodeSim be-
tween normal nodes (property nodes are included only
for path similarity calculation) can be obtained by the
combination of ancestor context, immediate descendant
context, and leaf context similarities unless one of the two
nodes being compared is a leaf node or a node child of
root. In this case, the node similarity calculation considers
that the context of both nodes depends only on their
ancestors or descendants. The node similarity is given by:

nodeSim(ni, nj) = α ∗ ancSim(ni, nj) + β ∗ immSim(ni, nj)

+ γ ∗ leafSim(ni, nj) (20)

α+ β + γ = 1 and (α, β, γ) ≥ 0

Once the structural similarity computation is made,
the system returns for each source node ni the k node
candidates that have the maximum values of nodeSim.
In order to select the k candidates, one of the following
strategies can be used:

Threshold: Returns all node pairs showing a similarity
exceeding a given threshold value τ2. This strategy may
return too many matched candidates.

MaxDelta: Returns the node pair having a maximum
similarity value nodeSim which is determined as candidate
plus all pairs with a similarity differing at most by a
tolerance value d.

MaxN: The N node pairs with maximal similarity
nodeSim are selected as matching candidates.

In our approach, we support considering several criteria
at the same time, in particular MaxN in combination with
a low threshold e.g. 0.80.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the experiments that we
have carried out to evaluate our proposed system. Firstly,
we describe the data sets which we have used through the
evaluation. Secondly, we show the experimental results
which allow us to evaluate the proposed system.

A. Data Sets

The system has been tested using several metadata stan-
dards (MPEG-7, MPEG-21, EXIF, MIX, DIG35, XMP,
MPEG-7 Ontology, PeCMan Ontology, TV-Anytime,
DIG35 Ontology and CAM4Home) [15] [3] [2]. These
standards have a significant heterogeneity on two levels:
the metadata specification is performed using different
languages and schemas that present a high structural and
semantical heterogeneity (Table III).

In order to compare our results with Cupid [20], we
must first choose only metadata based XML Schema. To
do so, we calculated the mapping between TV-Anytime
and all standards based XSD. Secondly, so we can com-
pare our system with SF [22] we calculated the mapping
between CAM4Home metadata model presented in [3]
and all metadata standards in Table III. CAM4Home
metadata model is based on RDF Schema and it is a

part of the CAM4Home ITEA2 project 3. A group of
twenty multimedia academic and industrial practitioners
from TV, 3G and Internet application fields defined a
large set of metadata requirements in order to support the
convergence of multimedia contents in Digital Home en-
vironments. Metadata defined under CAM4Home project
describes information related to content semantics, user
characteristics and device profiles. The ground truths of
metadata standard mappings is obtained from [17]

TABLE III.
CHARACTERISTICS OF METADATA USED IN THE EXPERIMENTATION

Metadata Standard Max Depth # Nodes Language
MIX 7 41 XSD

DIG35 9 57 XSD
EXIF 6 63 XSD

MPEG-7 13 115 XSD
MPEG-21 11 143 XSD

PeCMan Ontology 7 46 OWL
DIG35 Ontology 9 57 OWL

CAM4Home 17 153 RDFS
TV-Anytime 8 71 XSD

XMP 6 53 XSD/RDFS
MPEG-7 Ontology 10 98 OWL

B. Experimental Results

The experimentation starts by setting the µ1, µ2, α, β
and γ parameters to know their effect on the matching
process. Then, the matching quality measure is showed
in Section IV-B.3. Finally, a comparative study is given
in Section IV-B.4.

1) Tuning the Parameters µ1 and µ2: In this Section
we show the effect of combining the two similarity
measures. We have selected two sets of attributes from
several metadata standard (T1, T2), each element of Ti
has an equivalent attribute in Tj . We have calculated
the linguistic similarity (lSim) between the elements in
two sets by using several combinations of the parameters
µ1 and µ2. The attributes are considered as matched
if their linguistic similarity value are greater than 0.9
(τ1). Figure 6 shows the experimental results in terms of
precision (percentage of correct mappings), where we can
note that the name of the attribute has more importance
to the comments. However, the comments provide also
information that helps to discover the mapping.

2) Tuning the Parameters α, β and γ: In order to know
the influence of each similarity context, we calculated
the mapping between several metadata standards using
several combinations of the α, β and γ parameters. The
mapping results between (MPEG-7, DIG35) and (DIG35,
EXIF) in terms of F-Measure [20] is showed in Figure 7
and 8 respectively.

The experimental evaluation shows that the greatest
amount of structural information is contained in the an-
cestor context (Figure 7 and 8) where the highest values of
F-Measure are located when α ∈ [0.45 0.6]; this explains

3http://www.cam4home-itea.org/
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Figure 6. The effect of the parameters µ1 and µ2 on the linguistic
similarity calculation

the interest of some matching strategies which consider
that the context of only nodes depend on their ancestors
[5] [24] [29]. Besides, the experimentations showed that
the immediate descendant context and the leaf context
have also an effect on the matching process, where the
highest values of F-Measure is located when β ∈ [0.1
0.15] and γ ∈ [0.25 0.4]. However, we believe that an
automatic choice of the α, β and γ values for each pair
of nodes according to the node positions in the graph can
increase the matching accuracy. This will be part of our
future works.
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Figure 7. MPEG-7, DIG35 mapping results in term of F-measure.

3) Matching Quality Measure: In order to calculate
the similarities between nodes, equation (20) parameters
are given according to the experiment results from the
previous section (µ1 = 0.85, µ2 = 0.15, α = 0.55, β =
0.15, γ = 0.30). The proposed solution has been evaluated
by considering the matching quality based on the criteria
described in [20] [22], including Precision, Recall, F-
measure. The experiment results of the mapping between
TV-Anytime and other standards based XSD in terms of
Precision, Recall and F-measure are shown in Table IV.
Table V shows the mapping results between CAM4Home
and other standards. By analyzing the two tables above,
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Figure 8. DIG35, EXIF mapping results in term of F-measure

we can notice that the results are important from our point
of view where the average value of F-measure is 62% and
81% for the Tables IV and V respectively. The results
in Table V are higher than the results in Table IV, this
is due to the type of schema used to integrate metadata
(TV-Anytime for Table IV and CAM4Home for Table V)
where the complexity of metadata vocabulaires (terms)
change from one schema to another.

TABLE IV.
MAPPING RESULTS BETWEEN TV-ANYTIME AND STANDARDS

BASED XSD

Metadata Precision Recall F-measure
standards

MIX 50% 55% 52%
EXIF 62% 65% 63%

MPEG-7 75% 70% 72%
MPEG-21 43% 47% 45%

DIG35 77% 82% 79%

TABLE V.
MAPPING RESULTS BETWEEN CAM4HOME AND OTHER STANDARDS

Metadata Precision Recall F-measure
standards

MIX 92% 89% 90%
DIG35 87% 90% 88%
EXIF 90% 81% 85%

MPEG-7 77% 64% 70%
MPEG-21 72% 60% 65%

PeCMan Ontology 94% 89% 91%
DIG35 Ontology 85% 90% 87%

TV-Anytime 77% 72% 75%
XMP 57% 65% 61%

MPEG-7 Ontology 70% 68% 69%

4) Comparison With Other Systems: In order to com-
pare the proposed solution with other systems, we have
implemented SF [22] and Cupid [20]. The choice of Cupid
and SF is done because they are schema-based, and they
all utilize linguistic and structural matching techniques.
The result of this comparative study in terms of F-measure
score is showed in Figure 9 and 10 where our solution is
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better than SF and Cupid for all tested metadata standards.
This is due to the use of a single context for both
systems (leaf context for Cupid and child context for SF).
Whereas, in our solution, we have considered all ancestor-
context, child context and leaf-context. The use of the
semantic and hierarchical rules has also has improved the
accuracy of our solution ( Section III-B.2 ), where 68 %
of complex matchings have been successfully detected.
Besides our system is general and not limited to one or
two schema definition languages.

V. CONCLUSION

Due to the extensive use of metadata and their semantic
and structural heterogeneity, there has been a great interest
to develop an integration system for achieving metadata
interoperability. The existence of such model is crucial
for media object uniform access fulfillment. To do so,
we proposed and implemented in this paper a new inte-
gration technique for achieving metadata interoperability
whatever the definition language. We essentially proposed
a matching system that supports metadata schemas what-
ever their description language. It uses several types of
syntactic, semantic and structural information to match
between metadata. Our experiments showed that the com-
bination of the linguistic and structural similarities plays
a significant role in deriving a correct mapping.

In our ongoing works, we plan to enhance the proposed
matching system through a better use of structural infor-

mation. This can be achieved by adding a new structural
matching technique to the system. We mainly explore
the use of adjacency nodes to detect other mappings that
cannot be detected by the current matching strategy. We
also plan to enhance the proposed approach by taking
into account the mappings already validated by the user
as another structural information which may help to find
other mappings.
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dédiées au multimédia,” in INFORSID, 2009, pp. 491–492.

[2] S. Amir, I. M. Bilasco, T. Urruty, J. Martinet, and C. Djer-
aba, Designing Intelligent Content Delivery Frameworks
Using MPEG-21. UK: John Wiley and Sons, 2010, ch. 20,
pp. 455–475.

[3] I. M. Bilasco, S. Amir, P. Blandin, C. Djeraba, J. Laitakari,
J. Martinet, E. Martı́nez-Gracı́a, D. Pakkala, M. Rauti-
ainen, M. Ylianttila, and J. Zhou, “Semantics for intelligent
delivery of multimedia content,” in SAC, 2010, pp. 1366–
1372.

[4] M. Bilenko, R. J. Mooney, W. W. Cohen, P. D. Ravikumar,
and S. E. Fienberg, “Adaptive name matching in informa-
tion integration,” IEEE Intelligent Systems, vol. 18, no. 5,
pp. 16–23, 2003.

[5] P. Bouquet, L. Serafini, and S. Zanobini, “Semantic coor-
dination: A new approach and an application,” in Interna-
tional Semantic Web Conference, 2003, pp. 130–145.

[6] D. Brickley and R. Guha, “Rdf vocabulary descrip-
tion language 1.0: Rdf schema,” W3C, Amsterdam,
http://www.w3.org/TR/rdf-schema/.

[7] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg, “A
comparison of string distance metrics for name-matching
tasks,” in IIWeb, 2003, pp. 73–78.

[8] D.Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and
A. Soffer, “Searching xml documents via xml fragments,”
in SIGIR, 2003, pp. 151–158.

[9] J. P. C. S.-M. E. M. F. Yergeau, T. Bray,
“Extensible markup language (xml) 1.0 (third
edition) w3crecommendation.” W3C, Amsterdam,
http://www.w3.org/TR/2004/REC-XML-20040204/.
[Online]. Available: ¡http://www.w3.org/TR/2004/REC-
XML-20040204/¿

[10] C. Fellbaum, Ed., WordNet: An Electronic Lexical
Database. Cambridge, MA: MIT Press, 1998.

[11] J. Fong, “Converting relational to object-oriented
databases,” SIGMOD Record, vol. 26, no. 1, pp. 53–58,
1997.

[12] R. Garca and O. Celma, “Semantic integration and retrieval
of multimedia metadata,” in 2nd European Workshop on
the Integration of Knowledge, Semantic and Digital Media,
2005, pp. 69–80.

[13] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-match:
an algorithm and an implementation of semantic match-
ing,” in ESWS, 2004, pp. 61–75.

[14] B. Haslhofer and W. Klas, “A survey of techniques for
achieving metadata interoperability,” ACM Comput. Surv.,
vol. 42, no. 2, 2010.

[15] M. Hausenblas, “Multimedia vocabularies
on the semantic web,” W3C, Amsterdam,
http://www.w3.org/2005/Incubator.



[16] M.-L. Lee, L. H. Yang, W. Hsu, and X. Yang, “Xclust:
clustering xml schemas for effective integration,” in CIKM,
2002, pp. 292–299.

[17] W. Lee, T. Brger, F. Sasaki, and V. Malaisé. (2008,
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APPENDIX

A. Equation Definitions

TABLE VI.
DESCRIPTIONS OF EQUATIONS USED BY THE MAPPING SYSTEM

Equation Description
lcsn(pi, pj) it is the longest common subsequences between two

paths (pi, pj), normalized by the length of the first
path

pos(pi, pj) it considers that the optimal matching between two
paths (pi, pj) must starts on the first element of pi
and continues without gaps

gap(pi, pj) it is used to ensure that the occurrences of two path
nodes are close to each

ld(pi, pj) used to give higher values to source paths whose length
is similar to target paths.

Sname(ni, nj) name similarity between the nodes (ni, nj)

Scomment(ni, nj) represents the similarity value between comments cor-
responding to nodes (ni, nj)

lSim(ni, nj) linguistic similarity between nodes (ni, nj)

ps(pi, pj) the similarity between two paths (pi, pj)

leafSim(ni, nj) the leaf context similarity between two nodes
ancSim(ni, nj) the ancestor context similarity between two nodes
immSim(ni, nj) the immediate descendant context similarity between

two nodes
nodeSim(ni, nj) the final similarity between two nodes (ni, nj)

B. Parameters Definitions

TABLE VII.
DESCRIPTIONS OF PARAMETERS USED BY THE MAPPING SYSTEM

Parameter Description
µ1 the comparative importance of name similarity
µ2 the comparative importance of comment similarity
τ1 linguistic similarity threshold
δ represents the comparative importance of lcsn
ϕ represents the comparative importance of pos
θ represents the comparative importance of gap
λ represents the comparative importance of ld
α represents the comparative importance of ancSim
β represents the comparative importance of immSim
γ represents the comparative importance of leafSim
τ2 the final similarity threshold


