
HAL Id: hal-01856937
https://hal.science/hal-01856937v1

Submitted on 13 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CICP: Cluster Iterative Closest Point for Sparse-Dense
Point Cloud Registration

Mohamed Lamine Tazir, Tawsif Gokhool, Paul Checchin, Laurent Malaterre,
Laurent Trassoudaine

To cite this version:
Mohamed Lamine Tazir, Tawsif Gokhool, Paul Checchin, Laurent Malaterre, Laurent Trassoudaine.
CICP: Cluster Iterative Closest Point for Sparse-Dense Point Cloud Registration. Robotics and Au-
tonomous Systems, 2018. �hal-01856937�

https://hal.science/hal-01856937v1
https://hal.archives-ouvertes.fr

CICP: Cluster Iterative Closest Point for Sparse-Dense Point Cloud Registration

Mohamed Lamine Tazira,∗, Tawsif Gokhoolb, Paul Checchina, Laurent Malaterrea, Laurent Trassoudainea

aUniversité Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France;
bMIS laboratory, Univesité de Picardie Jules Vernes, 80080, Amiens, France

Abstract

Point cloud registration is an important and fundamental building block of mobile robotics. It forms an integral part
of the processes of mapping, localization, object detection and recognition, loop closure and many other applications.
Throughout the years, registration has been addressed in different ways, based on local features, global descriptor or
object-based. However, all these techniques give meaningful results only if the input data are of the same type and
density (resolution). Recently, with the technological revolution of 3D sensors, accurate ones producing dense clouds
have appeared as well as others faster, more compatible with real-time applications, producing sparse clouds. Accuracy
and speed are two sought-after concepts in every robotic application including those cited above, which involves the
simultaneous use of both types of sensors, resulting in sparse-dense (or dense-sparse) point cloud registration. The
difficulty of sparse to dense registration lies in the fact that there is no direct correspondence between each point in
the two clouds, but rather a point equivalent to a set of points. In this paper, a novel approach that surpasses the
notion of density is proposed. Its main idea consists in matching points representing each local surface of source cloud
with the points representing the corresponding local surfaces in the target cloud. Experiments and comparisons with
state-of-the-art methods show that our approach gives better performance. It handles registration of point clouds of
different densities acquired by the same sensor with varied resolution or taken from different sensors.

Keywords: sparse to dense (dense to sparse) registration, density change, cluster, points selection, matching, ICP.

1. Introduction

The problem of dense-sparse registration has received
less attention from the scientific community in the past [1].
The majority of research has been focused on dense regis-
tration [2, 3], or sparse registration [4, 5, 6, 7]. Recently,
the need for sparse to dense registration has come to the
limelight, and this is due to the emergence of sensors that
produce sparse data like Velodyne 1 LiDAR (Light Detec-
tion And Ranging), which is widely used in autonomous
vehicles (Google car [8], DARPA Grand Challenge [9]), be-
cause of its ability to provide 3D data at a high refresh rate
and at a long range [7]. Accurate sensors producing dense
clouds also achieved a technological leap with the appear-
ance of 3D laser sensors like Leica P202, Riegl VZ400i3

or Trimble TX84, etc. Furthermore, multiple sensors that
allow the change of scanning resolution have recently ap-
peared on the market. These sensors can produce point

∗Corresponding author
Email address: tazir.med@gmail.com (Mohamed Lamine

Tazir)
1Velodyne LiDAR: http://velodynelidar.com/
2Leica P20: http://leica-geosystems.com/
3Riegl VZ400i: http://www.riegl.com/nc/products/terrestrial-

scanning/produktdetail/product/scanner/48/
4Trimble TX8: http://www.trimble.com/3d-laser-

scanning/tx8.aspx

clouds of different densities depending on the chosen reso-
lution. Nevertheless, the difference in cloud density is gen-
erally due to the change of the sensor. For example, two
different sensors generate two clouds with different point
densities, which requires a calibration step between the
two sensors in order to exploit the resulting clouds. Cali-
bration is necessary whenever the two sensors are moved,
which is a hard and tedious task. On the other hand,
the main shortcomings of available point cloud registra-
tion methods are their lack of speed due to the increase of
input data or their lack of precision due to the decrease
in density [7] whereas, for most robotic applications such
as localization, these two attributes are highly desired. A
recent trend is to use both kinds of sensors [10, 11, 12]
to achieve these two sought-after concepts simultaneously,
highlighting the importance of dense to sparse registration
techniques.

As with all registration methods, an overlapping bet-
ween the two clouds, usually called source cloud and target
cloud, is necessary to determine the rigid transformation
between these two clouds perceived from different view-
points. With the conventional methods that use coherent
data from the same sensor, what changes are the represen-
tation of points pertaining to the two views. For sensors
that also provide intensity or color, these two attributes
can be changed if the two clouds are acquired at two dif-
ferent times. Otherwise, except for the noise, nothing else

Preprint submitted to Robotics and Autonomous Systems August 13, 2018

can be changed, neither the number of points nor the spac-
ing between the points. Regarding dense-sparse data, the
degree of sampling changes, affecting the number of points
and the distance separating these points. In other words,
for the same part of the scanning environment, taken from
two different viewpoints, the dense cloud will exhibit a
larger number of points with a smaller distance separat-
ing them, as opposed to the sparser cloud. This change
affects all the local characteristics of the points (normals,
curvatures), making the conventional methods unsuitable
for this type of registration [13, 6].

Recently, Agamennoni et al. [1] addressed the sparse-
dense registration issue and proposed a method that im-
proves the standard point-to-point ICP [14, 15] by intro-
ducing a probabilistic model for data association. The
main idea of this work is to align each point from the
sparser cloud with a set of points from the denser cloud.
The association with each point is weighted taking into ac-
count the uncertainty of the transformation estimate. The
problem is formulated as an Expectation-Maximization
procedure, during which, weights are calculated through-
out the E-step, whilst during the M-step, the rigid trans-
formation is updated from current associations. However,
the weakness of this method is that the associations do
not change at each iteration. The iterations serve only to
optimize the weights. That is why the method should be
executed several times, using as input the solution of the
previous run, which consumes a lot of time. Moreover,
the fact that the point associations do not change at every
iteration, makes this method very sensitive to the initial
data association.

In this work, we propose a method to align dense and
sparse clouds to achieve accuracy and convergence speed.
This method surpasses the notion of density by replacing
the points sharing the same local surface of the two clouds
by a single representative point for the matching step. It is
not about sampling, but only for the matching process, the
points most likely to match each other are selected. Then,
the resulting transformation is used to transform all the
source points. The process evolves iteratively in an ICP-
like framework, starting with a selection process followed
by a pose estimation process. The main contribution of
this paper lies in the selection points for the matching
process. First, a voxelization is performed on both clouds
to maintain the topological details of the scene. Then
for each voxel, a normal-based classification of its points
is done. Thereafter, only one point of each local surface
is maintained for the associating step. As a result, fewer
points are used for the matching process, but they are most
likely to be associated. Thereby, improving convergence
and accuracy simultaneously.

2. Related Work

Registration is a crucial step in several applications,
ranging from inspection in the medical domain [16], pass-
ing through the detection of objects in computer vision [17],

to mapping and localization in mobile robotics [3], which is
our main research interest. Registration is located in the
front-end of the mapping pipeline [18]. In recent years,
the interest and demand for 3D mapping has been greatly
increased. This is mainly due to the improvement of ac-
quisition systems on the one hand and the growth of the
range of potential applications on the other. Currently, 3D
data can be obtained using two technologies: photogram-
metry and laser scanning [19]. The laser technology pro-
vides direct 3D data, while photogrammetry reconstructs
3D information by techniques such as triangulation from
several images of the area under exploration. The advan-
tage of direct 3D data acquisition makes the laser scanner
popular for mapping the environment either indoors or
outdoors [11]. Moreover, localization can be done at a dif-
ferent timescale compared to the mapping, which requires
that the process of localization should be robust to the
environment change (such as the lighting change) [11]. In
this study, we only focus on laser technology.

Registration algorithms assemble two representations
of an environment in a single reference frame. The problem
of registration has been dealt with extensively in several
studies over the last 25 years. This started with geomet-
ric approaches leading to the appearance of the Iterative
Closest Point (ICP) algorithm [15, 14]. ICP is used to cal-
culate the optimal transformation fitting two point clouds
by a two-step process: matching of points and minimizing
a metric describing the misalignment [20]. These two-steps
iterate to minimize the matching error and thus improve
alignment. In the literature, three groups of registration
methods are identified:

• sparse methods (approaches based on features ex-
traction);

• dense methods (approaches exploit all the points in
the cloud);

• approaches based on objects.

2.1. Sparse Approaches

Sparse methods are generally used in outdoor environ-
ments [12]. They are based on the use of features, which
may be points that are easily identified by their appar-
ent character (position, local information contents, math-
ematical definition, etc.) with respect to the other points.
A good feature requires stability and distinctiveness [21].
In other words, detected features should be consistent in
all the frames. They should be robust to noise and in-
variant to rotation, perspective distortion and changes of
scale [21, 22, 23]. There are numerous sparse methods in
the literature, each one is adapted to specific needs, but
all of them share the same workflow. They begin by the
identification of the feature estimation model, then the
extraction of the set of relevant points (keypoints [24])
corresponding to the feature model. Afterwards, for every
point, a local descriptor is computed collecting the shape
and appearance of the neighborhood around each point.

2

Finally, keypoints found in different frames are used to
determine correspondences and align the different point
clouds.

Among the well-known algorithms is the 3D Scale In-
variant Feature Transform (3DSIFT), which is an exten-
sion of the 2D version proposed by Lowe in 1999 [25]. The
3D version was adapted by the PCL [26] community us-
ing the curvature of points instead of the intensity of pix-
els [27]. The method uses a pyramidal approach to reach
the scale invariance characteristic of features. To achieve
invariance against rotation, it assigns orientations to key-
points.

A multitude of methods exploiting 2D information ob-
tained from 3D points have emerged since. Ranging from
FAST (Features from Accelerated Segment Test) [28], and
going through SURF (Speeded Up Robust Features) [29],
until ORB (Oriented FAST and Rotated BRIEF) [30].
These methods, unfortunately, are less robust [23] and are
affected by parasitic phenomena such as illumination and
weather conditions [21].

Normal Aligned Radial Feature (NARF) [31] is a rota-
tion invariant 3D feature that also operates in range image
and has two goals: extract points from stable local surfaces
that are near significant changes and from borders. The
authors argue that working on range image makes bor-
ders explicitly identified by transitions from foreground
to background. Indeed, borders usually appear as non-
continuous traversals from foreground to background. Still
according to the authors, points from stable surface that
represent a significant change in a local neighborhood rep-
resent robust points that can be detected and observed
from different perspectives.

However, all those methods cited above, operate on
2D representation of 3D point cloud. Recently, a method
developed by [23] highlights the use of these two strategies
together (2D representation and 3D information). It uses
a 2D range image, as well as information calculated from
3D points such as normals and curvatures to extract 3D
feature point from LiDAR data.

The last category of sparse methods exploits the 3D
points directly. Most well-known approaches include the
Point Feature Histograms (PFH) which was used in [32]
to describe the local geometry around each point, in or-
der to classify them, by means of a multi-dimensional his-
togram, according to its local nature (flat surface, corner,
edge). PFH is a global feature descriptor as it computes
a single descriptor for the entire cloud. Fast Point Fea-
ture Histograms (FPFH) [33] modifies the mathematical
model of FPH in order to reduce its computational com-
plexity. Similar approaches are formed elsewhere, such as
VFH (Viewpoint Feature Histogram) [34], CVFH (Clus-
tered Viewpoint Feature Histogram) [35], where features
are determined based on the geometric information of 3D
points. In the same vein, PCA (Principal Component
Analysis) [36] are used in [37] and [38] to establish 3D
features for use in recognition and pose estimation.

In any case, sparse methods exploit information about

some key points of the scene [21]. They are based on lo-
cal characteristics of these points, often only geometric
characteristics are taken into account [39] although there
are other descriptors such as color, intensity, etc. Meth-
ods which fall into this category do not require any prior
knowledge [40]. Despite this advantage of sparse methods,
many of them are not completely adapted to real-time ap-
plications [22]. Indeed, features are generally cumbersome
to determine, and it is unwise to compute them at each
point [22]. Some methods identify a few numbers of lo-
cations where their computing may be more efficient [41],
but the way these points are determined is time-consuming
and hence are often not suitable for the applications that
require efficiency. When using sparse methods, another
problem occurs which is the necessity of very dense clouds
in order to obtain good features, which compromises the
use of sparse clouds [1, 21, 42, 4]. More importantly, these
methods are environment specific [43], which may result
in the rejection of good data [44].

2.2. Dense Approaches

Dense approaches make use of all the points from both
clouds, and require an initial guess (transformation) bet-
ween the two clouds, which makes them sensitive to wrong
initialization [41, 40, 22]. Despite the use of all the points,
these methods are generally faster than sparse approa-
ches [40].

ICP algorithm belongs to this class of methods. Its
strategy consists of supposing an optimistic assumption
that there are a number of points in common between
the two clouds taken from two different viewpoints. In
this way, the algorithm will have an adequate initial esti-
mate of the translation and the rotation, which moves the
points of the source cloud to correspond with the points
of the target cloud. Applying this assumption, the cor-
respondence of a point will be the closest point to it. In
this way, the algorithm will find the closest points of the
source cloud in the target cloud. After each iteration, bet-
ter matches are found, which gradually produce better reg-
istration. This is repeated until the convergence of the al-
gorithm is reached. At this stage, the final translation and
rotation between the two sets of points are obtained. As
pointed out by Pomerleau [3], its easy implementation and
simplicity, are both its strength and its weakness. This
has led to the emergence of many variants of the origi-
nal solution, adapted in many ways, throughout the years.
Most well-known examples, Chen et al. [14] improved the
standard ICP by using point-to-plane metric instead of
the Euclidean distance error. This approach takes advan-
tage of surface normal information to reject wrong pairing.
However, this approach fails when dealing with clouds of
different densities, since normals computation are affected
by the change in resolution, presence of noise and distor-
tion [45, 13].

The Normal Distributions Transform (3D-NDT) [46]
discretizes the environment in cells, where each one is mod-
elled by matrix representing the probability of occupation

3

of its points (linear, planar and spherical). Then, a non-
linear optimization is performed to calculate the transfor-
mation between the two clouds. Nonetheless, according
to [45], the NDT is not suitable for systems with low com-
puting power capability.

An efficient approach for dense 3D data registration
was presented in [47]. This probabilistic version of ICP
called Generalized ICP (GICP) is based on a Maximum
Likelihood Estimation (MLE) probabilistic model. It ex-
ploits local planar patches in both point clouds which leads
to plane-to-plane concept. The authors in that paper show
that this algorithm is a generalization of point-to-point
and point-to-plane metrics, and the only difference lies in
their choice of covariance matrices. Since this algorithm
is point-to-plane variant of ICP, it has similar drawbacks,
especially those related to normals computation. For in-
stance in [13], it is shown that the non-uniform point den-
sities cause inaccurate estimates, which degrade the per-
formance of the algorithm. Moreover, in [48, 1] the authors
affirm that the GICP does not work well in outdoor and
unstructured environment.

Serafin et al. [40] extended the GICP algorithm by us-
ing the normals in the error function and in the selection of
correspondences, which according to the authors, increases
the robustness of the registration. NICP [40] works on the
projection of the two clouds on range images. For the ref-
erence cloud, this range image is recomputed at each itera-
tion, which consumes time. These range images serve pri-
marily for the selection of matched points. The Matched
points are selected from the range image, so that they are
points that share the same pixel and have compatible nor-
mals and curvatures.

Our approach, called CICP for Cluster Iterative Clos-
est Point, uses an (NDT and NICP)-like representation,
however, it is different from the NDT in the way it uses
the points of each voxel to determine local surfaces and
get one representative point from each local surface to the
matching process. In contrast, NDT computes a Gaussian
distribution in points of each voxel using the vicinity of
each point. Whereas, NICP uses an image projection of
the voxel grid representation to compute statistics, and
considers each point with the local features of the sur-
rounding surface. These features, namely normal and cur-
vature, are calculated for each point from its neighboring
points, with a computational complexity of O(K × N),
where K is the number of the neighboring points used to
compute each normal and N the total number of points.
Additionally, these features are used later in the process
of point matching between the two clouds, as opposed to
our method, that does not use normals in the matching
process. Because of the difference in density, pattern scan-
ning, and presence of noise, will lead to noisy normals and,
hence, inaccurate results.

2.3. Approaches based on Objects

Object-based methods have chosen to take advantage
of higher-level representations, including 3D objects (solid

shapes), 2D forms (plans), or 1D (segments). This con-
cept allows them to benefit from a massive compression of
information [49].

In [50], the authors propose a SLAM algorithm that
combines recognition and 3D reconstruction of maps at
the level of the object. During the navigation process, the
algorithm uses prior knowledge of specific objects that are
supposed to be in the environment, to perform a recog-
nition task. These objects are used as top-level features
to optimize the ICP-based pose refinement. However, this
work is limited to the indoor environment and the specific
known objects.

Fernandez-Moral et al. [51] propose a registration me-
thod based on planar surface. This paper represents an ex-
tension of the work published in [52] which deals with the
recognition places in indoor environments by extraction of
planes. The extension is mainly focused on adding a pro-
babilistic framework to account for the uncertainty model
of the sensor. Whereas for [49], this approach is applica-
ble only to small and indoor environments. The method
uses the region growing technique [53] to obtain the planar
patches from the scene and represents them using a graph.
Other techniques may also be used such as RANSAC [54]
and Hough transform [55] as in [26] and [7]. However, for
our proposal (dense-sparse registration), sparsity poses a
real problem to get accurate segmentation [7].

The segments are also used in the process of matching.
In [4], the authors introduce a Velodyne point cloud regis-
tration method based on line clouds. The algorithm starts
by sampling the two clouds into sets of random segments,
then the correspondence is made by a strategy similar to
the ICP between the two sets of lines. Dubé et al. [49]
use a segment-based method for a loop-closure purpose.
This method has the advantage of compressing the point
cloud into a group of distinct elements, which reduces false
matches and optimizes the time required for correspon-
dence.

Object based methods suffer from imperfect segmenta-
tion [49]. Their matching tends to reject a lot of poten-
tially useful data, since they exploit information belonging
to some simplistic geometric models [44].

CICP differs from these three sub-categories in the na-
ture of its data and how these data are used. As input,
it takes point clouds of different resolution, gathered by
different sensors, or with the same sensor. It is based only
on the geometric information of points, which makes it
independent of weather and illumination conditions. The
proposed approach aims to cluster points of the same sur-
face as one topological pattern, and replace all the points
held by this model by one representing point for the match-
ing step. The main algorithm is based on point-to-point
matching alignment.

Table 1 summarizes the main differences between the
proposed method and the three sub-categories identified
in the prior related work.

4

Table 1: Main differences between CICP and the state-of-the-art methods.

Dense Sparse Object- CICP
methods methods based methods

No prior information required x [46] [40] X [13] [56] X [57] X

Use all points X [40] x [34] [35] x [4] X

No risk of loss of good data X [14] [15] x [58] [59] x [7] X

Based on geometric information X [41] X [23] [32] [35] X [21] X

Use of normals in correspondences choice X [47] [14] [40] X [37] [56] X [51] X

Compress point cloud in a set of distinct elements not concerned x [33] X [49] [52] [60] X

Not environment specific X [46] x [43] x [50] [51] X

Not affected by imperfect segmentation not concerned not concerned x [52] [61] X

Does not require a very dense cloud X [6] x [62] X [21] X

3. Our Contributions

In this paper, a novel approach for sparse to dense (or
dense to sparse) registration is introduced, exploiting nor-
mals differently. The desired contributions are as follows:

1. A new selection strategy is proposed by keeping only
points which are most likely to be associated in the
matching phase, thereby improving on convergence
and accuracy simultaneously.

2. The proposed method is totally independent of the
density (amount of points, scanning resolution) of
the two clouds, scanning patterns (nature of sen-
sors). It takes as input point clouds of different res-
olution, gathered by different sensors, or with the
same sensor.

3. A novel mathematical definition of sparse and dense
concept is proposed to accomplish these objectives.

All the considerations outlined in this section will be
demonstrated in the results section and these claims are
further consolidated in the Discussion section (cf. Sec-
tion 7).

4. General Formulation

4.1. Mathematical Definition

Dense and sparse are terms used to describe the state
of points within a cloud. This includes their quantity, dis-
tribution and resolution. The distinction between these
two terms is rather vague, and depends on the context.

Suppose we have two clouds of the same environment,
with the same dimensions and taken from the same view-
point, they will probably have been taken by different sen-
sors or by the same sensor with varied resolutions. Let us
assume that there is a large degree of variation between
their densities. The dense cloud will exhibit a larger num-
ber of points with a smaller distance separating them, as
opposite to the sparser cloud. The concept of density in
3D is always linked to a given volume. To get the same

volumes, the two clouds are divided into voxels (subdivi-
sions) of the same size. At this stage, the main clouds
integral characteristics are the set of voxels V and the set
of points P . The relation between these two sets deter-
mines whether the cloud is sparse or dense.

Below, we give some basic definitions, and we introduce
the “voxelic density” definition in theoretical and practical
cases:

Definition 1 (Voxel in R3). A voxel v with center ω =
(x0, y0, z0) and rayon r, is a set of points P (x, y, z) if:
v = {(x, y, z) : max {|x− x0|, |y − y0|, |z − z0|} <= r}

Definition 2 (Set of all voxels in P). Let v a voxel of
VP , we say that VP is a set of all voxels in P if:
VP = {∀v ∈ Vp, v ⊂ P}

Theoretically, a dense cloud is:

Definition 3 (Voxelic density). P is dense ↔
∀v ∈ Vp,∃p ∈ P : p ∈ v

According to this last definition, a point cloud is called
dense, if and only if, there is always at least one point
belonging to a voxel, whatever the voxel size.

Unfortunately, for practical reasons, this definition is
not always verified. Because of this, we propose defini-
tions 4 and 5:

Definition 4 (Sparse Cloud). A sparse cloud is a cloud
C = (V, P) in which:
|P | = O(|V |).

Definition 5 (Dense Cloud). A dense cloud is a cloud
C = (V, P) in which:
|P | = O(k.|V |), with k > 2.

O: proportionality operator.
Definitions 4 and 5 are proposed to frame the notions

of sparsity and density of point clouds. The voxel size is
set according to the number of points in the sparse cloud,
so that each voxel contains at least one point. This choice
ensures a significant difference in density between the two

5

clouds. A dense cloud, in our case, contains at least twice
as many points as the sparse cloud. Otherwise, they are
considered as equivalent.

4.2. Iterative Closest Point: The Algorithm

Our proposed algorithm, named CICP in short for clus-
ter iterative closest point, adopts the general scheme of the
ICP algorithm. For this reason, we will discuss here the
most important items of that algorithm. As it is well-
known, the ICP algorithm is an iterative registration me-
thod, which consists in putting the points of the source
cloud into the frame of the target cloud in order to gen-
erate a unique and consistent point cloud. To do this, a
translation and a rotation, which make the points of the
source cloud move to correspond with the points of the
target cloud must be found by the algorithm. Moreover,
this algorithm must identify the points of the two clouds
that correspond to each other. The strategy of the ICP
algorithm consists in taking an optimistic assumption that
there are a number of points in common between the two
clouds taken from two different points of view. In this way,
the algorithm will have a good initial estimate of the rota-
tion R and the translation t. Applying this assumption,
the correspondence of a point will be the closest point to
it. In this way, the algorithm will find the closest points of
all source points corresponding to the points of the target
cloud. Once it has these correspondences, it can improve
the estimate of R and t, by solving this optimization:

R, t = argminRj ,tj

N∑
i=1

‖d(pi, qi)‖2 (1)

where p and q denote the pairs of corresponding points in
the two clouds and d represents the distance separating
the points of each pair.

After each iteration, better matches are found produc-
ing progressively better registration. This is repeated until
the algorithm converges. It converges when the distance d
is less than a certain threshold. Once this convergence is
reached, the final rotation and the translation between the
two sets of points are obtained. Rusinkiewicz [63] identify
six distinct stages in this algorithm:

1. Selection: selection of a set of points from one or
both clouds of input points. This first stage seeks
to reduce the number of points of the input clouds
by applying one or more filters [64]. The way in
which these points are selected has a direct impact
on the convergence of the algorithm, and especially
on the computation time necessary for convergence,
in particular, when handling very dense datasets. In
this stage, we can find strategies like uniform [65]
or random sampling [66], sampling according to the
orientation of normals [63], statistical sampling [67]
and outliers filtering [22]. However, as we deal with
sparse and dense clouds, classical selection strate-
gies can bring improvements for dense point clouds,

but for sparse point clouds, they might cause further
degradation to the characteristics and information
carried by these points. For this reason, we chose to
use all the points in the two clouds without making
any modification on points of both clouds.

2. Matching: this step represents the key operation
in the ICP algorithm. It consists in coupling corre-
sponding points from both clouds. These correspon-
dences are obtained by seeking, for each point of the
source cloud, the nearest point in the target cloud.
The definition of the “nearest point” determines the
matching technique used [68]. Several techniques of
nearest-neighbor-search (NNS) are used to optimize
the time of this step, as it used to be the most de-
manding step in terms of computation time [68]. The
authors of [69] and [68] assert that “k-d trees” is the
best technique to find the nearest neighbor. For this
reason, we use it in our implementation.

3. Weighting: assignment of weights to matched pairs
of points. It aims to strengthen the contribution of
correspondences believed to be correct and mitigate
the effect of false matches [13].

4. Rejection: reject the pairs of points that do not
contribute positively to the convergence of the algo-
rithm, such as outliers, occluded points (points that
are not visible in one of the acquisitions) or unpaired
points (points of one cloud that do not find corre-
spondents in the second cloud).

5. Error metrics: it defines the objective function
which is minimized at each iteration of the algo-
rithm. Three metrics are commonly used: point-to-
point [15], point-to-plane [14] and plane-to-plane [47].

6. Minimization: minimize the error metric to bring
the points of the source cloud and align them with
the points of the target cloud.

The algorithm terminates when a maximum number
of iterations is reached or a variation relative to the error
metric is reached. In many cases, the algorithm converges
quickly but not necessarily towards the optimal solution.
Several problems may arise, namely:

• noises and outliers that can cause biased results,

• partial overlap.

5. Proposed Method

This work proposes a novel approach that deals with
dense-sparse registration. We adopt the Rusinkiewicz de-
composition and propose a new selection strategy, which
aims to improve the pairing process and make it reliable for
the purpose of this paper. Figure 1 illustrates the workflow
of the proposed method.

CICP starts with the estimation of normals of the two
clouds. Then, it takes the target cloud first and subdi-
vides it into small voxels. The points of each voxel are

6

subjected to a classification process based on their nor-
mals, giving rise to different groups of points, according
to the geometric variation of each voxel. Each group of
points represents a local surface since they share the same
normal vector. Next, from the points of each small local
surface, a single point is chosen to represent this surface
during the matching process. In our case, we take the clos-
est point to centroid of each local surface. Regarding the
source point cloud, its points are transformed with their
normals by the initial guess of the relative transformation.
Then, this cloud undergoes the same steps as the target
cloud: voxelization, normals-based classification, designa-
tion of points representatives. At the end of these steps,
the method comes up with two sets of points from the
two clouds. Each set contains the most probable points to
match with the points of the second set (this is specifically
in the overlapping area of the two clouds, as it reflects the
same geometry seen from two different viewpoints).

5.1. Selection

The main contribution of this paper is the proposal
of a new selection strategy. As mentioned above, instead
of matching point-to-point as the classical ICP variants,
points pass through an election process, which gives rise to
one representative point for each small region. These rep-
resentatives appear as the most likely points to be matched
between each other. These good matches ultimately result
in an accurate motion between the two clouds. This elec-
tion process is based on 3D position of points and their
normals. It consists of three sub-tasks: (1) voxelization,
(2) clustering and (3) Representative election. The first
task performs a spatial grouping which attempts to pre-
serve the topological information based on the 3D position
of the points. A set of 3D cubic regions (voxels) is gen-
erated where all points within the voxel have very close
spatial positions. The second task bundles all points of
each voxel based on their normals. Once this grouping is
done, we perform the last task, which selects one point for
each cluster (local surface) in the voxel for the matching
process. But before that, normals need to be calculated.

5.1.1. Normal Estimation

Normal segmentation of geometric range data has been
a common practice integrated in the building blocks of
point cloud registration. Most well-known point to plane
and plane to plane state-of-the-art registration techniques
make use of normal features to ensure a better alignment.
However, the latter is influenced by noise, pattern scan-
ning and difference in densities. Consequently, the result-
ing normals in both a source point cloud and a target
point cloud will not be perfectly adapted, thereby influ-
encing the alignment process, due to weak inter-surface
correspondences. In order to support these claims, an il-
lustration of sparse to dense registration is given in Fig-
ure 2. A dense point cloud is obtained from a 3D LiDAR
Leica P20 scanner whilst the sparser one is extracted from

an HDL-32E Velodyne. Figures 2 (c), (d), (e), (f) are
samples of various places in a scene. The 3D points of
the source and target clouds are represented in blue and
green respectively, whilst their normals are in white and
red. These figures depict the dissimilarity between nor-
mals pertaining to the same surface, which theoretically
should have the same orientations. This change is due to
the different disturbances mentioned above. This is the
major problem of the methods that use geometric features
according to [21, 13]. Additionally, according to the au-
thors of [70], the calculation of normals on a large dataset
is computationally expensive.

To overcome this problem, we use normals only to dis-
tinguish the different local surfaces (group each surface
alone). For the rest of the algorithm, we use x, y and z
coordinates of each point without having recourse to their
normals. In other words, we use normals only to distin-
guish the different surfaces, but we do not use them in the
alignment process.

Normals are computed once for each cloud at the be-
ginning of the algorithm. Source normals are transformed
at each iteration by the transformation found. We use
Principal Component Analysis (PCA) [36] to determine
normals vectors of point cloud, as it is the most perfor-
mant method used to compute normals according to [68]
and [71]. PCA-based algorithm is usually used to analyze
the variation of points in the three directions. Normal vec-
tor corresponds to the direction with minimum variation.
We can also imagine the use of the dominant directions of
the points as a characteristic of designation of the cluster
within each voxel, instead of normals. We have chosen to
use normals, as they are classical and common features.

From the eigen decomposition of the covariance ma-
trix of considered nearest neighbors, the eigenvector cor-
responding to the minimum eigenvalue represents the nor-
mal vector. The covariance matrix can be calculated from
the following equation:

C =
1

k
Σk

i=1(pi − p̄)T (pi − p̄) (2)

where k is the number of considered nearest neighbors;
pi, i = 1 : k are kNN points and p̄ is the mean of all k
neighbors.

Algorithm 1 shows how to calculate the normals with
the PCA method.

5.1.2. Voxelization

The voxelization is applied in order to maintain the
topological details of the scrutinized surface. As normal
computation depends on the number of neighbouring points
and as the resolution of points of the two clouds is differ-
ent, voxelization with the same voxel size aims to generate
equivalent local regions in the two clouds. A common cri-
terion of comparison now becomes feasible. Therefore, the
voxel size parameter is of paramount importance for our
technique and it should be chosen carefully in order to keep

7

T cloud

S cloud

•Selection
•Noise
Filtering
•Sampling

N
o
r
m

a
l
c
o
m

p
u
t
in

g
Intial

transform

⊗
Voxelization Clustering Representative

election

Voxelization Clustering Representative
election M

a
t
c
h
in

g

R
e
je
c
t
io

n

G
a
u
s
s
N

e
w
t
o
n

Transformation

< ε

>Itermax

Correspondances selectionPre-processing Optimization

Divergence
Yes

Convergence
reached

Yes

No

No

Figure 1: Overview of the CICP pipeline. Given two point clouds, CICP starts by computing the surface normals of the two clouds. It
looks for points sharing the same local properties, and then elects one representative point from each local cluster. This election process
is based on 3D position of points and their normals. It consists of three sub-tasks: (1) Voxelization: a set of 3D cubic regions (voxels) is
generated where all voxel points have very close spatial positions. (2) Clustering: classify all points of each voxel according to their normals.
(3) Representative election: once this grouping step is completed, the last task consists in selecting one point from each cluster (local surface)
in each voxel. Representative points serve as candidates for correspondence process. As a result, few points are used in the matching process,
but which are most likely to be associated, thereby, improving on convergence and accuracy simultaneously.

(a) (b)

(c) (d)

(e) (f)

Figure 2: Dense to sparse registration: (a) registration of a dense
point cloud obtained from the Leica P20 LiDAR with 88 556 380
points and a sparse point cloud obtained from an HDL-32E Velodyne
with 69 984 points using our proposed method; (b) normal vectors
corresponding to (a); (c), (d) and (e) are exploded views of places
indicated in (a); (f) is a close up view of (e).

the fundamental characteristics of both point clouds; be it
dense or sparse with topological details. In our case, the
set of rules mentioned previously in the Section 4.1 must
be verified.

At the beginning, the procedure applies a bounding
box to the entire sparse cloud by finding the minimum
and maximum positions of points along the three axes X,

Algorithm 1: Compute normals with PCA.

Input: pointXYZ P, num neighbors
Output: vector normals

1 Initialize: vector normal, vector neighbors, vector
P̄ , matrix Q, H, U, V

2 begin
3 foreach point p in P do
4 // Extract the neighbors
5 neighbors =

nearestKSearch(p, num neighbors, P)
6 // Calculate the centroid of neighbors
7 P̄ = sum(neighbors)/num neighbors
8 // Compute the covariance matrix
9 Q = (neighbors− P̄)

10 H = Q.transpose() ∗Q
11 // Compute the eigenvectors
12 [U, V] = svd decomposition(H)
13 // Sort the eigenvectors by decreasing

eigenvalues
14 U = sort decrease(U)
15 // Extract the normal
16 normal [0] = U(0, 2)
17 normal [1] = U(1, 2)
18 normal [2] = U(2, 2)
19 // Stack normal in container
20 normals.emplace back(normal[0], normal[1],
21 normal[2])

22 end
23 return normals

24 end

Y and Z. The number of voxels for this bounding box
is determined by the number of points and the voxel size
is deduced. The same procedure is applied to the dense
cloud. For more details, see voxelized point clouds in Al-
gorithm 2.

1. Voxel assignment: each voxel is identified by a unique

8

Algorithm 2: Voxelization of a point cloud.

Input: pointXYZ P, voxelSize
Output: vector voxels

1 Initialize: minX = maxX = P [0] .x, minY=
maxY= P [0] .y, minZ = maxZ = P [0] .z,
numDivX= numDivY =0

2 begin
3 // Create a bounding box for all the points of P
4 foreach point p in P do
5 if (p.x < minX) then minX = p.x;
6 if (p.x > maxX) then maxX = p.x;
7 if (p.y < minY) then minY = p.y;
8 if (p.y > maxY) then maxY = p.y;
9 if (p.z < minZ) then minZ = p.z;

10 if (p.z > maxZ) then maxZ = p.z;

11 end
12 // Calculate number of voxels along each axis
13 numDivX = (maxX −minX) /voxelSize+ 1
14 numDivY =

(maxY −minY) /voxelSize+ 1
15 numDivZ = (maxZ −minZ) /voxelSize+ 1
16 // Assign each point p to its corresponding voxel
17 foreach point p in P do
18 i = (p.x−minX) /voxelSize
19 j = (p.y −minY) /voxelSize
20 k = (p.z −minZ) /voxelSize
21 idx = i+ j × numDivX + k × numDivX ×

numDivY (3)
22 voxels [idx] .push bach (p)

23 end
24 // Erase empty voxels
25 voxel.erase

(remove if (voxels.begin, voxels.end, container is
26 empty) , voxels.end)
27 return voxels

28 end

linear index. If i, j, k represent the voxel indices in
the X, Y , Z dimensions, respectively, numDivX,
numDivY are the number of voxels along X and Y
axes, the formula to encode the linear index [72] is:

idx = i+j×numDivX+k×numDivX×numDivY
(3)

According to (3), we assign an index idx to each
point. This relationship allows direct access to the
desired voxel, thereby avoiding a linear search [73].

2. Voxels suppression: as the shape of the point cloud is
arbitrary, the step of delimiting points by a bound-
ing box creates many empty voxels which are later
pruned out. Eventually, voxelization helps to filter
noise from voxels where there is insufficient occupa-
tional evidence.

5.1.3. Clustering

The process of electing one point from each local sur-
face makes them good candidates for point correspondence
searching, thereby rejecting wrong matches impacting align-
ment accuracy. At first, all the “voxelized” points are
taken and a classification method is applied to identify
points belonging to the same surface. In our work, k-means
clustering [74] is used as the classification technique based
on the normal of each point. The appropriate number of
clusters (local surfaces) within each voxel is determined
using the Elbow method [72, 75]. An illustration of the
described approach is given in Figure 3.

Grouping the point clouds using their normal aims at:

• improving the robustness of the matching step by
only allowing the pairing of compatible points,

• reducing the amount of data to be processed during
the matching stage.

5.2. Matching

The clustering process generates a reduced, but differ-
ent number of points in both clouds. These two sets of
points are used for matching. Based on our bibliographic
research, the best technique identified is the k-d trees (Sec-
tion 4.2). We use the k-d trees implemented in PCL [26]
directly, which is based on the FLANN library [13]. The
correspondence is obtained by finding, for each point of
the source cloud, the nearest point in the target cloud.
This is accomplished using L2 norm. Since the number
of points used for matching is different in the two pairing
sets, there will be some wrong correspondences. This is
handled in the rejection step, which aims to reduce these
false matches.

5.3. Weighting

The aim of weighting is to reduce the influence of out-
liers on the alignment process. We tested two weighting
strategies: Huber weighting [76] and Tukey weighting [77].
However, the tests showed a minimal influence of these
strategies on our data. Consequently, on our implemen-
tation, we do not use any weighting strategy. This is the

(a) Voxelized and clusterized point
cloud

(b) Electing one point from each
cluster for the matching phase

Figure 3: Voxelized/normal-based clustering for matching process.

9

same conclusion as found in [68], which affirms that the
weighting stage might be removed from the ICP algorithm.

5.4. Rejection

We opted for the distance-based rejection [39, 22], as
it is the most basic way to eliminate the wrong pairings.
This simple and powerful strategy consists in eliminating
the correspondences which have distances greater than a
given threshold [65, 22]. This aims to reject the pairs of
points that do not contribute positively to the convergence
of the algorithm, such as unpaired points (as the number
of points used for matching is different in the two pairing
sets) and outliers.

5.5. Error metrics

After the matching step, which results in a selection
of an equivalent number of representative points in both
clouds, the three metrics commonly exploited in the liter-
ature, namely point-to-point, point to plane and plane to
plane, can be used. However, for the sake of simplicity, we
use the point-to-point metric:

E =

N∑
i=1

‖Rpi +~t− qi‖2 (4)

5.6. Optimization

The optimization is used to determine the transforma-
tion from the set of finding pairs. Given a set of correspon-
dences, rotation and translation between the two frames
are calculated using Gauss-Newton iterative least square
algorithm [78] (Algorithm 3).

In the case of the point-to-point metric, the error func-
tion to be minimized is given by:

E (x) =

N∑
i=1

‖~T (x̃) pi − qi‖2 (5)

where ~T(x̃) defines the displacement between the points of
the source cloud pi and the points of the target cloud qi,
and x a vector which belongs to R6, representing linear ve-
locities ϑ = [ϑxϑyϑz] and angular velocities ω = [ωxωyωz].

Suppose now that only an approximation T̂ of ~T (x̃) is
known. In this case, the registration problem consists in
finding the incremental transformation T(x):

~T(x̃) = T̂T(x) (6)

Such that the differences between the positions of the
source points registered by the transformation T̂T(x) and
those of the target cloud, are zero.

E (x) =

N∑
i=1

‖~T (x̃) pi − qi‖2 = 0 (7)

E(x) is the vector of dimensions (m × n) × 1 containing
the errors associated to each point.

Since an approximation of the displacement ~T(x̃) is
known, the increment T(x) is assumed to be small. In
this case, it is possible to linearize the vector E(x) by
performing a Taylor series approximation around x = 0:

e(x) = e(0) + J(0)x+
1

2
H(0, x)x+O(‖x‖3) (8)

where J is the Jacobian matrix of the error vector E, with
dimensions (m×n)×6 and represents the variation of e(x)
as a function of each component of x:

J(x) = ∇xe(x) (9)

and the matrix H(x1, x2) of dimensions (m × n) × 6, is
defined ∀(x1, x2) ∈ R6 × R6 by:

H(x1, x2) = ∇x1
(J(x1)x2) =

[
∂2e1(x1)

∂x1
2 x2

∂2e2(x1)

∂x1
2 x2 . . .

∂2en(x1)

∂x1
2 x2

]T
(10)

where each Hessian matrix ∂2e1(x1)
∂x1

2 x2 represents the sec-
ond derivative of E with respect to x.

The system of equations (2) can be solved with a least-
squares method. This is equivalent to minimizing the fol-
lowing cost function:

O(x) =
1

2
‖e(0) + J(0)x+

1

2
H(0, x)x‖2 (11)

A necessary condition for the vector x to be a minimum
of the cost function is that the derivative of O(x) is zero
at the solution, i.e. x = x̃:

∇xO(x)|x=x̃ = 0; (12)

In this case, the derivative of the cost function can be
written:

∇xO(x) = (J(0) + H(0, x))
T (
e(0) + J(0)x+O(‖x‖2)

)
(13)

The standard method for solving (12) is Newton’s me-
thod. It consists of incrementally determining a solution
x by:

x = −Q−1J(0)
T
e; (14)

where the matrix Q is written:

Q = J(0)
T
J(0) +

N∑
i=0

∂2e1(x1)

∂x1
2
|x=0ei (15)

However, Newton’s method requires the calculation of
the Hessian matrices, which is expensive in computation
time. Nevertheless, it is possible to approximate the ma-
trix Q with a first order approximation by the Gauss-
Newton method:

Q = J(0)
T
J(0) (16)

For this genre of non-linear optimization problem, the
Gauss-Newton method is preferred, because, on the one

10

hand, it makes it possible to ensure a definite positive ma-
trix Q and, on the other hand, to avoid the rather expen-
sive calculation of the Hessian matrices.

Under these conditions, at each iteration, a new error
E and a new Jacobian matrix J(0) are computed in order
to obtain the new value of x by:

x = −
(
J(0)

T
J(0)

)−1

J(0)
T
e(x) (17)

and to update the rigid transformation by:

T̂←− T̂T(x) (18)

In general, the minimization is stopped when the er-
ror: ‖ e ‖2< α occurs, or when the calculated increment
becomes too small: ‖x‖2 < ε, where α and ε are predefined
stop criteria.

Algorithm 3: CICP Algorithm.

Input: targetCloud, sourceCloud; voxelSeize, T̂
Output: Optimal T

1 Intialize: NormalXYZ T normals, S normals;
PointXYZ T match, S match

2 begin
3 T normals = normalComputing (targetCloud)
4 S normals = normalComputing (sourceCloud)
5 T match = normalClustering (targetCloud,

T normals, voxelSeize)
6 while (iteration < iter max‖|x| > ε) do
7 sourceCloud = transform (sourceCloud,

S normals, T̂)
8 S match = normalClustering (sourceCloud,

S normals, voxelSeize)
9 EstablishCorrespondences (T match,

S match)
10 distanceRejection (distThreshold)
11 compute the Jacobian J (9)
12 compute the error vector e(x) (8)
13 compute the increment x (17)
14 update the pose T (18)
15 iteration ← iteration + 1

16 end
17 return T

18 end

5.7. Analysis of the cost function

In this section, a more in-depth analysis of the cost
function is carried out. The cost function is based on a
sum of squared error (SSE) term as shown by equation (5).
This is an undeniable problem considering the fact that for
a non-linear optimization problem (as is our case), whose
domain is non-convex, it may contain several local min-
ima. The local convexity of the SSE estimator around

the solution is impacted by several factors; sensor observ-
ability, sensor noise, uncertainties induced whilst taking
measurements. Therefore, a mathematical condition for
convergence is generally difficult to establish.

However, the optimization domain can be sampled to
provide a qualitative analysis of the convexity of the es-
timator. This is illustrated in Figure 4 where the root-
mean-square error (RMSE) (in meters) is shown versus
two groups; translational and rotational couples. It is ob-
served that for a typically chosen subsampled point cloud
set (dense: 926 725 points, sparse: 71 584 points), the es-
timator is convex for the translation as inferred from its
formulation and hence, the result is not directly concerned
by the initialization of the algorithm. However, the min-
imiser, though it exhibits a globally convex profile, con-
tains one or several local minima along the way. This
implies that initial values for the relative rotation must be
carefully given locally around the solution.

6. Results

We implement our CICP approach in C++ without
code optimization, and we conduct multiple experiments
to evaluate it. Two different data sets are used: (1) point
clouds acquired by different sensors; (2) point clouds gen-
erated by a single sensor by varying the scan resolution.
These two datasets are carried out on indoor and outdoor
environments. The indoor scene is represented by a typical
office environment, which is symbolized with walls, desks
and chairs. And the outdoor environment (PAVIN 5) is
an experimental site for the development of automated
vehicles in realistic urban environment. These different
datasets provide a good platform to investigate the perfor-
mance of the proposed method. We first show its results
for the registration of two sparse and dense clouds, ac-
quired with two different sensors, and enumerating differ-
ent indoor and outdoor environments (Section 6.1). Then,
we compare our results with the existing sparse and dense
methods (Section 6.2). Thereafter, we perform registra-
tions between multiple clouds from the same sensor, but
with different resolutions (Section 6.3). Finally, registra-
tions between clouds from different sensors are carried out
(Section 6.5).

The computational efficiency of the algorithm is be-
yond the scope of this paper. We would rather focus on
the methodology.

The experimental is set up as shown in Figure 5. The
center of the two sensors; Velodyne HDL32 and that of
the Leica P20 are perfectly superimposed with the help
of the STANLEY Cubix cross line laser. The velodyne
is then physically displaced and rotated by known trans-
lations and rotations from the graduated set up in order
to perturb the 6 degrees of freedom transformation. Data

5PAVIN: http://www.institutpascal.uca.fr/index.php/en/the-
institut-pascal/equipments

11

Figure 4: Convergence domain for the office scene. First row represents the RMSE with respect to the three possible DoFs in translation.
tx, ty , tz ∈ [−2 m, 2 m] with a descretization of 10 cm. The second row shows the rotation domain where each DoF takes values in [−20◦, 20◦]
with a step of 2◦.

acquisition is then performed under different scenarios in
order to test our CICP algorithm. Table 3 below sum-
marizes the various experiments performed in a controlled
environment. For each experiment, CICP is initialized at
Identity, i.e. x = [0, 0, 0, 0, 0, 0].

6.1. Dense-Sparse Registration with CICP

The purpose of this first experiment is to evaluate our
CICP method. For that, we choose two clouds acquired
with different sensors; the denser cloud produced by a 3D
LiDAR Leica P20 laser scanner and the sparser cloud with
an HDL-32E Velodyne LiDAR sensor. A Leica P20 gener-
ates very detailed and dense point clouds as shown in Fig-
ures 6(a), 6(c). Depending on the resolution chosen during
the scanning process, these clouds can exceed 100 millions
of points for a single scan. For reasons of compatibility
with the available computational equipment, which pro-
vided an Intel Core i74800MQ processor, 2.7 GHz, and 32
GB of RAM, we perform a sampling process using method
described in [72] in order to reduce the number of points
to the order of few millions without losing useful informa-
tion. By compressing data, we provide a more compact 3D
representation of point clouds whilst maintaining the no-
tion of density and without affecting the initial structure
of the scanned subject. Figures 6(b), 6(d) illustrate the
output of the sampling process with 986 344 and 2 732 783
points for the office and PAVIN scenes, respectively. As
for the Velodyne HDL-32E, this sensor generates sparse

point clouds that do not exceed 70 000 points. This repre-
sents a ratio of 14 times between the two clouds from the
first environment and a ratio of 40 times, for clouds of the
second environment.

Figure 7 shows the registration process of such point
clouds using the CICP method. On the left, the green
cloud is from the LiDAR Leica P20 and the blue cloud is
from the Velodyne HDL32-E. The corresponding results
are shown on the right. Table 2 includes the various pa-
rameters that manage the registration. The voxel size is
set according to the number of points in the sparse cloud
in order to verify the definition proposed in Section 4.1.
In order to optimize the computing time, it is better to
choose the sparse cloud as the source cloud, since the lat-
ter is transformed and clustered at each iteration.

Table 2: CICP configuration parameters.

Parameter Value

Voxel size 8 cm
Rejection distance 0.2− 0.5 m

Max iteration 500
Translation tolerance 10−3 m

Rotation tolerance 10−4 ◦

In order to verify the convergence of the optimization, a
comparison between the two clouds at the start and at the
end of the registration process is recorded together with
the convergence profile obtained. It is summarized in the

12

Figure 5: Experimental set up for data collection from Velodyne HDL32 (left) and Leica P20(right) sensors.

Table 3: CICP registration applied to mainly two compiled datasets; OFFICE and PAVIN. The resolutions of corresponding dense and sparse
cloud are given along with the initial physical measured transformation from our set up given by the first row of each experiment, whilst the
second row depicts the results output by our algorithm. Convergence is evaluated from the RMSE and the number of iterations required for
full registration.

Expt Envir # dense # sparse tx ty tz θx θy θz RMSE # iter.
-onment cloud cloud (mm) (mm) (mm) (◦) (◦) (◦) (m)

1 Office 1 411 924 69 952
150.0 170.0 35.0 5.0 0.0 0.0 - -
155.0 172.9 34.8 4.7 0.4 0.1 0.0198 40

2 PAVIN 1 665 260 67 488
0.0 30.0 200.0 5.0 5.0 0.0 - -
0.2 29.8 191.9 4.8 4.8 0.1 0.0188 36

3 Office 2 986 344 69 984
350.0 350.0 0.0 0.0 0.0 0.0 - -
357.3 342.8 0.3 0.3 0.1 0.8 0.0199 39

4 PAVIN 2 1 364 245 67 768
65.0 45.0 200.0 0.0 7.0 5.0 - -
64.1 45.7 200.9 0.3 6.9 4.9 0.0184 34

5 Office 3 2 550 564 69 728
20.0 110.0 70.0 10.0 5.0 0.0 - -
21.7 111.1 66.9 10.1 4.2 0.1 0.0191 39

6 PAVIN 3 3 218 879 67 936
0.0 0.0 0.0 10.0 10.0 0.0 - -
0.5 0.1 0.3 9.4 9.8 0.2 0.0184 55

7 Office 4 4 490 859 69 996
30.0 470.0 300.0 20.0 0.0 0.0 - -
27.8 470.3 307.3 19.6 0.1 0.1 0.0190 57

8 PAVIN 4 5 025 457 67 904
50.0 50.0 50.0 5.0 5.0 5.0 - -
52.1 48.2 53.3 5.3 7.5 5.3 0.0152 56

9 Office 5 7 076 192 69 760
50.0 50.0 50.0 5.0 5.0 5.0 - -
55.2 50.6 53.9 5.5 4.2 4.6 0.0190 35

10 PAVIN 5 19 615 433 67 488
0.0 50.0 200.0 10.0 0.0 5.0 - -
0.1 49.8 200.3 9.7 0.1 5.2 0.0169 48

evolution of the RMSE as a function of the number of it-
erations (see Figure 8). As expected, the convergence error
draws to a minimum until the imposed stopping condition
is reached. It is normally a tolerance on the translation
and rotation rates. In our case, this tolerance is 10−3 and
10−4 for the translation and rotation, respectively. We
run the algorithm for several indoor and outdoor scenes,
with different viewpoints, as depicted in Table 3 and shown
in Figure 8. Each experiment is performed more than 20
times. For instance, for the experiment 1 (Expt 1), the dis-
placement between the two clouds is [150, 170, 35, 5, 0, 0],
where the first three values correspond to the translation
in millimeters and the last three to the rotation in de-
grees. As for the fourth experiment, the displacement is
[65, 45, 200, 0, 7, 5], which took 34 iterations for the algo-

rithm to converge. A more complete analysis is summa-
rized in Table 3, along with the RMSE recorded and the
number of iterations achieved at convergence. The analy-
sis of this table allows us to identify three elements that
influence the registration results. Namely, the inter-frame
displacement and the difference in density between the two
clouds, as well as the nature of the environment (indoor or
outdoor). For the displacement, we can observe that the
larger the initial displacement, the more difficult the reg-
istration is. We would like to draw the reader’s attention
to the fact that the displacements experimented here are
quite large, keeping in mind that dense techniques gen-
erally require an inter-frame displacement since the cost
function is linearized around x = 0.

Continuing with our discussion on the influence of ini-

13

(a) Indoor point cloud delivered
by the LiDAR Leica P20 with
88 539 380 points

(b) Indoor point cloud after
sampling containing 986 344
points

(c) Outdoor point cloud deliv-
ered by the LiDAR Leica P20
with 72 947 044 points

(d) Outdoor point cloud after
sampling containing 2 732 783
points

Figure 6: Point cloud sampling.

tial displacement, let us take the example of experiments
Expt 3 and Expt 6, which represent a pure translation and
a pure rotation, respectively. These two experiments, as a
sample of several experiments that we carry out, show that
generally, the pure rotation requires more energy to reach
the convergence with respect to the case of pure transla-
tion. Tables 10 to 15 demonstrate further rigorous testing
of the cost function with our selection strategy. All six
degrees of freedom (DoF) are activated and tested either
independently or permuted arbitrarily. The results show
the convergence values against the actual values, always
with an initialization at identity, i.e. x = [0, 0, 0, 0, 0, 0]. It

(a) Clouds before registration (b) Clouds after registration

(c) Clouds before registration (d) Clouds after registration

Figure 7: Registration results with CICP algorithm.

should be noted that, although the actual values are sub-
jected to systematic errors of ±2◦ in rotation and ±1 cm
in translation, they do not affect, one way or the other,
the correct functioning in the various steps of our method.
The true discrepancy between the two corresponding point
clouds at convergence is measured using the RMSE. Re-
garding the influence of density, a quick look shows that
the denser the clouds becomes, the moreRMSE decreases,
leading to better registration. We will examine this pa-
rameter in detail in the Section 6.3. Finally, we observe
that CICP performance depends on the scene. In fact,
the impact of scene affects the performance of registration
as observed by the difference of the number of iterations
required to reach the convergence between PAVIN’s and
that of the office. It is clear that the indoor environment
achieves better registration than the outdoor scene. This
is possibly caused by the richness in planar regions of the
former. It should not be overlooked that the outdoor en-
vironment contains a large amount of noise and outliers.
This can be seen on Expt 8 and Expt 9, in which the initial
displacement is the same in both experiments. However,
the alignment for the office dataset requires 34 iterations
to converge instead of 56 for the PAVIN dataset.

For the sake of illustration, we take four experiments
arbitrarily (Expt 3, Expt 4, Expt 7, Expt 8), and show
their state before and after the registration with their con-
vergence profile in Figure 8. A closer look to the RMSE
curves in the third column of this figure shows that the
residues which are far away are successfully minimized.
However, the convergence begins very quickly and then
stabilizes for a while before it reaches its minimum. This
is mainly due to the fact that there is not a perfect point-
to-point equivalence in the two pairing sets. This is quite
logical and it can be explained by the large difference in
density between the two clouds, the noise, and the cluster-
ing defects on the two clouds.

6.2. Comparison with Existing Methods

In order to compare our method with the existing state-
of-the-art methods, we use implemented routines of PCL [26]
library for the NDT algorithm, GICP, point-to-plane ICP
and simple ICP for dense methods. For the case of sparse
methods (methods based on features extraction) we also
use PCL implementations of SIFT3D and FPFH to ex-
tract characteristic points from the two clouds, and use
simple ICP to perform matching. The performance of
each method is evaluated using three metrics: the accu-
racy, the relative translational error and the relative ro-
tational error. The former describes the evolution of the
root-mean-square point-to-point distance; this can be ex-
pressed mathematically as:

RMSE =

√
1

n
Σn

i=1 ‖ Ei ‖2 (19)

where n is the number of points and Ei is the distance
error between the source points and its correspondent in

14

E
x
p
t
3

(a) before alignment (b) after alignment (c) RMSE vs Iteration

E
x
p
t
7

(d) (e) (f)

E
x
p
t
4

(g) (h) (i)

E
x
p
t
8

(j) (k) (l)

Figure 8: CICP results applied to different datasets from various environments.

the target cloud in each iteration. This can be expressed
as follows:

Ei = Σm
i=0pi − qi (20)

where m is the total number of points in the sparse cloud.
pi and qi which represent two points of the source and
target cloud, respectively, whereby pi is transformed in
the reference frame of qi.

The second metric is the Relative Translational Error
(RTE), which measures the translation gap between the
ground truth (tGT) and the estimated (tE) translation vec-

tors.
RTE = ‖tGT − tE‖2 (21)

For the Relative Rotational Error (RRE), we use the
metric defined on the tangent space of SO(3):

RRE = ‖ logm(RT
ERGT)‖F (22)

where logm(.) is the matrix logarithm, RE is the estimated
rotation matrix, RGT is the ground truth rotation matrix
and ‖.‖F is the Frobenious norm.

Table 4 presents the results gathered in processing two
indoor and outdoor scenes with the state-of-the-art meth-

15

Table 4: Comparison with the state-of-the-art methods.

Dense Sparse

ICP pt2pl NDT GICP CICP SIFT FPFH
ICP 3D+ICP +ICP

Office
RMSE (m) 0.0602 0.0620 0.0636 0.0636 0.0299 0.0516 failed[

m,m,m,◦ ,◦ ,◦
]

RTE (m) 0.2811 0.2482 0.2019 0.2178 0.0169 0.0191 failed

[0, 0.5, 0.5, 20, 0, 10] RRE (◦) 0.0517 0.0.0186 0.0285 0.0213 0.0005 0.0201 failed

PAVIN
RMSE (m) 0.0836 0.0804 0.0824 0.0860 0.0347 0.0678 failed[

m,m,m,◦ ,◦ ,◦
]

RTE (m) 0.0365 0.0253 0.0315 0.0642 0.0092 0.021 failed

[0, 0.5, 0.3, 0, 0, 10] RRE (◦) 0.0058 0.0050 0.0058 0.0090 0.0034 0.0058 failed

ods. Bold values show the best result. Quantitatively, the
RMSE value of the indoor scene reaches 6 cm in the case
of point-to-point, 6.2 cm point-to-plane ICP, 6.3 cm for the
NDT and the GICP, more than 5 cm for SIFT3D and less
than 3 cm for the proposed method. The maximum num-
ber of iterations for each test is fixed at 500 beyond which
the algorithm is considered as not having converged if it
reaches that ceiling, as is the case of the FPFH method.

Figure 9 shows the comparison of convergences bet-
ween different registration methods. CICP outperforms
the state-of-the-art methods on both datasets. In addition,
it is shown that CICP is robust against scene variation.

6.2.1. Experiment on semi structured environment

The objective of this experimental set is to compare
the performance of CICP with state-of-the-art algorithms
(ICP, P2Pl, NDT and GICP) using a newly acquired dataset
for a semi structured scenario type of environment where
planar surfaces are far less pronounced. The results are
given in Table 5, which presents the ground truth displace-
ment versus the final results found by each algorithm. The
tuning parameters using for each one of them is laid out in
Table 6. Figure 10 gives the RMSE error against the num-
ber of iterations to convergence. Again, the performance
of CICP is very apparent and surpasses state-of-the-art,
as shown in Figure 11.

Table 5: Performance comparison of each algorithm related to ex-
perimental section (§ 6.2.1).

tx ty tz θx θy θz RMSE #
(m) (m) (m) (◦) (◦) (◦) (m) iter

Actual 1.00 0.50 0.00 0.00 0.00 20.00 - -

ICP 1.66 −0.28 0.00 −0.01 0.00 17.50 0.3406 500

P2Pl ICP 0.99 −0.52 0.00 −0.01 0.00 20.45 0.2482 361

NDT 1.71 −0.18 0.00 −0.01 −0.01 19.22 0.2876 131

GICP 1.14 0.16 −0.01 −0.06 0.00 15.02 0.5785 188

CICP 0.99 0.50 0.00 0.02 0.05 20.24 0.0444 163

Table 6: Tuning parameters used of each algorithm for experimental
section (§ 6.2.1).

Parameter ICP ICP P2PL NDT GICP CICP

ε(stop criteria)(m) 10−6 10−6 10−6 10−6 10−6

Rejection distance (m) 0.5 0.5 0.5 0.5 0.5

Maximum iterations 500 500 500 500 500

neighbors normals estimation - 10 - - 10

neighbors compute covariance - - - 20 -

maximum step size for MT search - - 0.1 - -

Resolution of NDT grid (m) - - 1 - -

6.3. Changes in Density

To investigate the role of density on CICP performance,
we conduct two experiments. The first is on two clouds col-
lected with two different sensors, while for the second, the
clouds are acquired with the same sensor but by varying
the scanning resolution.

6.3.1. Data from two different sensors

Our first fold of experiments in this section is per-
formed on clouds from two different sensors. The original
dense cloud for the first dataset “office” is acquired with
the LiDAR Leica P20. It is of size of 19 615 433 points.
We perform different sampling using the method described
in [72], which result in seven clouds having a size of bet-
ween 4 million points and 100 000 points. These clouds are
registered with a sparse cloud obtained from the Velodyne
HDL-32E sensor of size 69 952 points. The results of this
experiment are presented in Figure 12.

This experiment shows that despite the substantial dif-
ference in density between the two clouds in each test,
there is only a slight change in the RMSE (in the order
of few millimeters) and in the iterations required to reach
the convergence. This is mainly due to the fact that the
density does not directly affect the error which is calcu-
lated from the pairing set of points. Density acts mainly
on the correctness of the clustering. Indeed, the high den-
sity gives rise to properly grouped regions, which lead to
points exhibiting the surface characteristics that it repre-
sents as much as possible, implying good matching and
thus high accuracy. This represents the strength of our

16

(a) Comparison of RMSE results of the different registration
methods

(b) Comparison of number of iterations achieved at convergence of
different registration methods

Figure 9: Convergence comparison between different registration methods.

method. Clustering always ensures the availability of rep-
resentative points from which the matching is performed,
even in the case of low density. The only difference is in
the minimal change present in RMSE, as illustrated by
the graphs in Figures 12a and 12c. This can be expressed
as: high density implies a superior accuracy.

6.3.2. Data from the same sensor

The second batch of experimentation in this section
consists in aligning different clouds acquired by the same
sensor. Figure 13 shows seven clouds with different den-
sities. All these clouds are taken with the same sensor
by changing the scanning resolution each time. Indeed,
the LiDAR Leica P20 allows the change of resolution, by
increasing or decreasing the sampling distance (distance
that separates two points of the cloud at a given distance
from the scanner). In the case of the Leica P20, this dis-
tance varies from 0.8 mm per 10 m to 50 mm/ 10 m, giv-
ing rise to different density variation as illustrated in Fig-
ure 13. In this experiment, the dimensions of clouds are
fixed within the sensor. This latter is placed in one fixed
position, and the only difference between these 7 clouds is
the scanning resolution (neither the dimensions, nor the

Figure 10: Cost function evolution for the unstructured environment.

viewpoint). The outcome of this experiment is shown in
Table 7.

The conclusion that can be drawn from the findings of
this evaluation is that the difference of density between the
two clouds only affects the convergence of the algorithm.
As in this experiment, nothing changes between the two
clouds except the density. The final RMSE values are all
equal and are close to the accuracy of the sensor (3 mm).
The only difference is in the number of iterations needed to
reach the convergence. This can be formulated by: a small
difference in density between the two clouds extends the
convergence process. In fact, this is due to several reasons.
First, choosing the sparse cloud as the source cloud (in or-
der to optimize the computing time as mentioned above).
This means that the search for nearest neighbors is done
in the dense cloud for the points of sparse cloud. Secondly,
according to the mathematical definition proposed in this
article (Section 4.1), the voxel size for clustering is fixed
according to the number of points in the sparse cloud, in
order to ensure points for matching. These two reasons
impact the search of the nearest neighbor, which is easier
and more accurate in a dense cloud and less precise and
longer in a less dense cloud.

6.4. Changes in density and viewpoint

Table 8 shows the results of the alignment of different
clouds acquired by the same sensor and with viewpoint

Table 7: Density change results.

Resolution cloud 1 1.6 3.1 6.3 12.5
(mm at 10 m)

Resolution could 2 25 25 25 25
(mm at 10 m)

Resolution ratio 1/16 1/8 1/4 1/2

RMSE (m) 0.0027 0.0027 0.0027 0.0027

Iteration 3 6 7 10

17

(a) Google earth top view (b) Site front view (c) Initial state of two scans (d) ICP

(e) Pt2pl ICP (f) NDT (g) GICP (h) CICP

Figure 11: Results with a semi structured environment. Registration between a Leica P20 scan and the Velodyne HDL32-E is performed
using state-of-the-art algorithms and CICP.

(a) Density change vs accuracy
for office environment

(b) Density change vs conver-
gence for office environment

(c) Density change vs accuracy
for PAVIN environment

(d) Density change vs conver-
gence for PAVIN environment

Figure 12: Density change effects on the convergence and accuracy
of the CICP method.

change, which was [50, 50, 50, 5, 0, 0]. Our main motivation
to conduct this experiment, which differs from the previous
one by the addition of the view change, is to confirm the
influence of the density change as the scanned pattern is
the same.

Findings from this second experiment provide further
evidence about the conclusions drawn earlier and the role
of density. Indeed, as we explained previously, high density
gives rise to superior accuracy and improves the conver-
gence speed (this can be seen on the sixth and seventh
rows of the Table 8).

6.5. Comparison with Various Sensors

To investigate the potential of our approach to align
point clouds from different sensors, we test it with three

Table 8: Density & viewpoint change results.

Resolution cloud 0.8 1.6 3.1 6.3 12.5 25
1 (mm at 10 m)

points 23 870 726 9 800 513 2 527 043 1 219 973 673 537 65 626
of cloud1

Resolution cloud 50 50 50 50 50 50
2 (mm at 10 m)

points 20 676 20 676 20 676 20 676 20 676 20 676
of cloud 2

Ratio 1/1150 1/470 1/120 1/60 1/32 1/3
of points

RMSE (m) 0.0060 0.0065 0.0073 0.0082 0.0107 0.0166

iteration 40 44 46 50 58 64

kinds of sensors, the Leica P20 LiDAR, Velodyne HDL32-
E LiDAR and SR4000 Time-of-Flight camera. Figure 14
shows these different sensors and Table 9 exhibits their
hardware specifications.

6.5.1. Leica P20

Many varieties of 3D LiDAR sensors are available on
the market, but they all work with the same basic prin-
ciple [79]. They emit pulses and detect their reflection in
order to explore the object or the environment. Leica P20
is a Time-of-Flight scanner which offers greater range and
precision.

6.5.2. Velodyne HDL32-E

The Velodyne HDL-32 produces 3D scans by rotat-
ing a 32-beam array around its vertical axis at 10 Hz.
It produces approximately 700 000 points per second or
2200 points per laser beam at a range of 1 through 70
meters. This sensor provides an angular resolution of ap-
proximately 0.16◦ with a field of view (FOV) of 360◦. Its
vertical field of view is from −30.67◦ to +10.67◦ with an

18

(a) 0.8 mm at 10 m (b) 1.6 mm at 10 m (c) 3.1 mm at 10 m (d) 6.3 mm at 10 m

(e) 12.5 mm at 10 m (f) 25 mm at 10 m (g) 50 mm at 10 m

Figure 13: Density change within the same sensor (the colors from blue to red correspond to the scale of the intensity of the reflectance).

Figure 14: Sensors used to test the CICP approach. From left to
right: SR4000 Time-of-Flight camera, Velodyne HDL 32-E, and Le-
ica P20 Laser.

Table 9: Sensors hardware specifications.

Sensor Range Field of view (◦) Scanning Accuracy
(m) Horizontal Vertical Frequency (Hz) (mm)

Leica P20 [0.5 . . . 120] 360 270 50 3
Velodyne [1 . . . 70] 360 [−30± 10] 10 20
HDL-32E
SR4000 [0.1 . . . 10] 43.6 34.6 50 15

angular resolution of 1.33◦. Its measurement accuracy is
generally less than 2 cm.

6.5.3. SR4000 Time of Flight camera

The Time of Flight (ToF) camera is a two-dimensional
scanner which captures full depth per frame and with a
single light pulse.

The rest of this section discusses the registration of
different clouds acquired by these sensors.

6.5.4. Leica P20 vs Velodyne

In this experiment, the point cloud produced by the
Velodyne sensor is the sparse cloud and the second cloud,
which represents the dense one, is produced by the LiDAR
Leica P20 (Figure 15). The algorithm converges after 64
iterations, with 0.0199 mm as the RMSE value.

Figure 15: Registration of two clouds captured by Leica P20 LiDAR
for the dense cloud and Velodyne HDL-32E for the sparser cloud.

6.5.5. Leica P20 vs SR4000

Here, the sparse cloud is produced by the SR4000 Time-
of-Flight camera, while the dense cloud is produced by the
Leica P20 sensor (Figure 16). The latter is less affected by
noise than the former.

The results of this convergence are 100 and 0.0203 for
the number of iterations and the RMSE, respectively.
The reader can observe that the RMSE of P20 vs SR4000
experiment is higher than the RMSE of the test per-
formed between P20 and Velodyne sensors. This is jus-
tified by the large presence of noise in the cloud delivered
by the ToF camera.

Figure 16: Registration of two clouds captured by Leica P20 LiDAR
for the dense cloud and SR4000 ToF camera for the sparser cloud.

19

6.5.6. SR4000 vs Velodyne

Here the two sensors are affected by noise. This ex-
plains why the registration takes more than 124 iterations
to converge. The final RMSE is about 0.0231. In contrast
to the previous experiment, the dense cloud is produced
by the ToF camera, while the Velodyne cloud represents
the sparse one. Even though the total number of points
in the Velodyne cloud is almost 3 times higher than the
cloud ToF, in the part that interests us (representing ap-
proximately (2 × 1 × 1) m3, which enclose the table and
objects exposed on it and the table behind), the ToF cloud
is denser than the cloud of the Velodyne (Figure 17).

Figure 17: Registration of two clouds captured by a ToF camera for
the dense cloud and a Velodyne for the sparse cloud.

6.6. Demonstration with Dense-to-Dense Data

At the end of this experimental section, we wish to
highlight that the CICP method can be used with clouds
of the same nature (dense to dense or sparse to sparse).

Figure 18 shows the state of the two dense clouds be-
fore and after the registration. Despite the large number
of points, the final result is correctly aligned. Here is an-
other benefit of our approach, the fact of not considering
the entire set of points for matching, but only a collected
set of points from each local surface, which improves the
convergence speed.

6.7. Impact of the voxel size

The voxel size plays a very important role in the con-
vergence of the algorithm. Figure 19 illustrates how the
convergence is impacted by the change of this parameter.
When increasing the voxel size, the number of points in-
cluded in this voxel is increased, which reduces the number

Figure 18: Registration of two dense clouds of an indoor scene cap-
tured by a Leica P20 sensor.

of points used for matching. As clustering generates a few
representative points relative to the input points, thereby
increasing the convergence speed, but decreasing the accu-
racy. Setting a small voxel size decreases the convergence
speed, but increases accuracy, due to the availability of
sufficient points for matching. Therefore, a reliable trade
off needs to be determined in order to find the optimal
discretization of the point cloud.

Figure 19: Clustering voxel size effect on registration accuracy and
convergence speed.

7. Discussion

1. Two or more point clouds are acquired from the
same scene but with different sensors (e.g. vision
based system producing sparse cloud and 3D LiDAR
producing dense cloud), leading to different clouds
with their own local coordinate system, resolution
and number of points. Registration methods based
on the classical point-to-point ICP metrics fail to
provide an accurate pose estimate because of the
large discrepancies in density between the two point
clouds. The difficulty lies in the fact that there are
no direct correspondences between the source and
the target point clouds. What is more, methods
based on the geometric characteristics are also un-
suitable as these (mainly normal and curvature [70]),
which are essentially based on their estimations on
the neighboring points, are affected by the change in
resolution and scanning patterns [45, 13].

2. The information carried by a 3D point can contain
color, reflectance (intensity), positions, normals and
curvatures. Whilst color or reflectance differs from
one sensor to another, for the case of a static en-
vironment, the global geometric aspect of the scene
remains unchanged. This is obviously, why CICP
capitalizes on geometric primitives. In addition, this
makes it independent of weather and illumination
conditions.

20

3. It complements outperforms the famous the state-
of-the-art methods (ICP, NDT, GICP) for this kind
of multi sensors applications. These classical algo-
rithms find their limits with dense-sparse registra-
tion, because they are all based on point-to-point
matching. Whereas our method is based on the con-
cept of surface-to-surface matching, this concept can
be generalized to any type of common clustering bet-
ween the two point clouds. We can imagine the use
of segments or dominant direction of variation of the
points which corresponds to the highest eigenvalue in
the PCA. The matched surfaces are chosen to be very
small local surfaces. To do that, a common voxeliza-
tion between the two clouds with a very small voxel
size is performed. The choice of matching small sur-
faces was made in order to preserve the topological
details of the scanned environment and to guarantee
a considerable number of matched points between
the two clouds.

4. Normals are computed once before starting the pro-
cess and are used only to distinguish the different
local surfaces. They are not used in the alignment
process. The use of surface normals in point to plane
ICP and its variants is motivated by the fact that
the former are robustly estimated in the presence of
noisy surfaces. Otherwise, they will cause ICP to
diverge. In the case of CICP, we make use of nor-
mals to perform surface segmentation. Such an ap-
proach improves the surface estimate for noisy mea-
surements. Figure 2 shows normal vectors extracted
from the same surface scanned by two distinct sen-
sors. It can be clearly observed that though the
surfaces are piecewise planar, their estimated nor-
mals do not correspond. Therefore, this reinforces
the idea of not retaining the normals for the opti-
mization phase.

5. Whether in the case of dense or sparse cloud, there is
a certain number of points that are redundant. Re-
dundancy, though useful to make robust the overde-
termined system of the normal equation comes at the
cost of increased computation. Therefore, the use of
representative subsets of points give the same if not
better accuracy with less computational time.

6. As shown in this paper, the use of normals is a
double-edged sword and it can guarantee good qual-
ity results if accurately exploited. In the same way,
normals can amplify noise leading to divergence of
the ICP method. The proposed approach makes use
of normals for clustering points from the same sur-
face, and we avoid using them to establish corre-
spondences due to various disturbances coming from
the sensor. This strategy enables us to overcome the
main weakness of dense to sparse/sparse to dense
registration. It allows us to surpass the problem of
density in search of correspondences. The cascaded
effects of an improved surface match correspondence
lead to better accuracy in the registration pipeline

at reduced computational cost.

8. Conclusion

In this paper, a novel approach for sparse to dense point
cloud registration has been presented. The traditional ICP
pipeline is modified to accommodate a smarter way of sur-
face patch correspondence consisting of three main blocks;
voxelization, clustering, representative election. The moti-
vation behind this strategy is to match identical surfaces in
the 3D world but scanned using different type of depth sen-
sors. With various sensors come different resolutions and
hence different point cloud representations. Throughout
our experimental phase, we demonstrate the efficiency of
our algorithm in terms of alignment accuracy where other
state-of-the-art techniques perform poorly since they do
not cater for these above-mentioned differences. Further-
more, we show that the alignment technique works per-
fectly even by changing the density of the points of the
two clouds.

To summarize, our proposed methodology provides the
following improvements:

• patch surface segmentation contributing to noise re-
duction,

• improved selection by a novel surface point represen-
tative approach,

• reduced amount of processed data during matching
phase,

• dense to sparse registration applicable to the various
depth sensors on the market,

• a novel mathematical definition of sparse and dense
clouds.

Our algorithm has been successfully tested on various
indoor an outdoor datasets. Our future work will be con-
centrated on the notion of uncertainty in the model to
probabilistically incorporate a fusion stage in our pipeline.
Furthermore, on top of normal feature extraction, other
primitives might also be considered such as surface patch
curvatures or their relative intensity (if available) to be
able to perform a robust check on the matching and cor-
respondence phase. Finally, the scope of this paper lies
within the generic problem of localization for either hand-
held applications for augmented or virtual reality or robotic
platforms navigating inside an a priori mapped environ-
ment. The latter is among potential applications of our ap-
proach, since CICP is suitable to localize a vehicle equipped
with a sensor that provides sparse data (e.g. Velodyne) in
a dense and accurate map. In this perspective, an effort
towards code optimization will therefore be considered.

Disclosure statement

“The authors declare no conflict of interest.”

21

Table 10: Variation only of rotation around one axis: θz . The second column represents the actual registration parameters and the third one
represents the CICP estimated values.

θz (◦) Actual Final state Iterations RMSE

5 [0, 0, 0, 0, 0, 5] [0.00 , 0.01 , 0.00 , 0.03 , 0.05 , 4.73] 64 0.0197

10 [0, 0, 0, 0, 0, 10] [0.00 , 0.01 , 0.00 , 0.01 , 0.15 , 10.01] 99 0.0196

15 [0, 0, 0, 0, 0, 15] [0.00 , 0.00 , 0.00 , 0.62 , 0.13 , 14.68] 95 0.0198

20 [0, 0, 0, 0, 0, 20] [0.00 , 0.01 , 0.01 , 0.65 , 0.10 , 19.71] 157 0.0197

25 [0, 0, 0, 0, 0, 25] [0.00 , 0.00 , 0.00 , 0.79 , 0.25 , 24.64] 220 0.0196

30 [0, 0, 0, 0, 0, 30] [0.00 , 0.00 , 0.03 , 1.85 , 0.12 , 29.59] 303 0.022

35 [0, 0, 0, 0, 0, 35] [0.05 , 0.03 , 0.01 , 0.95 , 0.14 , 36.05] 418 0.0221

40 [0, 0, 0, 0, 0, 40] [0.06 , 0.03 , 0.01 , 0.85 , 0.10 , 40.64] 547 0.0215

Table 11: Variation only of rotation around two axes.

θy(◦) θz (◦) Initial Final state Iteration RMSE

15 10 [0, 0, 0, 0, 15, 10] [0.00 , 0.00 , −0.01 , 0.09 , 14.59 , 9.62] 83 0.0183

15 15 [0, 0, 0, 0, 15, 15] [0.00 , 0.00 , −0.01 , 0.50 , 15.03 , 14.71] 140 0.0188

15 25 [0, 0, 0, 0, 15, 25] [0.00 , 0.00 , 0.00 , 0.65 , 15.00 , 24.92] 387 0.0184

20 15 [0, 0, 0, 0, 20, 15] [0.00 , 0.00 , 0.01 , 0.89 , 19.49 , 14.91] 167 0.0184

20 25 [0, 0, 0, 0, 20, 25] [0.00 , 0.00 , −0.01 , 0.82 , 19.61 , 24.68] 337 0.0179

30 20 [0, 0, 0, 0, 30, 20] [0.01 , 0.00 , 0.02 , 0.93 , 28.81 , 19.30] 394 0.01807

30 25 [0, 0, 0, 0, 30, 25] [0.01 , 0.00 , 0.03 , 0.91 , 28.58 , 24.68] 616 0.01807

Table 12: Variation only of the translation along one axis: ty .

tz (cm) Actual Final state Iteration RMSE

10 [0, 0.10 , 0, 0, 0, 0] [0.00 , 0.10 , 0.00 , 0.23 , −0.33 , −0.08] 25 0.0204

20 [0, 0.20, 0, 0, 0, 0] [0.00 , 0.20 , 0.00 , 0.30 , 0.04 , −0.42] 27 0.0205

30 [0, 0.30 , 0, 0, 0, 0] [0.00 , 0.30 , 0.00 , 0.02 , 0.27 , 0.78] 35 0.0202

40 [0, 0.40 , 0, 0, 0, 0] [0.00 , 0.41 , 0.00 , 0.18 , 0.26 , 0.77] 41 0.0205

50 [0, 0.50 , 0, 0, 0, 0] [0.00 , 0.51 , 0.01 , 0.37 , 0.42 , 0.90] 65 0.0205

60 [0, 0.60 , 0, 0, 0, 0] [0.00 , 0.61 , 0.01 , 0.51 , 0.41 , −0.59] 94 0.0228

70 [0, 0.70 , 0, 0, 0, 0] [0.00 , 0.71 , 0.01 , 0.37 , 0.39 , −0.01] 117 0.0217

80 [0, 0.80 , 0, 0, 0, 0] [0.00 , 0.80 , 0.01 , 0.19 , 0.48 , −0.32] 145 0.0211

90 [0, 0.90 , 0, 0, 0, 0] [0.00 , 0.91 , 0.01 , 0.09 , 0.46 , 0.75] 160 0.0213

100 [0, 1.00 , 0, 0, 0, 0] [0.00 , 1.01 , 0.00 , 0.09 , 0.30 , 0.05] 215 0.0212

120 [0, 1.20 , 0, 0, 0, 0] [0.00 , 1.20 , 0.00 , 0.04 , −0.04 , 0.89] 278 0.0198

150 [0, 1.50 , 0, 0, 0, 0] [0.00 , 1.51 , 0.00 , 0.20 , 0.33 , 0.76] 386 0.0209

170 [0, 1.70 , 0, 0, 0, 3] [0.00 , 1.70 , 0.01 , 0.11 , 0.22 , 0.16] 477 0.0196

200 [0, 2.00 , 0, 0, 0, 4] [−0.01 , 2.00 , 0.01 , 0.26 , 0.09 , 0.83] 618 0.0201

References

[1] G. Agamennoni, S. Fontana, R. Y. Siegwart, D. G. Sorrenti,
Point Clouds Registration with Probabilistic Data Association,

in: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016, pp. 4092–4098.

[2] B. Bellekens, V. Spruyt, R. B. Maarten Weyn, A survey of rigid
3D pointcloud registration algorithms, in: Fourth International

22

Table 13: Variation only of the translation along two axes: tx and ty .

tx(cm) ty (cm) Actual Final state Iteration RMSE

30 30 [0.30 , 0.30 , 0, 0, 0, 0] [0.30 , 0.31 , 0.00 , 0.17 , 0.46 , 0.36] 33 0.0186

30 50 [0.30 , 0.50 , 0, 0, 0, 0] [0.31 , 0.51 , 0.00 , 0.53 , 0.48 , 0.41] 67 0.0198

30 70 [0.30 , 0.70 , 0, 0, 0, 0] [0.31 , 0.71 , 0.01 , 0.54 , 0.49 , 0.41] 92 0.0198

30 100 [0.30 , 1.00 , 0, 0, 0, 0] [0.32 , 1.01 , 0.02 , 0.55 , 0.49 , 0.41] 166 0.0198

50 50 [0.50 , 0.50 , 0, 0, 0, 0] [0.50 , 0.51 , 0.01 , 0.35 , 0.53 , 0.55] 87 0.0204

50 70 [0.50 , 0.70 , 0, 0, 0, 0] [0.50 , 0.71 , 0.00 , 0.36 , 0.53 , 0.55] 108 0.0204

50 100 [0.50 , 1.00 , 0, 0, 0, 0] [0.51 , 1.01 , 0.01 , 0.37 , 0.54 , 0.55] 185 0.0205

50 150 [0.50 , 1.50 , 0, 0, 0, 0] [0.51 , 1.51 , 0.02 , 0.39 , 0.54 , 0.55] 298 0.0204

100 100 [1.00 , 1.00 , 0, 0, 0, 0] [0.99 , 0.99 , 0.01 , 0.66 , 0.46 , 0.26] 262 0.0199

100 120 [1.00 , 1.20 , 0, 0, 0, 0] [1.00 , 1.19 , 0.01 , 0.72 , 0.50 , 0.26] 309 0.0200

100 150 [1.00 , 1.50 , 0, 0, 0, 0] [1.00 , 1.49 , 0.00 , 0.72 , 0.50 , 0.26] 450 0.0199

100 200 [1.00 , 2.00 , 0, 0, 0, 0] [1.00 , 1.99 , 0.00 , 0.72 , 0.50 , 0.26] 590 0.0200

Table 14: Variation only of the translation along three axes: tx, ty and tz .

tx(cm) ty(cm) tz(cm) Actual Final state Iteration RMSE

30 30 30 [0.30 , 0.30 , 0.30 , 0, 0, 0] [0.31 , 0.31 , 0.29 , 0.50 , 0.47 , 0.42] 74 0.0197

50 50 50 [0.50 , 0.50 , 0.50 , 0, 0, 0] [0.50 , 0.52 , 0.50 , 0.37 , 0.47 , 0.55] 124 0.0205

100 100 100 [1.00 , 1.00 , 1.00 , 0, 0, 0] [1.00 , 1.01 , 1.00 , 0.64 , 0.44 , 0.27] 408 0.0200

Table 15: Variation of translation along one axis (ty) and rotation around one axis (θz).

ty(cm) θz(◦) Actual Final state Iteration RMSE

30 20 [0.00 , 0.30 , 0, 0, 0, 0.20] [0.00 , 0.30 , 0.00 , 0.77 , 0.07 , 19.50] 85 0.0199

30 30 [0.00 , 0.30 , 0, 0, 0, 0.30] [0.00 , 0.29 , 0.00 , 0.46 , 0.16 , 29.30] 246 0.0200

50 20 [0.00 , 0.50 , 0, 0, 0, 0.20] [0.00 , 0.50 , 0.01 , 0.05 , 0.08 , 20.12] 98 0.0206

50 30 [0.00 , 0.50 , 0, 0, 0, 0.30] [0.00 , 0.50 , 0.00 , 0.48 , 0.21 , 29.92] 350 0.0203

100 20 [0.00 , 1.00 , 0, 0, 0, 0.20] [0.00 , 1.01 , 0.01 , 0.74 , 0.10 , 20.85] 186 0.0206

100 25 [0.00 , 1.00 , 0, 0, 0, 0.25] [0.00 , 1.01 , 0.01 , 0.67 , 0.16 , 25.89] 227 0.0197

150 20 [0.00 , 1.50 , 0, 0, 0, 0.20] [0.00 , 1.50 , 0.01 , 0.87 , 0.17 , 21.09] 473 0.0204

Conference on Ambient Computing, Applications, Services and
Technologies, Proceedings, IARA, 2014, pp. 8–13.

[3] F. Pomerleau, F. Colas, R. Siegwart, A Review of Point Cloud
Registration Algorithms for Mobile Robotics, Foundations and
Trends in Robotics 4 (1-104) (2015) 1–104.

[4] M. Velas, M. Spanel, A. Herout, Collar Line Segments for fast
odometry estimation from Velodyne point clouds, in: IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2016, pp. 4486–4495.

[5] T. Zhang, Surface Reconstruction with Sparse Point Clouds of
Velodyne Sensor, in: The 14th IFToMM World Congress, 2015.

[6] J. Razlaw, D. Droeschel, D. Holz, S. Behnke, Evaluation of reg-
istration methods for sparse 3d laser scans, in: Mobile Robots
(ECMR), 2015 European Conference on, IEEE, 2015, pp. 1–7.

[7] W. S. Grant, R. C. Voorhies, L. Itti, Finding planes in LiDAR
point clouds for real-time registration, in: IEEE International

Conference on Intelligent Robots and Systems, 2013, pp. 4347–
4354.

[8] A. Patidar, P. Sanjiv, A Review Paper on Self - Driving Car ’ s
and its Applications, in: National Conference on Innovations in
Micro-electronics, Signal Processing and Communication Tech-
nologies IJIRST, 2016, pp. 33–35.

[9] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband,
C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rum-
mel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski,
B. Davies, S. Ettinger, A. Kaehler, A. Nefian, P. Mahoney,
Stanley: The Robot That Won the DARPA Grand Challenge,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, Ch. 1, pp.
1–43. doi:10.1007/978-3-540-73429-1_1.
URL http://dx.doi.org/10.1007/978-3-540-73429-1_1

23

http://dx.doi.org/10.1007/978-3-540-73429-1_1
http://dx.doi.org/10.1007/978-3-540-73429-1_1
http://dx.doi.org/10.1007/978-3-540-73429-1_1

[10] R. W. Wolcott, R. M. Eustice, Visual localization within LI-
DAR maps for automated urban driving, in: Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Con-
ference on, IEEE, 2014, pp. 176–183.

[11] T. Caselitz, B. Steder, M. Ruhnke, W. Burgard, Monocular
Camera Localization in 3D LiDAR Maps, in: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
2016, pp. 1–6.

[12] W. Maddern, P. Newman, Real-time probabilistic fusion of
sparse 3d lidar and dense stereo, in: Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on,
IEEE, 2016, pp. 2181–2188.

[13] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, S. Behnke, Reg-
istration with the Point Cloud Library PCL, IEEE Robotics &
Automation Magazine 22 (4) (2015) 1–13.

[14] Y. Chen, G. Medioni, Object modeling by registration of mul-
tiple range images, in: IEEE International Conference on
Robotics and Automation, 1991, pp. 2724–2729.

[15] P. J. Besl, N. D. McKay, A Method for Registration of 3-D
Shapes, IEEE Trans. Pattern Anal. Mach. Intell. 14 (2) (1992)
239–256.

[16] P. Markelj, D. Tomaževič, B. Likar, F. Pernuš, A review of
3D/2D registration methods for image-guided interventions,
Medical image analysis 16 (3) (2012) 642–661.

[17] J. Salvi, C. Matabosch, D. Fofi, J. Forest, A review of recent
range image registration methods with accuracy evaluation, Im-
age and Vision computing 25 (5) (2007) 578–596.

[18] F. Pomerleau, Applied registration for robotics, Ph.D. thesis,
ETH ZURICH (2013).

[19] R. Fabio, From point cloud to surface: the modeling and visual-
ization problem, International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 34 (2003) 11.

[20] R. Marani, V. Reno, M. Nitti, T. D’Orazio, E. Stella, A modified
iterative closest point algorithm for 3D point cloud registration,
Computer-Aided Civil and Infrastructure Engineering 31 (7)
(2016) 515–534.

[21] J. Serafin, E. Olson, G. Grisetti, Fast and Robust 3D Feature
Extraction from Sparse Point Clouds, in: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
2016, pp. 4105–4112.

[22] C. M. Costa, H. M. Sobreira, A. J. Sousa, G. M. Veiga, Ro-
bust 3/6 DoF self-localization system with selective map update
for mobile robot platforms, Robotics and Autonomous Systems
76 (C) (2016) 113–140.

[23] Y. Feng, A. Schlichting, C. Brenner, 3D feature point extrac-
tion from LiDAR data using a neural network, International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences-ISPRS Archives 41 (2016) 41 (2016) 563–
569.

[24] S. Filipe, L. A. Alexandre, A comparative evaluation of 3D key-
point detectors in a RGB-D object dataset, in: Computer Vision
Theory and Applications (VISAPP), 2014 International Confer-
ence on, Vol. 1, IEEE, 2014, pp. 476–483.

[25] D. G. Lowe, Object recognition from local scale-invariant fea-
tures, in: Proceedings of the Seventh IEEE International Con-
ference on Computer Vision, 1999, pp. 1150–1157.

[26] R. B. Rusu, S. Cousins, 3D is here: point cloud library, in: IEEE
International Conference on Robotics and Automation (ICRA),
2011, pp. 1 – 4.

[27] R. Hänsch, T. Weber, O. Hellwich, Comparison of 3D interest
point detectors and descriptors for point cloud fusion, ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences II-3 (September) (2014) 57–64.

[28] E. Rosten, T. Drummond, Machine learning for high-speed cor-
ner detection, Computer Vision–ECCV 2006 (2006) 430–443.

[29] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up ro-
bust features (surf), Computer vision and image understanding
110 (3) (2008) 346–359.

[30] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, Orb: An effi-
cient alternative to sift or surf, in: Computer Vision (ICCV),
2011 IEEE international conference on, IEEE, 2011, pp. 2564–

2571.
[31] B. Steder, R. B. Rusu, K. Konolige, W. Burgard, Point Fea-

ture Extraction on 3D Range Scans Taking into Account Ob-
ject Boundaries Bastian, in: IEEE International Conference on
Robotics and Automation (ICRA),, 2011, pp. 2601–2608.

[32] R. B. Rusu, N. Blodow, Z. C. Marton, M. Beetz, Aligning
Point Cloud Views using Persistent Feature Histograms, in:
IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, 2008, pp. 3384–3391.

[33] R. B. Rusu, N. Blodow, M. Beetz, Fast Point Feature His-
tograms (FPFH) for 3D registration, in: IEEE International
Conference on Robotics and Automation, 2009, pp. 3212–3217.

[34] R. B. Rusu, G. Bradski, R. Thibaux, J. Hsu, Fast 3d recogni-
tion and pose using the viewpoint feature histogram, in: Intelli-
gent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, IEEE, 2010, pp. 2155–2162.

[35] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. B.
Rusu, G. Bradski, Cad-model recognition and 6dof pose esti-
mation using 3d cues, in: Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, IEEE,
2011, pp. 585–592.

[36] I. T. Jolliffe, Principal Component Analysis for Special Types
of Data, Springer New York, New York, NY, 1986, Ch. 11, pp.
199–222.

[37] Y. Zhong, Intrinsic shape signatures: A shape descriptor for
3d object recognition, in: Computer Vision Workshops (ICCV
Workshops), 2009 IEEE 12th International Conference on,
IEEE, 2009, pp. 689–696.

[38] A. Mian, M. Bennamoun, R. Owens, On the repeatability and
quality of keypoints for local feature-based 3d object retrieval
from cluttered scenes, International Journal of Computer Vision
89 (2) (2010) 348–361.

[39] T. Weber, R. Hänsch, O. Hellwich, Automatic registration of
unordered point clouds acquired by Kinect sensors using an
overlap heuristic, ISPRS Journal of Photogrammetry and Re-
mote Sensing 102 (2015) 96–109.

[40] J. Serafin, G. Grisetti, NICP: Dense normal based point cloud
registration, in: IEEE International Conference on Intelligent
Robots and Systems, Vol. 2015-Decem, 2015, pp. 742–749.

[41] J. Yang, H. Li, Y. Jia, Go-icp: Solving 3d registration efficiently
and globally optimally, in: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2013, pp. 1457–1464.

[42] B. Yang, Z. Dong, F. Liang, Y. Liu, Automatic registration of
large-scale urban scene point clouds based on semantic feature
points, ISPRS Journal of Photogrammetry and Remote Sensing
113 (2016) 43–58.

[43] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,
J. Neira, I. Reid, J. Leonard, Past, Present, and Future of Si-
multaneous Localization And Mapping: Towards the Robust-
Perception Age, IEEE Transactions on Robotics 32 (6) (2016)
13091332.

[44] J. Nieto, T. Bailey, E. Nebot, Scan-SLAM: Combining EKF-
SLAM and scan correlation, Springer Tracts in Advanced
Robotics 25 (2006) 167–178.

[45] A. Das, M. Diu, N. Mathew, C. Scharfenberger, J. Servos,
A. Wong, J. S. Zelek, D. A. Clausi, S. L. Waslander, Map-
ping, planning, and sample detection strategies for autonomous
exploration, Journal of Field Robotics 31 (1) (2014) 75–106.

[46] M. Magnusson, A. Lilienthal, T. Duckett, Scan registration for
autonomous mining vehicles using 3D-NDT, Journal of Field
Robotics 24 (10) (2007) 803–827.

[47] A. Segal, D. Haehnel, S. Thrun, Generalized-ICP, in: Robotics:
Science and Systems, Vol. 5, 2009, pp. 168–176.

[48] F. Pomerleau, F. Colas, R. Siegwart, S. Magnenat, Comparing
icp variants on real-world data sets, Autonomous Robots 34 (3)
(2013) 133–148.

[49] R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, C. Ca-
dena, Segmatch: Segment based loop-closure for 3d point
clouds, arXiv preprint arXiv:1609.07720.

[50] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly,
A. J. Davison, Slam++: Simultaneous localisation and mapping

24

at the level of objects, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 1352–
1359.

[51] E. Fernández-Moral, P. Rives, V. Arévalo, J. González-Jiménez,
Scene structure registration for localization and mapping, in:
Robotics and Autonomous Systems, 2016, pp. 649–660.

[52] E. Fernández-Moral, W. Mayol-Cuevas, V. Arévalo,
J. Gonzalez-Jimenez, Fast place recognition with plane-
based maps, in: Robotics and Automation (ICRA), 2013 IEEE
International Conference on, IEEE, 2013, pp. 2719–2724.

[53] K. Georgiev, R. T. Creed, R. Lakaemper, Fast plane extraction
in 3d range data based on line segments, in: Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference
on, IEEE, 2011, pp. 3808–3815.

[54] M. A. Fischler, R. C. Bolles, Random sample consensus: a
paradigm for model fitting with applications to image analy-
sis and automated cartography, Communications of the ACM
24 (6) (1981) 381–395.

[55] J. Forsberg, U. Larsson, A. Wernersson, Mobile robot naviga-
tion using the range-weighted hough transform, IEEE Robotics
& Automation Magazine 2 (1) (1995) 18–26.

[56] G. Pandey, S. Savarese, J. R. McBride, R. M. Eustice, Visu-
ally bootstrapped generalized icp, in: Robotics and Automation
(ICRA), 2011 IEEE International Conference on, IEEE, 2011,
pp. 2660–2667.

[57] K. Lenac, A. Kitanov, R. Cupec, I. Petrović, Fast planar sur-
face 3d slam using lidar, Robotics and Autonomous Systems 92
(2017) 197–220.

[58] N. Mellado, D. Aiger, N. J. Mitra, Super 4PCS fast global point-
cloud registration via smart indexing, Computer Graphics Fo-
rum 33 (5) (2014) 205–215.

[59] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao,
T. Funkhouser, 3dmatch: Learning the matching of local 3d
geometry in range scans, arXiv 1603.

[60] M. Li, X. Gao, L. Wang, G. Li, Automatic registration of laser-
scanned point clouds based on planar features, in: 2nd ISPRS
International Conference on Computer Vision in Remote Sens-
ing (CVRS 2015), Vol. 9901, International Society for Optics
and Photonics, 2016, p. 990103.

[61] Toward Object-based Place Recognition in Dense RGB-D Maps.
[62] A. Sehgal, D. Cernea, M. Makaveeva, Real-time scale invariant

3d range point cloud registration, in: International Conference
Image Analysis and Recognition, Springer, 2010, pp. 220–229.

[63] S. Rusinkiewicz, M. Levoy, Efficient variants of the ICP algo-
rithm, in: Proceedings of International Conference on 3-D Dig-
ital Imaging and Modeling, 3DIM, 2001, pp. 145–152.

[64] A. Gressin, C. Mallet, N. David, Improving 3D Lidar Point
Cloud Registration Using Optimal Neighborhood Knowledge,
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences I-3 (September) (2012) 111–116.

[65] Z. Zhang, Iterative point matching for registration of free-form
curves and surfaces, International journal of computer vision
13 (2) (1994) 119–152.

[66] J. S. Vitter, Faster Methods for Random Sampling, Commun.
ACM 27 (7) (1984) 703–718.

[67] R. B. Rusu, Semantic 3D object maps for everyday manipu-
lation in human living environments, Ph.D. thesis, Technische
Universitt Mnchen, Diss., 2009 (2009).

[68] F. Donoso, K. Austin, P. McAree, How do ICP variants perform
when used for scan matching terrain point clouds?, Robotics
and Autonomous Systems 87 (2017) 147 – 161.

[69] J. Elseberg, S. Magnenat, R. Siegwart, N. Andreas, Comparison
of nearest-neighbor-search strategies and implementations for
efficient shape registration, Journal of Software Engineering for
Robotics (JOSER) 3 (1) (2012) 2–12.

[70] L. He, X. Wang, H. Zhang, M2DP: A novel 3D point cloud
descriptor and its application in loop closure detection, in: In-
telligent Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on, IEEE, 2016, pp. 231–237.

[71] K. Klasing, D. Althoff, D. Wollherr, M. Buss, Comparison of
surface normal estimation methods for range sensing applica-

tions, in: Robotics and Automation, 2009. ICRA’09. IEEE In-
ternational Conference on, IEEE, 2009, pp. 3206–3211.

[72] M. L. Tazir, P. Checchin, L. Trassoudaine, Color-based 3D Point
Cloud Reduction, in: the 14th International Conference on Con-
trol, Automation, Robotics and Vision, ICARCV, 2016, pp. 1–7.

[73] T. Wiemann, M. Mrozinski, D. Feldschnieders, K. Lingemann,
J. Hertzberg, Data Handling in Large-Scale Surface Recon-
struction, in: 13th International Conference on Intelligent Au-
tonomous Systems, 2014, pp. 1–12.

[74] D. Arthur, S. Vassilvitskii, K-means++: The Advantages of
Careful Seeding, in: Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’07,
Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2007, pp. 1027–1035.

[75] R. Tibshirani, G. Walther, T. Hastie, Estimating the number of
clusters in a data set via the gap statistic, Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 63 (2)
(2001) 411–423.

[76] P. J. Huber, E. M. Ronchetti, Robust statistics, John Wiley &
Sons, 2009.

[77] P. J. Huber, Robust statistics, Wiley, New York, New York,
1981, Ch. The Basic Types of Estimates, pp. 45–67.

[78] A. Bjorck, Numerical methods for least squares problems, Siam,
1996.

[79] E. Puttonen, M. Lehtomäki, H. Kaartinen, L. Zhu, A. Kukko,
A. Jaakkola, Improved sampling for terrestrial and mobile laser
scanner point cloud data, Remote Sensing 5 (4) (2013) 1754–
1773.

25

	Introduction
	Related Work
	Sparse Approaches
	Dense Approaches
	Approaches based on Objects

	Our Contributions
	General Formulation
	Mathematical Definition
	Iterative Closest Point: The Algorithm

	Proposed Method
	Selection
	Normal Estimation
	Voxelization
	Clustering

	Matching
	Weighting
	Rejection
	Error metrics
	Optimization
	Analysis of the cost function

	Results
	Dense-Sparse Registration with CICP
	Comparison with Existing Methods
	Experiment on semi structured environment

	Changes in Density
	Data from two different sensors
	Data from the same sensor

	Changes in density and viewpoint
	Comparison with Various Sensors
	Leica P20
	Velodyne HDL32-E
	SR4000 Time of Flight camera
	Leica P20 vs Velodyne
	Leica P20 vs SR4000
	SR4000 vs Velodyne

	Demonstration with Dense-to-Dense Data
	Impact of the voxel size

	Discussion
	Conclusion

