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Introduction

The real division algebras, or Octonion algebra, are: real numbers, complex numbers, quaternion, and Octonion. These algebras and the classical groups SO(n) and SU(n) are very important in mathematics and physics [START_REF] Wybourne | Classical Groups for Physicists[END_REF][START_REF] Messiah | Mécanique Tomes I et II E[END_REF][START_REF] Schiff | Quantum Mechanics[END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF][START_REF] Sakurai | Modern Quantum Mechanics[END_REF]. This real division algebra is originated of the famous problem solving "the sums of squares" [START_REF] Dickson | On Quaternions and their Generalization and the History of Eight Square Theorem[END_REF][START_REF] Okubo | Introduction to Octonion and Other Non-Associative Algebras in Physics[END_REF][START_REF] Dixon | Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics[END_REF][START_REF] Conrad | The Hurwitz theorem on sums of squares[END_REF]. So we try to determine the values of n so that there is a solution of the identity: 

( )( ) 2 

=

This problem was solved by Euler and Fermat for n = 2, by Hamilton for n = 4 and by Grave and Cayley for n = 8. Hurwitz [START_REF] Conrad | The Hurwitz theorem on sums of squares[END_REF] showed that the equation (1.1) has solutions only for n = 1, 2, 4, and 8. Note also that every solution corresponds to an algebra which is isomorphic to the anti-symmetric and orthogonal matrices H n (u),(u)= (u 1 ... u n ), and representing the division algebras [START_REF] Conrad | The Hurwitz theorem on sums of squares[END_REF][START_REF] Tian | matrix Representations of Octonion and their applications[END_REF][START_REF] Hage-Hassan | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n -dimensional harmonic oscillator basis[END_REF].

It is important to emphasize that in the work of the Indian mathematician Brahma-gupta (598-668) figures the famous identity [START_REF] Lambert | Le probleme de Hurwitz,une histoires de mathematiciens[END_REF]:

( )( ) ( ) 2 1 2 2 1 2 2 2 1 1 2 2 2 1 2 2 2 1 ) ( v u v u D v u v u D v v D u u + + - = + + (1.
2) The nonbijective canonical transformations [START_REF] Hage-Hassan | An elementary introduction to Quantum mechanic[END_REF][START_REF]Octonion generalization of Pauli and Dirac matrices Intern[END_REF][START_REF] Levi | Civita opera Mathematiche[END_REF][16][17][18] or Hurwitz transformations [START_REF] Hage-Hassan | An elementary introduction to Quantum mechanic[END_REF] are simply deduced from Hurwitz matrics H n .

In recent years, these transformations, generalizing the so called Kustaanheimo-Stiefel transformation, 3 4 R R → , have been the object of numerous studies in particular: the algebra of quaternion's and, more generally, the Cayley-Dickson algebras and the Connection between the Hydrogen atom and the Harmonic oscillator [START_REF] Levi | Civita opera Mathematiche[END_REF][16][17][18][START_REF] Hage-Hassan | Inertia tensor and cross product in n-dimensions space[END_REF].

In this work we determine the representation matrices of division algebras taking as starting point the trigonometric formulas and using a recurrence method [START_REF] Hage-Hassan | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) groups (hal-01791820)[END_REF]. We derive the matrices 

R R → .

By expressing these transformations using complex variables, we find that the matrices associated with quadratic forms By expressing the matrices of transformations using reel numbers, we find from the commutators of the matrices associated with the quadratic forms, or departure matrices, three and five: the two commuting spins which generate the SO (4) groups [START_REF] Hage-Hassan | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) groups (hal-01791820)[END_REF][START_REF] Beveren | Cours:Some notes on group theory[END_REF] and the generators of SO(4) SO ( 5) groups [START_REF] Demler | SO(5) Theory of Antiferromagnetism and Superconductivity[END_REF][START_REF] Hecht | [END_REF][START_REF] Sharp And | O(5) Polynomial Bases[END_REF]. The matrices associated with the quadratic forms x i =0, (i=5-->8) have the commutation relations of angular momentum.

We derive also a simple graphical method for the calculation of Gauss Sums.

In this paper we present the derivation of the representation matrices of division algebras in section two. Quadratic transformations Multiplying these expressions by r≥0 we find:

2 1 2 2 2 2 1 1 2 , u u x u u x = - = (2.2) With ) 2 / sin( ), 2 / cos( 2 1 θ θ r u r u = = (2.
3) We write (2.2) and (2.3) in matrix form: 

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 2 1 2 2 1 1 2 2 1 2 1 )) ( ( u u u H u u u u u u x x ( 2 

2.2The problem of sums of squares

It is simple to make the derivation of the problem of sums of squares: 

( )( ) [ ]( ) ( )( ) ( ) ( ) 2 1 2 2 1 2 2 2 1 1 2 2 2 1 2 2 2 1 2 1 2 2 2 1 v u v u v u v u v v u u v v H H v v t + + - = + + = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ (2.6)

Quadratic transformations

3 2 2 1 1 , iu u z iu u z + = + =
and its complexes conjugate we find that these transformations are expressed in terms of Pauli matrices.

The representation matrix of quadratic transformation

3 4 R R →
The generalization of the transformation (2.2) and (2.4) is obtained by setting:

⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ 4 3 1 2 2 1 2 1 u u 2 x x u u u u (3.1) Add ) ( ) ( 2 4 2 3 2 2 2 1 3 u u u u x + - + =
and so let us write us:

, ) ( 0 2 1 4 3 4 3 2 1 ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ u u u u u H x x x t (3.2)
So we derive the representation matrix of Quaternion, ) ( 4 u H [START_REF] Tian | matrix Representations of Octonion and their applications[END_REF][START_REF] Hage-Hassan | The matrices representation of division algebras, new properties, the Cartan-Weyl basis of SO(n) and the 2 n -dimensional harmonic oscillator basis[END_REF][START_REF] Hage-Hassan | An elementary introduction to Quantum mechanic[END_REF],

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - - - - - = 1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1 4 ) ( u u u u u u u u u u u u u u u u u H (3.3)

Quaternion's notations

In quaternion's notations we write:

L e K e J e I e = = = = 4 3 2 1 , , , .
And Q= 1 , ) ( 

The Octonion quadratic transformation

3 4 R R → From expression (3.2) we deduce the Hurwitz transformations 3 4 R R → 0 , , 2 2 , 2 2 4 2 4 2 3 2 2 2 1 3 3 2 4 1 2 4 2 3 1 1 = - - + = - = + = x u u u u x u u u u x u u u u x (3.5)

Quadratic transformations and Pauli matrices

If we put t (u) = (u 1 +iu 2 , u 3 +iu 4 ), we find that the Hurwitz transformations expressed with the help of Pauli matrix in the form:

( ) ( ) ( ) ( ) ( ) ( ) u u x u u x u u x z t y t x t σ σ σ = = = 3 2 1 , , (3.6) 
The Pauli matrices are

z y x k j i σ σ σ σ r r r r + + =
and they are given by:

, 1 0 0 1 , 0 0 , 0 1 1 0 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = z y x i i σ σ σ (3.7)
3.5 Complex Quadratic transformations and Pauli matrices

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) u z iy x iy x z u u u z u u y u u x t z t y t x t ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - + - = + + σ σ σ (3.8)

Quadratic transformations R 4 R 3 and SO(4) matrices

The number of generators of SO (n) is n (n -1) / 2 and consequently the number of generators of SO ( 4) is six. Keeping the quadratic transformations, 3 4 R R → , in terms of real variables (u). We find from the commutators of the matrices associated with the quadratic forms R 4 R 3, or departures matrices, the first three generators of SO [START_REF] Merzbacher | Quantum Mechanics[END_REF]. From the development of ) ( 4 u H t we find the other three generators of SO [START_REF] Merzbacher | Quantum Mechanics[END_REF]. It is interesting to note that, we find without any calculation the two commuting spins which generate the SO (4) groups [START_REF] Hage-Hassan | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) groups (hal-01791820)[END_REF][START_REF] Beveren | Cours:Some notes on group theory[END_REF] 

The first spin of SO (4)

We write the quadratic transformation R 4 R 3 in the form:

( )( )( ) 2 4 2 3 2 2 2 1 1 1 u u u u u a u x t - - + = = ( )( )( ) ( )( )( ) 4 2 3 1 3 3 3 2 4 1 2 2 2 2 2 2 u u u u u a u x u u u u u a u x t t + = = - = = (4.1)
With ( )

) ( 4 3 2 1 u u u u u t =
. The matrices associated with the quadratic forms, or the departure matrices, are:

( ) ( ) ( ) ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 , 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 , 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 3 2 1 a a a (4.2)
By analogy with the kinetic momentum and make the commutations of matrices ( ) ( ) ( )

3 2 1 , , a a a
we write:

( ) ( ) [ ] ( ) ( ) [ ] ( ) ( ) [ ] ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ - = = = 4 / , 4 / , 4 / , 3 2 3 3 1 2 2 1 1 a a i N a a i N a a i N (4.3)
We find that N i , i=1, 2, 3, are the first three generators of SO (4) [START_REF] Hage-Hassan | Inertia tensor and cross product in n-dimensions space[END_REF][START_REF] Hage-Hassan | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) groups (hal-01791820)[END_REF]:

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = = 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 2 , 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 2 , 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 2 3 2 1 i N i N i N N r (4.4)

The second spins of SO (4)

It is important to note that we can write ) ( 4 u H t in the form:

( )

1 4 2 3 3 2 4 2 ) ( M u M u M u u H i t - + - =
By analogy with the kinetic momentum we write

k M j M i M M r r r r 3 2 1 + + = : ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 2 , 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 2 , 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 2 3 2 1 i M i M i M (4.5)
The commutation relations for the generators M r and N r can easily be obtained,

[ ] [ ] [ ] , 0 , , , , , = = = j i k ijk j i k ijk j i N M N i N N M i M M ε ε (4.6)
Where ijk ε is the Levi-Civita-symbol.

The commutation relations (4.6) are equivalent either to SO(3) or to SU(2). And by expressing the transformations with the help of , ,

Quadratic transformations

4 3 2 2 1 1 iu u z iu u z + = + = 8 7 4 6 5 3 , iu u z iu u z + = + =
and its conjugate complexes we find that these transformations are expressed in terms of the Dirac matrices [START_REF] Wybourne | Classical Groups for Physicists[END_REF][START_REF] Messiah | Mécanique Tomes I et II E[END_REF][START_REF] Schiff | Quantum Mechanics[END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF][START_REF] Sakurai | Modern Quantum Mechanics[END_REF].

The representation matrix of Octonion

We derive the orthogonal matrix H 8 (u) by generalization of the transformation (3.1) We find the Octonion quadratic transformation 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ u u u u u H x x x x t (5.1) By setting ) ( ) ( 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 5 u u u u u u u u x + + + - + + + = so that 2 2 2 ) (u r r r = , We find: ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - - - - - - - - - - - - - - - - - - - - - - - - - - - = 1 2 3 4
) ( 0 1 5 5 0 5 v v x j v v i x v v x t i t j j t γ γ γ = = - = = - - γ i are the Dirac matrices: ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = 0 0 0 0 0 0 0 0 0 0 0 0 , 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 , 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 2 1 0 i i i i γ γ γ (5.5) ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - = 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 , 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 5 3 γ γ

Complex Quadratic transformations and Dirac matrices

It is easy to verify that:

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - + - - - + - + - + - + - + = + + + + 1 5 4 3 2 1 3 2 5 4 5 4 3 2 1 3 2 5 4 1 5 5 3 4 2 3 1 2 0 1 0 0 0 0 ix ix x ix x ix ix x ix x ix x ix x ix ix x ix x ix x x x x ix γ γ γ γ γ (5.6)
It is obvious that this matrix is unitary.

Quadratic transformations and SO(4) SO (5)

In this case, the quadratic transformations are expressed with the help of real variables. Therefore we derive from the commutators of the matrices associated with the quadratic forms 5 8 R R → (or departures matrices) the two commuting spins which generate the SO ( 4) groups [START_REF] Hage-Hassan | Some applications of Wigner's D-matrix to the addition formulas for the spherical harmonics and to Wigner D-matrix for the SO(4) groups (hal-01791820)[END_REF][START_REF] Beveren | Cours:Some notes on group theory[END_REF] and the generators of SO(4) SO ( 5) groups [START_REF] Demler | SO(5) Theory of Antiferromagnetism and Superconductivity[END_REF][START_REF] Hecht | [END_REF][START_REF] Sharp And | O(5) Polynomial Bases[END_REF]. We find also that the representations matrix of x 6 =x 7 =x 8 =0 are the generators of .

The quadratic transformation

5 8

R R → in real field

We have:

( )( )( ) . 5 , 4 , 3 , 2 , 1 , 
= = i u a u x i t i (6.1)
With ( ) ( )

8 7 6 5 4 3 2 1 u u u u u u u u u t = And ( ) ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 a .... ( ) ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ - - - - = 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 5 a (6.2)
The departure matrices are ( ) ( ) [ ] 5 1 ,..., a a .

The generators of SO(5)

We put: 5

,..., 1 , 4 ,..., 1 , 2 / )] ( ), [( + = = = m n m a a i L n m mn (6.3)
And the matrix form of ( ) mn L is : 5). Moreover we can choose in several ways the generators of SO (4) SO (5). But we will follow Hecht and others [START_REF] Beveren | Cours:Some notes on group theory[END_REF][START_REF] Demler | SO(5) Theory of Antiferromagnetism and Superconductivity[END_REF][START_REF] Hecht | [END_REF][START_REF] Sharp And | O(5) Polynomial Bases[END_REF]: 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ 45 
( ), 2 
1 ), ( 2 
1 iL L V L L U L L T L L T L L T m = ± = - = - = - = ± ± (6.5) S r 2 
and T r are two commuting spins which generate SO(4).

± U and ± V are generators that do not commute with S r and T r

The matrices associated with the quadratic forms { x i =0,i > 5}

To determine the matrices associated with the quadratic forms {x i = 0} we put: ( ) ( ) ( )

( )( )( ) . 8 ,..., 1 , ' ' = = i u a u x i t i
8 3 7 2 6 1 2 , 2 , 2 a i J a i J a i J = - = = (6.8)
Note that J 1 , J 2 , J 3 verify the relationships of the angular momentum (4.6).

Appendix: Gauss sum for Students

We deduce from Fig.

(1) a simple method for calculating Gauss sums. And I found great interest by students (10 years) by this method and is the reason I mention it.

1-Calculation of Sum S = 1 + 2 + 3.... + n.

In the square, Fig.

(1), we replace L ij by points. So the sum S represents the number of the points which have the form of a right triangle and which represents the half of the square which has n 2 points. The other zone represents a right triangle but it misses the points of the diagonal (n). So 2S-n = n 2 and S = n (n + 1) / 2.

  themselves in terms of Dirac matrices (γ).

3 4 R

 34 R → and Pauli matrices are given in section three. The Quadratic transformations R 4 R 3 and the generators of SO(4) given in sections four and five we present in section five and six the Quadratic transformations θ = θ(2.1)

4

 4 

  Fig.(1)

a-From the orthogonality of H n , n = 1, 2, 4 it is easy to verify the identity (1.1). b-We derive by the same method the matrix H n (u) and then the relation (1.1) is no longer verified for n = 16. 

The Octonion quadratic transformation

(5.4) 0 , 

R R → and γ-matrices

If we put: t (v) = (u 1 +iu 2 ,u 3 +iu 4 ,u 5 +iu 6 ,u 7 +u 8 ) , it's simple to shows the relations:

are the matrices with x i # 0 and ( ) 6,7,8 = i a i are the matrices with x i = 0. We Write:

2-Calculation of Sum with a jump of 2

The equilateral triangle is formed of the collage of two right triangles, 2S, minus the points of height, n: S 1 = 2S-n = n 2 = 1 + 3 + 5 + 7 + 9 ٠٠٠ we can therefore make the collages of several rectangles to obtain other sums of Gauss.