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ABSTRACT 

This paper presents an original form of surrogate models and the associated construction procedure adapted to the thermal 

modeling of Multiphysics systems. This method of meta-modeling, which uses dimensional analysis, extracts compact 

models suitable for preliminary design from finite element simulations. The mathematical expression used for the model is a 

product of variable power laws of dimensionless numbers. Compared to traditional surrogate models (polynomial response 

surfaces, kriging and radial basis functions), it has the advantage of giving light, compact forms with good predictive 

accuracy over a wide range of the design variables (several orders of magnitude). The general regression process is first 

explained and illustrated with a study of the Marangoni effect. Then the methodology is used to build thermal models of an 

electromechanical actuator (EMA) which are used to size an aileron EMA for two different cooling strategies. Finally the 

models are also used to discuss the effect of confinement on the actuator’s overall thermal resistance. 

Keywords  

Thermal modeling, Response Surface Methodology, Surrogate modeling, Dimensional analysis, Convection cooling, 

Aerospace actuators. 

INTRODUCTION 

A technology shift towards more electric solutions is emerging in aerospace systems [1]. New technology brings 

new challenges, especially for the preliminary design process of these systems, which are becoming more complex with new 

functions, new domains, and new components. Unlike in hydraulic power systems, where the heat losses are evacuated by 

the working fluid, in the more electric systems the heat generated needs to be dissipated by the system’s own components. 
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Thus, the exploration of the design space and the optimization of these Multiphysics systems involve modeling the heat 

exchanges between the different components. This article focuses on thermal models suitable for use at system design 

level, where the thermal behavior of the components has to be estimated with a limited number of input variables, which 

may vary over wide ranges. Therefore, it is crucial for the models used at this design stage to be: simple – for rapidity and 

easy handling, i.e. simple algebraic or ordinary differential equations that can be easily implemented in worksheets, system 

level modeling [2] or optimization loops; explicit – to enable analytic manipulations that provide direct access to the main 

integration parameters (mainly weight and geometrical parameters) while having very little input information available 

(usually functional requirements); continuous – at least in the range of parameter variation conventional for the given 

application, which is especially useful for the optimization; broad in validity range – models have to be usable and reusable 

over large ranges of validity of variables to allow the capitalization of knowledge and optimization without a priori. 

The approaches used to generate such models may take different forms. A classical way of working is to solve 

physical equations analytically after simplification of the geometry or by neglecting some physical phenomena. The 

literature offers a large number of correlation laws in heat transfer for simple geometries [3]. The validation of these 

analytical models is usually carried out on more detailed models (finite element models – FEM) or on experimental or 

statistical data [4]. This approach requires expertise and becomes difficult for Multiphysics systems. A second approach uses 

empirical models [5]. These are mainly regression models based on physical experiments and may become expensive if a 

large number of experiments are required. Additionally, it may be difficult to vary all the main sizing parameters. Yet 

another approach uses response surface methodology, surrogate models or meta-models of computer experiments. This is 

widely used in thermal engineering applications such as optimization of the thermal placement of multichip modules [6], 

optimization of heat exchangers or heat sinks [7–9] or specific analysis in heat pipes [10]. The next section of this article 

assesses the state of the art of the mathematical forms of models associated with these approaches. 

The purpose of this paper is to provide a method to construct surrogate models adapted to heat transfer problems 

and suitable for the wide range of variation of input variables often encountered in preliminary design of Multiphysics 

systems. This is achieved via an extension of the metamodeling approach in combination with the use of dimensional 

analysis [11,12], the Buckingham � theorem [13]. The main contributions of the paper are the general mathematical form of 

the model proposed and the method that enables its final expression to be narrowed down. Section 2 presents the 

proposed methodology and the different steps for the construction of a surrogate model. Section 3 illustrates the process 

with the thermal modeling of an electromechanical actuator (EMA) used to control the aileron of an aircraft. Section 4 

presents different possible uses of the thermal models built using the proposed methodology. 

1. State of the art on mathematical forms of approximations 

This state of the art deals with approximation techniques employed in computer experiments and using parametric 

regressions. It focuses especially on the mathematical forms of these approximations. The design of experiments (DOE) and 
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model building methods will not be discussed here. For more details on these aspects the references [14–18] can be 

consulted. 

The subject here is to identify and compare the different possible forms of approximation functions f: 

 � = �(��, �	, …	 , ��, �	, … ) (1) 

where: 

• � is the physical characteristic of a component that is useful for its selection in a system, such as the heat transfer 

coefficient of a heat exchanger, the thermal resistance of a component, etc. 

• ��  are the geometrical dimensions of the component, these dimensions may vary over large intervals during global 

system design. 

• ��  are boundary conditions or material properties used in the design of the components. 

It is important to note that ��  and ��  are independent variables and � is a dependent variable. 

1.1. Pure mathematical approaches 

Response surface models, meta-models or surrogate models are relatively simple mathematical relationships 

between input variables, physical parameters and output response: 

 � = �(�, �) (2) 

where: 

• � is a vector of physical parameters �� , � = �1,… , ��, considered to be input variables and which can be design variables 

such as dimensions ��, boundary conditions or material properties ��; 
• � is a vector of parameters associated with the family of functions needed to construct the surface. 

Parametric regressions are based on models requiring the estimation of a finite number of parameters, θ, that 

express the effects of basis functions on the response surface. With polynomial interpolation or regression [15] described 

by equation (3) in Table 1, the basis functions are �1, �, �	, … , ���. The idea is to obtain a surface that is differentiable and 

continuous. Higher orders of Taylor expansion will usually yield a more accurate approximation. However, the greater the 

number of terms is, the more flexible the model becomes, but the response may be corrupted by over-oscillations.  

Other meta-model families assume that samples taken close to each other are likely to have highly correlated 

response values, whereas samples taken far apart are not. Radial basis functions, which are radially-symmetric functions, 

and Kriging methods [19,20] are thus underpinned by the idea that the sample response values exhibit spatial correlation. 

RBF and Kriging methods have been found useful for modeling general surfaces that have many peaks and valleys and when 

exact interpolation of samples is desired. A common choice for the basis functions of RBF are the Gaussian functions as 

illustrated in Table 1 with equations (4) and (5), where � represents the mean value of the experiments.  
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Generally for all these forms of regression, errors become very large outside the range they were built 

(extrapolation). RBF and Kriging methods are well suited to the representation of complex behaviors on well-defined and 

relatively small ranges of the inputs. They are therefore particularly used in component design and optimization but are less 

suitable to representing the characteristics of components during a global system design. 

Table 1: Synthesis of mathematical forms of pure mathematical approaches 

Approaches 
Mathematical form of the model Equation 

references 
Literature 
references 

Response surface 
methodology (RSM) 

� = �(�, �) = �� +������
��� +����������

���
�

���  (3) [15] 

Radial basis 
functions (RBF) � = �(�, �) = � +��� !"�!�(#)"$%$

�
��� = � +��� & !'()!()	(#)'$%$

*+
���

�
���  (4) [19] 

Kriging functions � = �(�, �) = � +��� & !'()!()	(#)',)%)$
*+
���

�
���  (5) [20] 

1.2. Approaches based on dimensional analysis 

There is an alternative school that suggests building models by relying more on physical reasoning than on 

mathematical approaches. Dimensional analysis is a powerful way to do this and is mainly based on the Buckingham 

theorem [11,13]. According to this theorem, Equation (1) can be rewritten in the form: 

 �� = - .��, �	, … , �/011121113/
4 (6) 

where: 

• ��  are dimensionless variables, also called dimensionless numbers  

• 5 is the number of dimensionless numbers, which depends on the 6 independent physical units (e.g. m, kg, s, 

etc.) and the � variables involved in the problem. It is calculated using the relation: 5 = � −6. 

The output response, y, is also modified to become dimensionless: 

 �� = �&��8#��9# (7) 

This approach, classical in fluid mechanics and heat transfer [3], often uses products of power laws with 

dimensionless numbers ��, Equation (8) in Table 2, to represent the function -. The coefficients :� 	in Equation (8) can be 

obtained by first order linear regression on a logarithmic scale. The SLAW method has the same type of mathematical 

expression but, instead of dimensionless numbers, it uses the physical variables �� directly [21] (Equation (9) in Table 2). 

Homogeneity in terms of dimensions is ensured by imposing constraints on power coefficients. Assuming that all the 
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dimensionless numbers �� , � ∈ �1,… , 5� of the function - are constants implies that �� is constant as well. Thus the 

dependent variable � can be expressed in the form of a scaling law, Equation (10) in Table 2, where < is the characteristic 

length of the system. This mathematical form enables the main behavior of mechanical [22] or mechatronic components 

[23] to be represented in a simple way. The SLAWMM method [24,25] extends the validity of scaling laws by replacing the = 

and : constant coefficients in equation (10) by functions of ��  numbers (Equation (11) in Table 2). The regressions obtained 

have been compared to classical meta-models and show the interest of the physical basis of scaling-law-based meta-models 

for preliminary sizing of components: their shape is easy to handle while remaining valid over a wide range of sizes, for 

prediction or even extrapolation purposes. Other authors [26–28] have represented - by a polynomial function with ��, 
(Equation (12) in Table 2) and have been able to show robustness of regression: reduction in the number of variables 

manipulated, decrease in the size of the DOE (decreased workload) and increase in the accuracy. Some authors [29,30] have 

proposed a combination of polynomial and power law meta-models with ��  and their associated procedure for model 

building. This form of model represents a generalization of power law expression. The drawback of this method is that it 

requires non-linear regression. 

Table 2: Synthesis of mathematical form of DA based approaches 
Approaches Mathematical form of the model Equation references Literature references 

Power laws with �� 
numbers �� = :� &��8#

/
���  (8) [3] 

SLAW method: 
Power laws with �� 

numbers 
� = :� &��8#�

���  (9) [21] 

Scaling laws � = =<8 (10) [22,23] 

Scaling law meta-
models 

(SLAWMM) 

� = �(<, ��, �	, … ) = =(��, �	, … )<8(>?,>$,… ) 
with �� = @#A  

(11) [24,25] 

Polynomial meta-
models with �� 

numbers 
�� = :� +�:���

/
��� + ��:�B���B

5
B=�

5
�=1  (12) [26–28] 

Sum of power law 
meta-model 

�� = �β�DE
��� &��F#)

/
���  (13) [29,30] 

 

2. VPLM: Variable Power Law Meta-model 

The methodology presented here is called the Variable Power Law Meta-model (VPLM). It is applied in four main 

steps: data generation, surrogate model definition, surrogate model selection and validation, and surrogate model 
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optimization. Figure 1 shows the global process of the methodology by presenting all the processes involved in each main 

part. 

 
Figure 1: Procedure of the VPLM methodology 

This methodology aims at facilitating the thermal modeling and, at the same time, the design of Multiphysics 

systems by building surrogate models based on dimensional analysis and finite elements simulations. 

2.1. Data generation 

This step is composed of four operations. The first one deals with the identification of the influent variables. 

Sensitivity analysis or screening methods [31,32] can be used here. Then dimensional analysis is performed on the physical 

variables to build the corresponding dimensionless numbers. More details on dimensional analysis can be found in [11,12]. 

The number of dimensionless numbers is determined using the modified form of the Buckingham theorem proposed by 

Sonin [33]. This theorem suggests separating constant physical parameters from variable ones. In some cases, this 

consideration enables the set of dimensionless numbers to be reduced. Afterwards, a design of experiments is established 

to define the configurations that have to be simulated in finite element simulation software. As will be shown in the 

following section, the VPLM methodology, which is based on linear regression, can work with different types of design of 

experiments (Full Factorial design, Latin Hyper Cube design, etc.). 
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2.2. Surrogate model definition 

This second step deals with the definition of the surrogate model or, in other words, the algebraic expression of the 

model. As the name of the methodology (VPLM) indicates, the mathematical form of the chosen function is a variable 

power law. This choice was motivated by a variety of observations and studies of the state of art concerning the 

approximation models used in engineering. Although polynomial models are often used to build response surface models, 

many engineering problems follow a power law behavior [34,35]. In addition, for heat transfer problems, the correlations 

most commonly used to estimate the heat transfer coefficient are power law functions [3,36,37]. Regarding these 

observations, the most appropriate surrogate model form may be: 

 π� = =π�8?π	8$ …π/8H (14) 

where �� is the dimensionless number containing the output, = and :�  are numerical coefficients, and ��  are dimensionless 

numbers.  

The relation (14) re-written in logarithmic scale corresponds to a response surface model of the first order (15). 

 log(��) = log(=) +�:�log	(��)/
���  (15) 

However, the literature on correlation laws used in heat transfer shows that power law functions of dimensionless numbers 

do not represent all the configurations generally encountered [38]. Very often, the authors provide charts or tables with 

numerical values to be used for = and :�  depending on the value of dimensionless numbers. Thus, since engineers advise 

increasing the order of the polynomial model when its accuracy is not sufficient [39], we propose to increase the order of 

the model in Equation (15). In order to keep the algebraic model simple, the VPLM methodology will estimate at most third-

order models. Thus, the general form of the proposed model is: 

 

log(��) = log(=) +�:�log	(��)/
��� +��L�� log(��) logM��N/

���
/

���
+���O��* log(��) logM��N log(�*)/

*��
/
���

/
���  

(16) 

where =, :�, L�� and O��* are numerical coefficients. By rewriting relation (16) in the linear scale, we obtain a variable power 

law model: 

 π� = =π�8?(>?,>$,…,>H)π	8$(>?,>$,…,>H)…π�8HM>?,>$,…,>HN (17) 

where :�(�� , … , �/) are polynomial functions of log	(��).  
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Most of the time, the model does not need to keep all the higher order terms1 in Equation (16). In order to identify 

which ones deserve to be kept, a sensitivity analysis [40] is conducted using the simulation data coming from the first step. 

Then, they are sorted in order of their importance (Figure 2) and 6 models are automatically calculated where, for the �PQ 

model, � ∈ 0,1,…6 − 1�, only the first � higher order terms from Figure 2 are considered. Note that for � = 0 the model 

obtained is identical to the one in Equation (14). The models are built by minimizing the least square error between the 

model and the simulation data [39]. 

2.3. Surrogate model selection and validation 

This third step of the VPLM methodology concerns the selection of the appropriate model and its validation 

regarding its accuracy and complexity. During the previous step, several candidate models were built and now we can 

evaluate the relative errors and/or the standard deviation for each one. In order to appreciate the accuracy of each model, 

it is possible to use scatter plots (simulation data versus the data calculated with the model) as in Figure 3. However, if all 

the different VPLM models are to be compared, scatter plots may be inconvenient. A more convenient way to compare the 

surrogate models built during the second step is to represent the evolution of the relative errors of each model (differing in 

the number of higher order terms selected), as shown in Figure 4. As the evolution of VPLM models follows the horizontal 

axis, which corresponds to the arrangement of the terms from Figure 2, it can be seen that the prediction accuracy 

increases with the number of terms selected, but the model also becomes more bulky. Thus the engineer can choose a 

compromise between accuracy and the simplicity of the expected surrogate model. 

 

Figure 2: Example of arrangement of higher order terms 
according to their importance for the case of two 

dimensionless numbers (ST = UVW(XT)) 
 

Figure 3: Example of scatter plot (''X=Y'' diagram) to 
appreciate the accuracy of a model 

 

                                                 
1 Here, the higher order terms are those multiplied by L�� and O��* 
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Figure 4: Example of comparison of relative errors between different models 

2.4. Optimization of surrogate model form  

Even though many models involved in heat transfer problems follow a power law behavior, in some cases this 

mathematical form may not give the expected accuracy. This step of the VPLM methodology gives the possibility of 

optimizing the surrogate model form in order to achieve the expected accuracy. In this way, this last step of the 

methodology allows us to change the mathematical form for one or more dimensionless numbers involved in the meta-

model. Figure 1 shows the three sub-steps of this form optimization step. 

There is no restriction on the new form selected; all the mathematical forms presented in the state of the art may 

be used (Table 1 & Table 2). For example it is possible to move from a classical power law with two dimensionless numbers 

to a combination of power law and polynomial function. 

Since the new form chosen is nonlinear, nonlinear regression in the least squares sense is used to determine the 

numerical values of the coefficients involved in the model. A scatter plot as “X=Y” diagram may be used to compare the 

precision between the new model and the old one. 

2.5. Marangoni effect: Evaluation of the heat transfer coefficient 

2.5.1. Application of the VPLM methodology 

 Here we propose to study the heat transfer due to the Marangoni effect [41]. Marangoni convection occurs when 

the surface tension of an interface (generally liquid-air) depends on the concentration of a species or on the temperature 

distribution (thermo-capillary convection). The aim of this study is to use the VPLM methodology to build a model able to 

calculate the global heat transfer coefficient of a cavity subjected to a temperature gradient that induces a flow through the 

Marangoni effect. Figure 5 shows the configuration of the geometry and the boundary conditions used for the study. 
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Figure 5: Configuration of the study for the Marangoni effect (YZ[\ = ]^^_) 

The governing equations of the problem are the Navier-Stokes equations using the Boussinesq approximation, the 

Energy equation and the following equation, which describes the Marangoni effect on the liquid-air interface: 

 � `a`� = b `c`� (18) 

where b [d/6/f] is the temperature derivative of the surface tension g. 

The global heat transfer coefficient hijjj depends on eight physical variables (Equation (19)) and, according to the 

Buckingham theorem, it may be written in dimensionless form as in Equation (20). 

 hOjjj = �(k, l, m�, �, <i , ni, opΔc, bΔc) (19) 

 da = -MrsAt , us, �v, �wtN (20) 

where �v = xvyzAt{$   represents the ratio between the thermo-capillarity forces and the viscous forces and �wt = wtAt  

represents the aspect ratio of the cavity. In addition, the number of dimensionless variables may be reduced by combining 

the Prandtl number, us, and �v into a single dimensionless number. This new dimensionless number is the Marangoni 

number, which represents the ratio between the surface tension forces and the viscous forces. 

 da = -MrsAt , |o, �wtN (21) 

It is assumed that the properties of water are constant and are evaluated at the mean temperature. A latin hyper 

cube sample (LHS) containing 64 configurations is built to define all the configurations that have to be simulated according 

to the ranges defined in Table 3. The finite element simulations are performed in COMSOL Multiphysics and Figure 6 shows 

different results for different flow regimes. 
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  }~�� 	= �. � ∙ �^�,�W = �. �� ∙ �^�, X�� = �. � }~�� = �.�� ∙ �^� , �W = �. �] ∙ �^�, X�� = ^. �� 

  }~�� = �. �� ∙ �^�,�W = �. �� ∙ �^], X�� = ^. �� }~�� = �. �� ∙ �^� , �W = �. ]� ∙ �^�, X�� = ^. �� 

Figure 6: Results from FEM simulations for different flow regimes (Temperature field [°K] and streamlines) 

Table 3: Ranges for the design of experiments used for the study of the Marangoni effect 
Variables Units Ranges ni 66 5 − 10	<i 66 5 − 30	Δc f 0.1 − 1 rsAt - 5 ∙ 10� − 1 ∙ 10�	|o - 6 ∙ 10	 − 4 ∙ 10�	�wt - 0.25 − 1.5	

From the results of the finite element simulations, the VPLM methodology is used to generate different models, the 

relative errors of which are represented in Figure 7. The model with five higher order terms reaches 15% of maximum 

relative error and represents the best compromise between accuracy and complexity. 
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Figure 7: Evolution of the relative errors for the study of the Marangoni effect 

 da��A� = 1.7 ∙ 10!�rsAt!�.	����.�	� ���M� ¡tN ���(�¢)!�.�	� ���M� ¡tN ���M� ¡tN��.��� ���M>£tN ���M� ¡tN 
|o�.���!�.��� ���M>£tN ���M� ¡tN!�.		� ���(�¢) ���M� ¡tN�wt�.��	 

(22) 

2.5.2. Comparison with other surrogate modeling techniques 

Here we propose to compare the VPLM methodology with other surrogate modeling techniques such as Radial 

Basis Function (RBF) and Response Surface Methodology (RSM). These two techniques are widely used to build models from 

finite element simulations [8,42]. The RBF and RSM models are built on the same design of experiments as the one used for 

the VPLM model and the comparison is made on another design of experiments to evaluate the prediction capability of the 

models. Equations (23) & (24) show the RBF model and the RSM model, respectively, built for the Marangoni study. The 

RSM model is a third-order polynomial model that uses the same number of numerical coefficients as the VPLM model. 

 da¤¥¦(�) = � + �p�§�
��� exp «−‖� − ��‖	2g	  (23) 

 

da¤®� = 0.95 + 1.56 ∙ 10−5rs<O + 5.38 ∙ 10−5|o 

+2.64 ∙ 10!�rsAt�wt − 0.255�wt�wt − 2.64 ∙ 10!±rsAt|o 

+8.51 ∙ 10!��rsAtrsAt|o − 1.97 ∙ 10!�rsAt�wt�wt 
(24) 

A LHS of 27 points is built according to the ranges described in Table 3 to define the configurations that have to be 

simulated. Figure 8 presents a scatter plot comparing the results of the finite element simulations with those predicted by 

the models. This comparison shows that the VPLM methodology offers models with a better prediction capability than the 

RBF and RSM techniques do. In addition, the VPLM model offers a lighter and explicit expression, which allows 

mathematical manipulations. 
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Figure 8: Comparison between different surrogate modeling techniques for the Marangoni effect study 

3. Application to the thermal modeling of an electromechanical actuator 

The VPLM methodology will be applied to the electromechanical actuator of an aileron. The main components used 

are generally an electric motor, a roller-screw and a housing containing all these components. Figure 9 shows the 

integration of this type of actuator into an aircraft wing. Generally actuator integrators/manufacturers start the design of 

actuators by considering only natural convection cooling and model it using correlation laws defined for infinite domains. 

Then, flight or ground test campaigns help to improve the thermal modeling of the actuator. As illustrated in Figure 9, the 

actuator is located in a confined space and, as shown by Atmane et al. [43] and Sebastian et al. [44], this confinement has a 

non-negligible influence on the natural convection phenomenon. For this reason, actuator manufacturers need 

representative correlation laws to be able to take a more realistic cooling configuration into account earlier in the design. 
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Figure 9: Integration of an aileron EMA 

This paper studies two different cooling strategies conceivable for an aileron EMA: natural convection cooling in a 

confined space (Figure 10) and forced convection cooling in a confined space (Figure 11). The two-dimensional 

approximation is justified by the fact that the actuator has to be cooled only by the surrounding air and conductive heat 

transfer toward the structure is usually prohibited by the airframers. Also it is assumed that the actuator is the same length 

as the rectangular cavity. The approach proposed here is to model the actuator (Multiphysics system) as an assembly of 

models of different components and to use the VPLM methodology to generate the thermal models. In this way, the 

modeling of the heat transfer of the EMA uses three different thermal models: (1 in Figure 10 and Figure 11) a conductive 

model of the brushless motor, and (2  and 3 in Figure 10 and Figure 11) a conducto-convective model of the housing in its 

environment for two different cooling configurations (natural and forced convection). Additionally to these heat transfer 

models, thermal loss models also have to be considered. The latter were developed in previous works, i.e. loss models for 

the roller screw (given in [23]), loss models for the motor (iron and copper losses given in [45]), and a surrogate model for 

the motor torque calculation obtained with the VPLM methodology in [46]. All the models together enable the main lengths 

of the actuator and its components to be linked to the hot spot temperature of the motor, which is the critical characteristic 

to be considered for actuator sizing. 
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Figure 10: Modeling of the EMA in its environment with natural convection cooling 

 

 
Figure 11: Modeling of the EMA in its environment with forced convection cooling 

3.1. Conductive model of the brushless electric motor 

The VPLM model that will be built here is based on the two-dimensional finite element model of an electric motor, 

represented in Figure 12. It corresponds to a motor from the PARVEX NX range [47], the characteristics of which are in 

accordance with the specifications for aileron application. The objective is to construct a model able to calculate the 

conductive thermal resistance ²i@ between the motor hot spot, which is located at the center of a slot (cf. Figure 13) and its 

external surface (the one in contact with the housing). The thermal losses dissipated in each slot of the motor stator are 

mainly Joule losses. The temperature on the external surface of the motor c³´ µ is imposed to enable the calculation of the 

temperature difference Δ� = cQ¶P − c³´ µ, cQ¶P  being the temperature of the hot spot. Table 4 gives the material 

properties used for the finite element simulations. 

Table 4: Material properties of the electrical brushless motor 
Ref. in 

Figure 

12 

Material l	·¸/6/f¹ 
1 & 4 Iron 80	
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2 
Copper & 

Resin [48] 

�(lº´ , l »³, ¼E, <E)½ 0.7	
3 Nomex �( ¾) ½ 0.1 

5 
SmCo 

(Magnet) 
10	

6 Air ~0.02	
 

 

 
Figure 12: Finite element model of the electrical brushless motor 

 
Figure 13: Finite element simulation results for the conductive model of the brushless electric motor (COMSOL Multiphysics) 

The linear2 conductive thermal resistance of the electric motor <E²i@ depends on five variables: 

 <E²i@ = �(¼E,  ¾, l� ¶�, l¾ , lE�() (25) 

where: ¼E is the diameter of the motor,  ¾ the thickness of the Nomex insulation, l� ¶� the thermal conductivity of the 

iron, l¾ the thermal conductivity of the Nomex, and lE�( the thermal conductivity of the copper-resin mixture. Applying 

the Buckingham theorem modified by Sonin [33] leads to the following dimensionless form of Equation (25): 

 �i@ = -(��) (26) 

where: �i@ = l� ¶�<E²i@ and �� = ÀÁ»Â . 

A full factorial DOE of fifty points is built according to the ranges defined in Table 5. The defined configurations are 

simulated using COMSOL Multiphysics. 

                                                 
2 Radial thermal resistance for a motor of length <E 
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Table 5: Ranges for the design of experiments used for the conductive model 

Variables ¼E 	·66¹  ¾	·66¹ �� 

Ranges 30-150 0.3 100-500 

The VPLM methodology applied to the simulation results leads to the plot in Figure 14, which compares the relative 

estimation errors of all the VPLM models. The model with one higher order term (Equation (27)) seems to be the best 

compromise between accuracy and complexity, with less than 0.5% maximum relative error. 

 πÃÄ = 317.7π�!�.����.	����	(Å?) (27) 

 
Figure 14: Relative errors of different VPLM models for the conductive heat transfer of the brushless electric motor 

3.2. Natural convection model of the housing 

The VPLM model built here evaluates the heat exchange between the housing of the EMA and the environment 

outside the aircraft wing. The cooling strategy considered is natural convection in a rectangular confined space (Figure 10). 

The boundary conditions considered for the problem are: 

• a constant heat flux Æ is dissipated by the housing; 

• the lateral walls of the rectangular cavity are adiabatic; 

• the upper and lower walls of the cavity represent the wing frame. They are modeled by convective heat transfer 

coefficients, given by correlation laws from [3].  

For convenience, no heat transfer by radiation is considered in this study. Figure 15 represents the geometry of the housing 

and the boundary conditions of the problem. For the entire DOE, the size of the mechanical link between the cylinders is 

kept constant. Its impact on the natural convection phenomenon requires additional investigations, which were not 

conducted in this work. 
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Figure 15: Geometrical parameters and boundary conditions for the EMA housing in natural convection 

The equivalent convective thermal resistance of the EMA housing depends on eleven variables (equation (28)) and, 

according to the Buckingham theorem, it may be written in dimensionless form as in Equation (29). 

 ²�i = �(��, �	, k, m�, �, l, opΔ�, h�, h	, n», <») (28) 

 ��i = -(��, �	, ��, ��, ��, us, rsAÇ) (29) 

where: ��i = l<»²�i, �� = @?AÇ, �	 = @$AÇ, �� = Q?AÇÈ , �� = Q$AÇÈ , �� = wÇAÇ , us = {º�È  and rsAÇ = x$¢FyÉAÇÊ{$ . 

Since, in this study, the convection is generated by the heat produced in the cylinders, the Grashof number is re-

defined in terms of the heat flow rate density Æ instead of the temperature difference Δ�: rsAÇ∗ = x$¢FÌAÇÍ{$È . Generally, for 

natural convection of horizontal cylinders with vertical and horizontal confinement, the characteristic length used to define 

the Grashof or Rayleigh number is the diameter of the cylinder [43,44]. However, since there are two cylinders in our 

example, which can have different diameters, the characteristic length considered is the width of the cavity. This also 

enables two different dimensionless numbers to be obtained (�� and �	), representing the influences of each cylinder 

separately on the equivalent thermal resistance. 

The air properties are assumed to be constant and are evaluated at the film temperature (cµ�ÎE = zÏÐ#Ñ�zÒÁÓ	 ), 

which implies that the Prandtl number is constant. The heat transfer coefficients h� and h	 are also constant, h� = h	 =90	¸/6	/f, which implies that the dimensionless numbers ��, �� are also constant. Finally, the size of the rectangular 

cavity being imposed by the wing, the dimensionless number �� is constant for this study with n» = 0.26 and <» = 0.46. 

According to these assumptions, Equation (29) depends only on three dimensionless numbers: ��i = -(��, �	, rsA»∗ ). 
A LHS DOE containing 50 configurations is built to define all the configurations that have to be simulated according 

to the ranges defined in Table 6. The finite element simulations are performed in COMSOL Multiphysics using the = − Ô 

model to take turbulence phenomena into consideration. The mesh used for the finite element model contains only 2D 

triangular elements and the boundary layers are meshed according to their estimated thickness [49]. 
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Figure 16: Finite element simulation results for natural convection study of the housing: temperature field [°K] and streamlines 

for X� = ^. ���, X� = ^. ���� and }~�Õ∗ ~�^�^ 

Table 6: Ranges for the design of experiments used for the natural convection model of the EMA housing 
Variables Units Ranges �� 6 0.05 − 0.15	�	 6 0.05 − 0.15	Æ ¸/6	 100 − 1000 �� - 0.125 − 0.375	�	 - 0.125 − 0.375	rsAÇ∗  - 10± − 10��	

 

The VPLM methodology is used to generate different models, the relative errors of which are represented in Figure 

17. The selected model, corresponding to Equation (30), has a maximum relative error of 6% and an acceptable size of the 

mathematical expression. 

 
Figure 17: Relative errors of different VPLM models for natural convection of EMA housing 

 ��i = 66.8��	.±��	.±� ���(>$)��.§� ���(>?)��.�	 ���(>?) ���(>$)�		.�§��.�� ���(>$)rsAÇ∗ !�.�± (30) 

3.2.1. Comparison with other surrogate modeling techniques 

Here we compare the VPLM methodology with other surrogate modeling techniques such as Radial Basis Function 

(RBF) and Response Surface Methodology (RSM). 
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A LHS of 27 points is built according to the ranges given in Table 6 to define the configurations that have to be 

simulated. Figure 18 shows a comparison between the VPLM methodology and RSM techniques. . The RSM model is a third-

order polynomial model that uses the same number of numerical coefficients as the VPLM model. The VPLM model offers a 

better prediction capability with a simpler mathematical expression. For this case, the RBF model described by equation 

(23), gives unacceptable predication errors for the cross validation data and is not represented here. 

 
Figure 18: Comparison between different surrogate modeling techniques for the natural convection model 

 
3.3. Forced convection model of the housing 

This second thermal model of the housing concerns the forced convection cooling strategy described in Figure 11. It 

corresponds to a configuration used by aircraft manufacturers when natural convection cooling is not sufficient to reach the 

performance requirements. The air flow, coming from a duct, enters the actuator’s space through a hole located at the 

bottom of the cavity and leaves through another hole at the top of the cavity, located on the opposite side. During the 

Actuation 2015 project [50], studies conducted by ONERA and Institut Clément Ader demonstrated that this flow 

configuration should be the best to cool the actuator. Figure 19 shows the geometrical parameters and the boundary 

conditions of the study. Except for the inlet and outlet air flows, the boundary conditions used for this study are exactly the 

same as the ones used for the natural convection study. 

 
Figure 19: Geometrical parameters and boundary conditions for the EMA housing in forced convection 
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The thermal resistance of the EMA housing depends on twelve physical variables (equation (31)) and, according to 

the Buckingham theorem, may be written in dimensionless form as in equation (32). 

 
²µi = �(��, �	, k, m�, �, l, Ö, h�, h	, ��, <» , n») 

 
(31) 

 �µi = -(��, �	, ��, ��, ��, �§, us, ² ) (32) 

where: �µi = l<»²µi, �� = @?@# , �	 = @$@# , �� = Q?@#È , �� = Q$@#È , �� = wÇ@# ,�§ = AÇ@# us = {º�È  and ² = x×@#{ . The Reynolds 

number is defined using the size of the inlet and outlet orifices ��  and represents the inlet conditions (flow regime) of the 

study. The dimensionless numbers �� and �	 represent the ratio between the confinement of the actuator and the size of 

the inlet orifice. As previously, air properties and heat transfer coefficients h� and h	 are considered to be constant, which 

implies constant dimensionless numbers ��, �� and us. Finally, the size of the inlet and outlet orifices and that of the cavity 

being imposed and constant (n» = 0.26, <» = 0.46 and �� = 0.056), the dimensionless numbers �� and �§ are also 

constant for the study. With these assumptions, Equation (32) now depends on only three dimensionless variables: �µi =
-(��, �	, ² ). 

  
Figure 20: Finite element simulation results for forced convection study of the housing: temperature field [°K] and streamlines for X� = �, X� = �. ]�� and ØÕ = �. ] ∙ �^] 

An LHS containing 50 configurations was built to define all the configurations to be simulated according to the 

ranges defined in Table 7. The finite element simulations were performed in COMSOL Multiphysics using the = − Ô model to 

take account of turbulence phenomena. The mesh used for the finite element model contained only 2D triangular elements 

and the boundary layers were meshed according to their estimated thickness [51]. 

Table 7: Ranges for the design of experiments used for the forced convection model of the EMA housing 
Variables Units Ranges �� 6 0.05 − 0.15	�	 6 0.05 − 0.15	Ö 6/Ù 0.5 − 3 �� - 1 − 3	
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�	 - 1 − 3	² 	(× 10�) - 2 − 7	
The VPLM methodology was used to generate different models, the relative errors of which are represented in 

Figure 21. In this example, the benefit of the variable power coefficient is particularly clear: when only one higher order 

term is selected, the maximum relative error of the model is divided by three. The best compromise between accuracy and 

complexity of the mathematical expression of the model may be the one with two higher order terms, which brings the 

maximum relative error down to 6% (equation (33)). 

 
Figure 21: Relative errors of different VPLM models for the forced convection of EMA housing 

 �µi = l��²µi = 0.225���.��±�	.�§ ���(>$)!�.±§ ���(>?) ���(>$)�	�.��² !�.� (33) 

3.3.1. Comparison with other surrogate modeling techniques 

Here we compare the VPLM methodology with other surrogate modeling techniques such as the Radial Basis 

Function (RBF) and Response Surface Methodology (RSM). 

A LHS of 27 points is built according to the ranges given in Table 7 to define the configurations that have to be 

simulated. Figure 22 shows a comparison between the VPLM methodology and RBF and RSM techniques. The RSM model is 

a third-order polynomial model that uses the same number of numerical coefficients as the VPLM model, the RBF model 

has the mathematical expression described by equation (23). As it shown the VPLM model offers a better prediction 

capability with a simpler mathematical expression than others techniques. 
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Figure 22: Comparison between different surrogate modeling techniques for the forced convection model 

 
4. Results and discussion 

In this last section, additional possible uses of the estimated thermal models are presented. First, the thermal 

models are used in combination with other losses and magnetic models of the motor to accomplish the sizing of an aileron 

actuator for two different cooling strategies. Then they are used to analyze the impact of the confinement on the 

equivalent thermal resistance of the actuator. 

4.1. Sizing of an aileron EMA 

The models presented above are implemented in an optimization loop to accomplish the sizing of an EMA. 

Generally, during the sizing of an aileron EMA, the objective is to minimize the mass of the motor and, at the same time, 

satisfy the aircraft manufacturer’s requirements concerning actuator performance. For more details on the sizing of 

actuation systems, please follow the references [2,52]. 

For the aileron application studied here, the requirements considered are: 

1. Continuous linear force delivered by the actuator to withstand the aerodynamic forces and move the 

aileron: -i¶�P = 10	=d; 

2. Maximum reflected mass (due to motor inertia): | »µ ≤ 15	000	=o; 

3. Maximum allowed hot spot temperature for the motor: cQ¶P ≤ 150°m; 

4. Maximum allowed skin temperature for the housing: c³*�� ≤ 100°m. 

The motor torque function of its main lengths is calculated by a model described by Equation (34), which was 

obtained using the VPLM methodology in [46]. 

 mE = Ý Þ¼E�<E ∙ M2.450 × 10!§π�!�.����	�.�±����.�±���.��	 ���(>Ê) ���(>$)N (34) 
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where �� = {ßàÀÊ
¥ÏÒá  represents the saturation effects in the iron of the motor, �	 = »Ò#âÀÁ  and �� = »ÂÀÁ represent the 

non-similarity in the geometry. 

The design variables manipulated during the optimization loop are the gear reduction ratio, the current density of 

the motor and its main dimensions (diameter and length). Table 8 gives the results of the sizing conducted for the two 

cooling strategies. It is shown here that forced convection cooling enables a motor to be selected that is 18 times lighter 

than the one obtained with natural convection cooling. Moreover, the results show that, in the case of natural convection 

cooling the maximum allowed skin temperature of the housing is reached but the maximum allowed motor hot spot 

temperature is not. That is to say that the convective thermal resistance of the housing is dominant compared to the 

conductive thermal resistance of the motor. On the other hand, with forced convection cooling, the maximum allowed 

motor hot spot temperature is reached while the hot spot temperature is only approaching its allowed maximum. In this 

case, the convective thermal resistance of the housing and the conductive thermal resistance of the motor are equally 

important for the thermal behavior of the actuator. Additionally, the results show that the maximum reflected mass is 

reached for the natural cooling strategy. This evidence reveals a strong coupling between the thermal behavior of the 

actuator and its reflected mass. This last remark also explains the large mass gap between the two cooling strategies: the 

constraint on the reflected mass prevents the use of high reduction ratios, which lead to higher torque for the motor and 

thereby increased mass. This example was chosen to illustrate the importance of thermal modeling for this type of actuator. 

Other actuation systems, such as those for landing gears, are less sensitive to the thermal aspects. 

Table 8: Actuator sizing results for natural and forced convection cooling 
 Natural convection cooling Forced convection cooling (Ö = 16/Ù) 

Motor mass [kg] 4.64 0.26 

Motor diameter [m] 0.129 0.057 

Motor length [m] 0.052 0.014 

Motor hot spot temperature [°C] 104 150 

Housing skin temperature [°C] 100 91 

Reflected mass [kg] 15 000 11 590 

Geometrical shape of the housing 

  

4.2. Impact of the confinement on the equivalent thermal resistance of the actuator 

Here the estimated thermal model of the housing cooled by natural convection is used to study the impact of the 

actuator confinement on its thermal resistance. Figure 23 shows a comparison between the equivalent thermal resistance 
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of the housing calculated with the VPLM model given in Equation (30) and the thermal resistance evaluated by finite 

element simulations where only conductive heat transfer is considered in the air. As shown by Sebastian et al. [44] and 

Atmane et al. [43], the natural convection phenomenon decreases when actuator confinement increases and tends to a 

conductive heat transfer phenomenon. 

 
Figure 23: Impact of the actuator confinement on its thermal resistance 

CONCLUSION 

In this paper we have proposed a methodology, named VPLM, for building surrogate models from finite element 

simulations. This methodology, based on dimensional analysis and the response surface method, enables us to obtain 

thermal models suited to the preliminary design of Multiphysics systems. The efficiency of the VPLM methodology has been 

illustrated on different types of heat transfer problems, where it gives a simple and accurate surrogate model each time. 

The process can also be applied to other engineering domains such as magnetism and mechanics. 

The use of dimensional analysis helped to obtain more compact mathematical expressions and more accurate 

models. However, the definition of the dimensionless numbers is a crucial step in the methodology. Defining them for more 

complex applications may require a solid background in the domains involved and good physical intuition. Thus, an 

improvement of this methodology may be an additional analysis tool to guide the engineer during the dimensional analysis 

so that the most meaningful dimensionless numbers can be obtained. 

The aileron actuator application, treated in the second half of the paper, illustrates the need for compact thermal 

models in order to rapidly size the system and be able to draw important conclusions on its architecture, while the system is 

still in the early design stages. It has been shown how VPLM can efficiently answer this need, by offering simple and 

accurate “on demand” models for systems and components with atypical topologies that have not received much attention 

from the scientific community. Moreover, the estimated models offer the possibility of carrying out sensitivity analysis of 

Multiphysics systems with respect to different variables, concerning their thermal behavior.  

NOMENCLATURE 

Abbreviations 
 

Greek letters  

DA Dimensional Analysis β Thermal expansion coefficient (1/K) 
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DOE Design of Experiments Δθ Temperature difference (K or C) 

EMA Electromechanical actuator λ Thermal conductivity (W/m/K) 

FEM Finite Element Model μ Dynamic viscosity (kg/m/s) 

RBF Radial Basis Function π Dimensionless number (-) 

SLAW Scaling LAW ρ Density (kg/m3) 

SLAWMM Scaling LAW based Meta-Model ϕ Heat flux rate (W/m²) 

VPLM Variable Power Law Meta-model   

Variables  Indices  

C Torque (N.m) a air 

Cp Heat capacity at constant pressure (J/kg/K) amb ambient 

D Diameter (m) c cavity 

E Thickness (m) cd conduction 

g Gravitational acceleration (m/s²) cont continuous 

Gr Grashof number (-) cv convective 

H Height (m) cyl cylinder hj Global heat transfer coefficient (W/m²/K) fc forced convection 

L Length (m) m motor 

Mg Marangoni number (-) mix copper-resin mixture 

Nu Nusselt number (-) N Nomex 

Pr Prandtl number (-) nc natural convection 

R Thermal resistance (K/W) surf External surface of the motor stator 

Ra Rayleigh number (-) skin Skin of the actuator housing 

Re Reynolds number (-) ref Reflected 

Ri Richardson number (-) VPLM obtained by VPLM methodology 

T Temperature (K)   

U Flow velocity (m/s)   
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