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Abstract—Distributed Clouds are nowadays an essential com-
ponent for providing Internet services to always more numerous
connected devices. This growth leads the energy consumption of
these distributed infrastructures to be a worrying environmental
and economic concern. In order to reduce energy costs and
carbon footprint, Cloud providers could resort to producing on-
site renewable energy, with solar panels for instance. In this
paper, we propose NEMESIS: a Network-aware Energy-efficient
Management framework for distributEd cloudS Infrastructures
with on-Site photovoltaic production. NEMESIS optimizes VM
placement and balances VM migration and green energy con-
sumption in Cloud infrastructure embedding geographically
distributed data centers with on-site photovoltaic power supply.
We use the Simgrid simulation toolbox to evaluate the energy
efficiency of NEMESIS against state-of-the-art approaches.

Index Terms—Distributed cloud computing, renewable energy,
energy-efficient scheduling, on-site production, network-aware
migration, consolidation.

I. INTRODUCTION

The growing appetite of Internet services for Cloud re-
sources leads to a consequent increase in data center (DC)
facilities worldwide. This increase directly impacts the elec-
tricity bill of Cloud providers. Indeed, electricity is currently
the largest part of the operation cost of a DC [1]. Resource
over-provisioning, energy non-proportional behavior of today’s
servers, and inefficient cooling systems have been identified as
major contributors to the high energy consumption in DCs [2].

On-site renewable energy production and geographical
energy-aware load balancing of virtual machines (VM) al-
location can be associated to lower the brown (i.e. not re-
newable) energy consumption of DCs. Yet, combining these
two approaches remains challenging in current distributed
Clouds. Indeed, the variable and/or intermittent behavior of
most renewable sources – like solar power for instance – is not
correlated with the Cloud energy consumption, that depends
on physical infrastructure characteristics and fluctuating un-
predictable workloads. Moreover, while literature tackles this
issue, existing work often does not consider heterogeneous
VMs running over several time slots, network constraints

(bandwidth, latency and topology) of distributed Clouds, the
energy cost of turning on/off servers and of migrating VMs,
and the stochastic behavior of renewable supplies.

The main contribution of this paper is NEMESIS: a
Network-aware Energy-efficient Management framework for
distributEd cloudS Infrastructures with on-Site photovoltaic
production. The originality of NEMESIS lies in its com-
bination of a greedy VM allocation algorithm, a network-
aware live-migration algorithm, a dichotomous consolidation
algorithm and a stochastic model of the renewable energy
supply in order to optimize both green and brown energy
consumption of a distributed cloud infrastructure with on-
site renewable production. Our solution employs a centralized
resource manager to schedule VM migrations in a network-
aware and energy-efficient way, and consolidation techniques
distributed in each data center to optimize the Cloud’s overall
energy consumption.

NEMESIS has been implemented on the SimGrid toolkit [3]
using real Cloud traces. This simulator embeds accurate
energy consumption models and fine-grain VM and live-
migration abstractions. The simulation-based evaluation shows
that NEMESIS outperforms classical greedy allocations and
algorithms from the literature with a realistic workload that
comprises heterogeneous VMs and does not exhibit day/night
patterns.

The rest of the paper is organized as follows. Section II
presents related work. Section III details the employed models
and Section IV describes our NEMESIS approach. Simulation
results are presented in Section V. Section VI concludes this
work and introduces future work.

II. RELATED WORK

As their increasing electricity bill raises environmental
issues, Cloud providers resort more and more to renewable
energy sources [4]. On one hand, the renewable production can
be adjusted through the use of energy storage devices. Yet, this
solution is costly and far from ideal as these devices present
charge and discharge maximal rates, depth of discharge lower



bounds,as well as strong aging effects and non-negligible
energy losses ratios. Furthermore, green energy availability
highly depends on the data centers’ location that is fixed upon
construction.

On the other hand, Cloud providers can try to adjust the
workload to the energy production. For instance, opportunistic
scheduling aims at postponing Cloud’s workload during low-
production periods to wait for renewable energy availabil-
ity [5]. Distributed Cloud systems can perform geographic load
balancing and follow-the-sun resource management in order to
increase the green energy use [6]. It consists in scheduling the
virtual machine allocations to data centers where renewable
energy is available. Such techniques can also be combined with
consolidation algorithms that optimize the number of used
resources by migrating virtual machines (VM) and switch off
unused resources [7]. Yet, Cloud data centers are required to
provide high availability to their customers, and consequently,
parts of the workload cannot be reshaped.

While follow-the-sun and consolidation techniques can save
energy in distributed Cloud infrastructures, existing frame-
works often do not consider network constraints [6]. Indeed, as
Cloud traffic demands diversify, network resources, inside and
in-between the data centers, are often stretched to their limits
and, in many cases, become a performance bottleneck [8]. If
not carefully taken into account, network can be a major issue
for energy-efficient resource management techniques and it
can make them unfeasible in practice.

III. MODEL

In this section, we describe the considered Cloud model and
its underlying assumptions. We consider a distributed Cloud
infrastructure comprising several data centers (DC) geograph-
ically distributed and connected through an IP telecommu-
nication network. The DCs host a given amount of servers
which are homogeneous in terms of memory, number of
cores and energy consumption. On the contrary to other
works in the literature, we take into account the complete IP
network topology, i.e. the different links (with their latency
and bandwidth constraints) and their topology.

Each DC produces its own green energy thanks to photo-
voltaic panels (PV). The energy production of the PV is not
known in advance as it strongly depends on the meteorological
context of each DC. When the local green energy production
of a DC is not sufficient, the traditional, regular electrical
grid is in charge of powering the Cloud. Following the worst
case scenario, all the supply coming from the regular grid is
considered as brown energy.

The user management of the Cloud is assumed to be
centralized. At each time slot of 5min, heterogeneous VMs
(in terms of memory, CPU and execution time requirements)
are submitted to the Cloud. They will run for a given period
of time a priori known. The Cloud manager is free to locate
a VM on any server with enough resources to run the VM
(i.e. no over-commitment). The VM location can be changed
at runtime by using live migrations.

We consider four states for a server: POWERING ON,
POWERING OFF, ON and OFF. Before being ON (resp.
OFF), a server remains in the POWERING ON (resp.
POWERING OFF) state for a given fixed duration. When the
servers are ON, we assume their power consumption to change
linearly with CPU usage [9]. Each of the three other states is
associated with a static power consumption.

The power consumption of a server is the sum of a fixed
part Pidle and a second part proportional to the number nc of
running CPUs nc×Pc. It consumes electric power PON when
turning on, and POFF when turning off. The number of servers
on, at time slot t, on data center DCi, is denoted Ui(t). Thus
the static power of DCi cost is Ui(t)×Pidle. The migration of
a VM during t will consume an average power of Pc× tM

5min
during the full duration of t (i.e. 5min). Note that we assume
here that VM migrations are shorter than the duration of a
timeslot (the algorithms we propose in the following section
guarantee this point). Finally, we count the switch ON/OFF
of servers: U+

i (t)× PON + U−i (t)× POFF , where U+
i (t) =

max(0, Ui(t) − Ui(t − 1)) and U−i (t) = max(0, Ui(t − 1) −
Ui(t)).

In order to determine the migration time of a VM, we
consider the live migration model of [10]. The live migration
of a VM from a server A to a server B comprises several
steps: reservation, iterative pre-copy, stop-and-copy, commit-
ment and activation. In our migration model, we consider
the execution time of steps reservation and activation to be
negligible. For sake of simplicity, we also average the duration
of dirty-pages iterative transfers as this highly depends on the
application running on the VM. Consequently, the migration
of a VM consists in (1) transferring all the pages, (2) sending
a message to notify the end of the stop-and-copy step, and
(3) sending the commitment message. Hence, following the
TCP/IP model of [10], the time Tm to migrate a VM is equal
to: Tm = 3Lm+Sm/ρm with Sm the memory size of the VM,
Lm the latency of the route used for the transfer (equals to
13.01 times the sum of the physical latency of the links [10]),
and ρm the throughput of the transfer. The transfer throughput
can be limited by the physical bandwidth or the latency of the
route. Therefore, it is equal to: ρm = min (0.92Bm,W/2Lm)
with Bm the physical bandwidth and W = 4194304B, the
TCP maximum window size. Please, note that [10] determined
the values of the different constants of the model with rigorous
experiments made on real TCP network. We consider that the
migration requires a full core on the destination server. Thus
during the migration, as the source server still runs the VM,
both the source and the destination servers consume energy.

IV. OUR APPROACH

Our approach consists in a centralized Algorithm 1, NEME-
SIS, that operates four main steps. In the first step, further
detailed in Section IV-B, Algorithm 2 allocates waiting VMs
to servers on DCs according to the availability of servers and to
the on-site green electricity production. This algorithm mainly
focuses on allocating the VMs on the least possible number of
servers. Then, Algorithm 3 revisits decisions of Algorithm 2.



Algorithm 1: General algorithm
Allocate new VMs; (Algorithm 2)
Migrate pre-allocated VMs; (Algorithm 3)
Migrate running VMs; (Algorithm 5)
for 1 ≤ i ≤M do

Consolidate DCi (Algorithm 6)

Then, as detailed in Section IV-C, Algorithm 5 determines
migration of running VMs between data centers. Finally in
Section IV-D, on each DC, Algorithm 6 determines if some
servers can be turned off after intra DC migration.

A. Expected brown consumption computation

We first explain how to compute and forecast the brown
consumption of the Cloud. Using our server model, we can
compute the power consumption P of a DC. This electricity is
provided by both local PVs, and by brown electricity. Similarly
to [11], the PV production is modeled by a normal law
N (Egi(t), pi(t)) truncated in 0. This model is based on the
common assumption that the forecast error of PV production
follows a normal distribution [12]. Then, for any time slot, the
expected brown consumption is:

Eci(P, t) = (P−Egi(t))
Φ(P )− Φ(0)

1− Φ(0)
−pi(t)2φ(0)− φ(P )

1− Φ(0)
,

with φ(x) = 1
pi(t)

√
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1
2

(
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(
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pi(t)

√
2

))
. Details of computations are given

in [11]. Concerning the expected remaining green energy, we
obtain the following result. The expected green power used is:

EgU i(t) = P − Eci(P, t)
= P − (P − Egi(t))Φ(P )−Φ(0)

1−Φ(0) + pi(t)
2 φ(0)−φ(P )

1−Φ(0)

and the expected green power production is EgP i(t) =
Egi(t) + pi(t)

2φ(0)/1−Φ(0)

Then, the expected remaining green power is:

EgRi(t) = EgP i(t)− EgU i(t)
= Egi(t)− P + (P − Egi(t))Φ(P )−Φ(0)

1−Φ(0)

+ pi(t)
2 φ(0)

1−Φ(0) − pi(t)
2 φ(0)−φ(P )

1−Φ(0)

= (Egi(t)− P ) 1−Φ(P )
1−Φ(0) + pi(t)

2 φ(P )
1−Φ(0)

These formulas permit to compute the expected brown
energy consumption and the remaining green power for the
next time slot only. However, when allocating VMs, the brown
energy consumption needs to be evaluated over the whole
execution time. Nevertheless, evaluation on all time slots
could be too expensive to compute for very long VMs. We
thus define a parameter neval. This parameter corresponds to
the number of time slots where our algorithm evaluates the
expected power consumption for a given computation. For
example for a VM v of execution time te, we will evaluate
the brown power consumed at current time slot t and then
at neval − 1 other time slots to evaluate the global brown

extra cost related to this VM, for a given DC. We limit this
evaluation to the current day light. This evaluation does not
make sense during night as PV are not producing energy, and
our forecast model does not predict the next day weather. We
define tmax = min(tsunset, t + te) as the last time slot for
our evaluation, and tk = t+ k× tmax−t

neval
, for k between 0 and

neval−1. Evaluations over less than neval time slots are done
over all time slots, for example if te ≤ neval.

Thus, if an evaluation over many time slots is requested at
time slot t, then the algorithm will compute the brown power
consumption for many time slots. The evaluation for the next
time slot has been detailed above. For further time slots, the
power consumption of the DC will depend on tasks allocation
and migrations done in between. However, the computation of
the requested power is done based only on currently allocated
(or pre-allocated) VMs, as if no more VMs would be submitted
any more. Considering VMs finishing at previous time slot tk−
1 and still running at time slot tk, the power consumption is
computed, and the expected power consumption is determined.

B. Allocation

In the following, we say that a server is incomplete if
it is not yet fully loaded (without considering overcommit).
Algorithm 2 pre-allocates all the incoming new VMs at
current time slot. These pre-allocations are then revisited by
Algorithm 3.

Algorithm 2: Centralized VM allocation algorithm
L = sorted list of new VMs (arriving at time t) by
decreasing volume
S = sorted list of incomplete servers in all DCs by
increasing size of available number of vCPU
for all l ∈ L do

find list Sopt of servers with minimum volume v
find server s ∈ Sopt with minimum cost:
min

1≤i≤M
Eci(P

′
i + Pidle + cL[0] ∗ Pc + EON )− EP ′i

allocate l on s

Each VM is characterized by its execution time, its CPU
requirement and its memory usage. A given server can run a
VM only if CPU and memory requirements of the VM are
satisfied by this server. We define the volume of a VM as the
product of these two values.

Algorithm 2 executes a Best-Fit algorithm based on the
volume. More precisely, it orders VMs by decreasing volume
and servers of all DCs by increasing free volume, and allocates
VMs one by one on the server of minimum free volume that
can execute it. If many servers with same free volume can
execute the VM, the server with minimum expected brown
consumption cost is selected. As this expected cost is the same
for two servers of the same DC (homogeneous servers), this
implies to select the best location among DCs with servers of
minimum free volume. This is especially the case when no
incomplete server can run the VM and a new server needs to
be turned on.



The complexity of this greedy algorithm is in worst case
O(nw×nS +nw log(nw) +nS log(nS)) with nw the number
of waiting VMs and nS the number of servers over all DCs.
It corresponds to a worst case where, for all waiting VMs and
all server on, the free volume of the server is higher than the
volume of the task but it cannot run it.

The second allocation step is executed by Algorithm 3. This
second pass permit to lowered the possible negative impact of
the Best-Fit algorithm that mostly focused on volume issues.

Algorithm 3: Allocation Revision.
Order DC by increasing ERGE
Let Lti the list of pre-allocated VMs on incomplete
servers of DCi
for all DCsending in {1..M − 1} do
DCreceiving = M
Order LtDCsending

by decreasing volume
while DCsending < DCreceiving AND LtDCsending

not
empty do

for all VM t ∈ LtDCsending
do

if a server of DCreceiving can run t AND
Exp Cost with Migration <
EP ′DCsending

+ EP ′DCreceiving
then

Pre-allocate t on DCreceiving
Remove t from LtDCsending

DCreceiving −−

Algorithm 3 first orders DCs by expected remaining green
energy (ERGE). More precisely, it evaluates the expected
green energy not used before the night. This step permits to
determine the DCs that will send VMs in this process and those
that will receive new ones. VMs pre-allocated on DCs with
lower ERGE will be moved to DCs with higher ERGE. The
evaluation of ERGE for each DC is done at maximum over
neval time slots, as detailed in Subsection IV-A. In increasing
order of ERGE, DCs consider the possibility to move their
pre-allocated VMs to greener DCs by decreasing order, and
execute a Best-Fit algorithm. Algorithm 3 focuses on VMs
allocated on incomplete servers, that is, servers that could
be profitably turned off in the consolidation process. Each
VM is moved if it reduces the Cloud’s overall brown energy
consumption, based on our evaluation.

Algorithm 3 has a complexity in O(
∑
Npai log(Npai))

with Npai the size of Lti. Its complexity is thus of lower
order than the complexity of Algorithm 2.

C. VM migration

The following step of NEMESIS determines VMs migra-
tions inter DCs. This step consists in moving running VMs to
allocate them on other DCs with the objective to reduce the
brown energy consumption.

Due to bandwidth constraints, a DC can only migrate VMs
one by one. Thus, the amount of VMs a DC can send in a
single time slot is bounded by the sum of migration times.
In addition, both DCs have to be synchronized during the

migration time. Thus, if many DCs send VMs to the same
DC, they can not communicate during the same time.

Algorithm 5 first lists the VMs to migrate for each DC,
denoted List to migratei. For this step, we first order VMs
running on DCi by decreasing remaining execution time. The
first VMs are added to the list until the sum of migration
times reaches the duration of the time slot. As migration are
done one by one, there is no need to consider more VMs for
migration. As in Algorithm 3, the DCs with lower ERGE will
send VMs to DCs with higher ERGE. For given receiving
and sending DCs, VMs are ordered by decreasing volume
and allocated one by one if some servers can host them, if
the expected brown power consumption is reduced and if the
migration time constraints are fulfilled as illustrated in the
example of Figure 1.

Fig. 1: Example of VM migrations with 5 DCs

To simplify the synchronizations, we limit each DC to send
VMs to only two DCs during a time slot, or to receive VMs
from only two DCs. For given receiving and sending DCs,
we determine the VMs to migrate and the migration date.
Migrations are done consecutively in the same time interval.
The pair of sending and receiving DCs are determined as
follow. First, worst DC DC1 sends VMs to the best DC DCM .
Then, if some VMs remain to migrate, DC1 sends VMs to
DCM−1. In the following, if last migration from DCi is done
to DCj , then VMs from DCi+1 will be migrated first to DCj ,
and then to DCj−1.

Algorithm 4: Compute tlimit and tsend (for Algo-
rithm 5)

tlimit = tsend;
forward = 1− forward;
if forward = 1 then
tsend = 0;

else
tsend = ∆t;

For given receiving and sending DCs, the time interval
is determined by variables tlimit and forward. If forward
equals 1, tasks migrations are scheduled between time 0 and
tlimit, and between tlimit and ∆t in the other case. Then,
tsend corresponds to the bound for the next task migration. If
forward equals 1, first task migration occurs at time 0 and
tsend is the time of the end of the last scheduled migration.



If forward equals 0, we start at the end of the time slot. The
first allocation of a migration is scheduled to finish at time ∆t
and tsend corresponds to the beginning of the last scheduled
migration.

Algorithm 5: Migration algorithm
1: Order DC by increasing ERGE
2: Create lists List to migrate
3: DCreceiving = M ; DCsending = 1;nreceive = 0
4: tsend = 0; tlimit = ∆t; forward = 1;
5: while DCsending < DCreceiving do
6: Order List to migrateDCsending

by decreasing
volume;

7: Compute tlimit and tsend;
8: Determine migration decisions;
9: if migration decision then

10: nreceive + +;
11: if List to migrateDCsending

is not empty then
12: DCreceiving −−;
13: nreceive = 0;
14: Compute tlimit and tsend;
15: Determine migration decisions;
16: if migration decision then
17: nreceive + +;
18: DCsending + +;
19: if nreceive = 2 then
20: DCreceiving −−;nreceive = 0;

Finally, Algorithm 5 is designed as follows. It first orders
DCs by increasing ERGE, and creates a list of VMs to
migrate. Then, it considers DCs one by one in increasing
order of ERGE (from the minimum green energy available to
the maximum). For each DC, it considers a first DC where
to send VMs. Then, in decreasing order of VM volume,
it determines if the migration is possible (if a server can
run it and if migration time is available) and preferable (in
terms of brown power consumption). After all VMs of the
list are examined, the same is done with a second receiving
DC. This is done until all DCs have been considered for
either sending or receiving. Algorithm 5 has a complexity in
O(
∑
Nri log(Nri)) with Nri the number VMs running on

DCi.

D. Consolidation
In the consolidation algorithm, Algorithm 6, the objective is

to turn off the maximum possible servers through migrations
intra DC. This algorithm executes independently on each DC.
It first orders servers by decreasing empty volume. It then tests
if the first servers can be turned off. In order to determine the
number of servers to turn on, it executes a dichotomy on the
number of servers. Then for any number of servers, it selects
all VMs on these first servers, and tries to allocate it by a Best-
Fit algorithm on the remaining servers. For |L| incomplete
servers, it first tries to turn off k = b|L|/2c servers. Then, k
is increased if a solution exists and decreased in the other case.
The algorithm continues until the optimal decision is decided.

Algorithm 6: Consolidation on each DC
Order list L of incomplete servers by decreasing empty
volume
k = b|L|/2c; i = |L|; sol = true
while i >= 2 do
i = di/2e
if sol then
k+ = i

else
k− = i

if VMs on the k first servers of L can be allocated on
the |L| − k last ones then
sol = true

else
sol = false

if sol=false then
k −−

Allocate VMs on the k first servers of L on the |L| − k
last ones
Turn off the k first servers

Algorithm 6 has a complexity in O(Nsi log(Nsi) +
log(Nsi)(Nri log(Nri) +NriNsi)) with Nsi the number of
incomplete servers of DCi. Finally, NEMESIS has a simplified
coarse-grain complexity in O(nS×nVM log(nw×nVM ) with
nVM the number of running and waiting VMs at current
time slot, and nS the number of servers on. As shown in
this section, this value is a large overestimate of the real
complexity.

V. VALIDATION

A. Experimental setup

We evaluate the performance of NEMESIS through a mod-
eling an simulation process. We use the SimGrid simulation
framework [3] to perform our experiments with real-world
IaaS Cloud and PV traces. SimGrid is a versatile platform
(i.e. it can be used to study cluster, grid, peer-to-peer, Cloud,
wide/local-area networks, . . . ) dedicated to the scalable simu-
lations of distributed applications and platforms. It is grounded
on sound simulation models (of CPUs, TCP/IP networks,
VMs, and energy consumption) which are theoretically and
experimentally assessed by numerous scientific works. Using
these models, SimGrid accurately simulates the resources
usage (i.e. CPU and bandwidth sharing), the execution time
and the energy consumption of a distributed application code
– NEMESIS in our case. In our experiments, we study a Cloud
infrastructure with characteristics equivalent to the French
experimental testbed Grid’5000 [13]. Thus, our Cloud com-
prises a total of 1,035 servers spread across 9 geographically
distributed DCs. The DCs are linked together thanks to 10
Gigabit IP links. Inside each DC, the servers use 1 Gigabit
Ethernet links.

The characteristics of each server are based on the Taurus
servers of Grid’5000. These servers are equipped with 2 Intel



Xeon E5-2630 CPU with 6 cores each, 32GB memory, 598GB
storage. To determine the power consumption of each node,
we implement the power model of [9] that is based on real
measurements made on Taurus nodes. These measurements
notably state that a Taurus server consumes 8W when powered
OFF, 97W when idle, and 220W at 100% CPU load. Moreover,
with this model a server consumes 200W during 10 seconds
when powering off, and 127W during 150 seconds when
powering on.

We use the Eucalyptus IaaS Cloud traces of [14] that
combines the traces of six different real production systems.
It consists in the list of VM arrival times, required numbers
of cores and execution lengths. We assume all the VMs to
require 2Go of RAM per required core (following the typical
characteristics of T2 VM instances of Amazon EC2 [15]). This
workload trace spans over one week. We scale the workload
to 80% of the total computing capacity of the Cloud. For
the VMs to be always deployable in our Cloud, we limit
the maximum number of cores a VM can requires to 6. The
simulated workload is not a favorable scenario for on-site
PV production as it does not follow a day/night pattern with
reduced workload during nights when green production is null.
Such an unfavorable workload is typical of IaaS Clouds [14]
and thus, represents a realistic scenario. As these Cloud traces
do not contain the CPU utilization over time of each VM,
we assume that during its entire duration, each VM uses its
allocated CPU resources at maximum. This constitutes the
least favorable case from an energy point-of-view as it is the
most consuming scenario.

We use real recordings of green power production collected
by the Photovolta project [16] of the University of Nantes.
These data correspond to the power produced by a single
Sanyo HIP-240-HDE4 PV panel (with a total power of 5,52
Wc and a surface of 5.52m2) updated every five minutes over
one week. In order to have heterogeneous trajectories between
DCs (and thus to represent solar irradiance differences between
sites spread across a country), we select recordings starting
at different dates. For each DC, the number of PV panels is
dimensioned to have one PV for 3 servers and PV signals are
scaled accordingly.

The controller implementing NEMESIS runs at each time
slot of five minutes. It records all the amounts received
from the green power sources during the current day. The
controller computes at each time slot the standard deviations
pi(t) using this history. Following our approach in [11], our
implementation of NEMESIS computes each expected green
power production Egi(t) by averaging a reference green power
production trajectory (the Photovolta project recording of the
20th August 2013 in our case which is the day with the best
yield) scaled according to the last green power production
received from i.

We compare NEMESIS performance against four ap-
proaches of the literature:

• Round-Robin distributes the VMs fairly among the DCs
regardless of their green power production;

• First-Fit deploys each VM on the first (according to an
arbitrary predefined order) DC which can host it.

• Modified Best Fit Decreasing (MBFD) [17] is a ref-
erence approach for reducing power consumption in
Clouds. It relies on a decreasing best-fit algorithm to
allocate incoming VMs and to perform consolidation of
running VMs. The consolidation consists in performing
live migrations of VMs that run on underused servers (i.e.
servers that have less than 50% of CPU used) and shutting
down these servers to save energy. On the contrary to
NEMESIS, MBFD does not take into account the network
constraints and the local green power productions. The
remaining execution time of the VMs and the energy
cost of the live migration are also not considered when
migrating a VM.

• OOD-MARE [18] is another approach from literature
consisting in allocating the incoming and running VMs
according to the current local green power productions.
With this approach, a Most Available Renewable Energy
(MARE) algorithm deploys the VMs on the DC that has
the highest amount of available green energy. According
to an Optimal Online Deterministic (OOD) policy, the
running VMs that start consuming brown energy are
sequentially re-allocated using live migrations. On the
contrary to NEMESIS, OOD-MARE does not rely on
green production forecasts and does not perform intra-DC
consolidation. It also does not consider the VM remaining
execution time when performing live migration. Finally,
the energy cost of these live migrations is neglected.

Like NEMESIS, these algorithms firstly employ servers
already ON, and switch OFF those who are idle. As the
performance of First-Fit and MBFD strongly depends on
the order of the DCs, we test two opposite configurations
corresponding to the best and the worst possible contexts.
To define these contexts, we sort DCs according to the total
amount of on-site green energy they provide. The best (resp.
worst) context corresponds to the case where the PV traces
are sorted in a decreasing (resp. increasing) order.

B. Results analysis

We simulate the Cloud behavior over one week. Table I
shows the total cumulative energy consumption. We can see
that NEMESIS consumes significantly less brown energy than
the other approaches: at least 3.18%, and 13.26% maximum. It
also slightly reduces the overall (i.e. brown and green) energy
consumption.

As they do not take account of the local energy productions,
First-Fit and MBFD have very variable performance depending
on the scenarios considered : between the worst and the best
scenarios the brown energy consumption differs of around 1
MWh. It is worth noting that MBFD has the highest overall
energy consumption despite being designed to save energy.
This is caused by its consolidation strategy that performs too
many VM live migrations and neglects their energy cost. Thus,
the energy consumed by the live migrations is more important
than the energy saved by powering OFF the servers. Moreover,



as MBFD does not take into account network constraints, it
performs too many simultaneous migrations. These migrations
compete for the network bandwidth, and take then significantly
longer to terminate. As a consequence, the energy costs due
to migrations is increased.

TABLE I: Total cumulative energy consumption in the
best/worst contexts (if different). The differences with NEME-
SIS are in parenthesis.

Approaches Overall consumption Brown Consumption
NEMESIS 17.6 MWh 11.6 MWh

OOD-MARE 17.9 MWh (1.6%) 12 MWh (3.2%)

MBFD best
18 MWh (1.9%) 12.2 MWh (4.47%)

worst 13.3 MWh (13.9%)

First-Fit best
17.7 MWh (0.7%) 12 MWh (3.4%)

worst 13.2 MWh (13.3%)
Round-Robin 17.8 MWh (1%) 12.4 MWh (6.9%)

Figure 2 shows the simulated power consumption over time
of each DC in the Cloud using NEMESIS. As expected,
NEMESIS uses in priority the DC that has the highest power
production (e.g. Grenoble and Rennes DCs). We can also
observe that the consolidations significantly lower the power
consumption of the concerned DC. For instance in the DC of
Rennes, a consolidation of 22 VMs occurs at time 344,100
sec and lower the consumption of about 500 W.

Figure 3 shows the contributions of the three main algo-
rithms constituting NEMESIS: Algorithms 3 (migration of pre-
allocated VMs), 5 (inter-DC migration of running VMs) and 6
(consolidation). We measure the improvement given by an
algorithm by disabling it and checking the resulting increase
in the total cumulative brown energy consumption. We can
see that the energy consumption (both brown and global) is
mainly reduced by live migrations of VMs to other DCs (i.e.
Algorithm 5). The two other algorithms have only a limited
positive impact on the energy consumption. This simulation-
based validation shows promising results considering it em-
ploys a non-favorable workload for solar energy production
(i.e. not exhibiting day/night patterns).

C. Comparison with a theoretical lower bound

Considering that our scheduling problem is NP-hard, an
optimal off-line solution cannot be computed in reasonable
time. However, to provide indirect guarantees, we compute
a theoretical (i.e. unreachable) lower bound for the total and
brown energy consumption. To compute this lower bound, we
consider a simpler problem where all the servers and energy
productions of the Cloud are grouped in a single DC. We
also neglect the delays and energy cost of VM migrations.
Each time a VM starts or stops, we reallocate all the running
VM to the servers using a best-fit decreasing algorithm. We
employ in priority the servers that are powered ON, and we
switch off all the idle servers. We found a theoretical lower
bound of 10.62 MWh (resp. 17.2 MWh) for the brown (resp.
total) energy consumption. The brown power consumption
of NEMESIS is then 9.56% above this unreachable lower
bound. This experiment demonstrates that the brown power

consumption of NEMESIS is less than 9.56% above the
optimal solution.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose NEMESIS, an energy-efficient
IaaS resource management framework to cope with distributed
Cloud infrastructures with on-site PV production. As major
Cloud providers resort more and more to solar energy, practical
and realistic solutions are needed to optimize both the green
and the brown consumption of DCs.

Our approach combines greedy resource allocation, inter
DC network-aware live-migration, intra DC VM consolidation
and PV production prediction algorithms. To the best of our
knowledge regarding the state of the art, our work differs from
the literature on the following points: 1) we deal with network
constraints when performing VM migrations, 2) we rely on an
original stochastic model to predict brown energy production,
3) we take into account on/off switching costs and delays.

In the simulation-based evaluation, we consider a realis-
tic context as we use (1) real workload trace, (2) existing
cloud infrastructure, (3) real photovoltaic power productions
traces, and (4) an energy consumption model that is based
on real wattmeter measurements. Moreover, our simulations
are grounded on the SimGrid models for CPU usage, TCP/IP
networks and VM live migrations that have been validated by
numerous scientific works. That is why, despite the inherent
limits of simulation, we can put a high confidence on our
simulation results.

Despite a very unfavorable context with a workload that
does not follow a day-night pattern contrary to photovoltaic
power productions, the results show that significant amounts
of energy can be saved with NEMESIS compared to classical
allocation and consolidation algorithms from literature. The
gains become more important when comparing our solution
with the algorithms currently deployed on real production sys-
tems —-i.e. round-robin consumes 6.9% more brown energy
than our solution whereas first-fit consumes between 3.2% (in
an ideal configuration) and 13.3% more brown energy. Other
algorithms from the literature also perform well (i.e. OOD-
MARE), but NEMESIS is able to save a bit more energy (the
1.6% and 3.2%). We also examine the contribution of each
NEMESIS component to the overall energy gain.

Our future work includes dealing with heterogeneous
servers and studying the scaling properties of NEMESIS by
increasing the number of DCs. But, it will require to find
real Cloud workload traces in order to further validate our
framework and convince Cloud providers to implement it.
We also considered only independent VMs in this work. We
plan to extend our proposal to take account of multi-VM
applications and their QoS constraints that may limit the VM
deployment and migration in the Cloud.
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Fig. 2: Power consumption per DC with NEMESIS.
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Fig. 3: Decrease in the energy consumption induced by the
different algorithms composing NEMESIS.
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