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Abstract—Reducing the massive amount of energy consumed
by cloud datacenters becomes of major importance. In the
usual approach where resources are consolidated into fewer
servers in order to power down the others, it still remains pe-
riods of time when servers are not fully utilized. Consequently,
it exists unused resources that are not exploited although
they could be used to execute applications compatible with
the variable availability of these resources. In this work, we
propose a cloud system where the Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS) layers interact to find
execution trade-offs that exploit the unused resources at IaaS
level. PaaS users are involved in the energy optimization by
proposing to delay their executions and adapt resource sizes in
order to fit with the available unused resources. Our evaluation
by simulation is based on real data and expresses a realistic
large scale cloud scenario. Results show that according to the
proportion of energy-aware users, this system is able to reduce
the amount of servers by using resources that would have been
wasted otherwise. Therefore, our solution allows datacenters to
consume less energy than with usual resource managers where
all applications start their execution at submission time with
their initial resource size.

Keywords-Cloud computing; Infrastructure-as-a-Service;
Platform-as-a-Service; energy

I. INTRODUCTION

Estimations show that by 2030 the energy consumed by
datacenters will represent 13% of the worldwide energy
consumption [1]. Due to climate change and the increasing
success of Internet services, priorities should be given to the
reduction of their energy consumption.

In cloud computing, studies have been conducted to
increase datacenters energy efficiency [2]. Their efforts
focus on optimizing energy consumption at Infrastructure-
as-a-Service (IaaS) level, as it is closer to hardware re-
sources than the Platform-as-a-Service (PaaS) layer, and
thus closer to the electricity consumption itself. However,
several studies already showed that higher energy savings
are possible when enhancing interactions between these two
cloud layers [3], [4]. IaaS knows about the availability of
hardware resources and can deliver energy-related infor-
mation that could help the PaaS layer to make energy-
aware decisions. In return the PaaS layer could inform IaaS
providers on users’ applications flexibility in order to help
the consolidation process. Typically, when PaaS users ask
for virtual resources, requested resources are made available

as soon as possible. However, some users could accept
their request to be handled differently if it saves energy
by either delaying the deployment or changing the size
of the requested resources (and consequently the duration).
While this approach is not compatible with applications
that continuously execute (web jobs), time-bound scientific
applications could exhibit flexibility on starting time and
resource size as long as results arrive before a deadline and
if total cost does not increase. This scenario is realistic as
scientists running HPC applications are looking at clouds as
a cost effective alternative to HPC [5].

Our objective is to reduce IaaS datacenter energy con-
sumption with a cooperation allowing PaaS to express the
flexibility of its applications and IaaS to inform on when
and how many resources are predicted to be unused. This
way, energy savings are achievable by shifting and resizing
some applications on these otherwise unused resources.

Our proposition is a PaaS-IaaS co-design that offers to
PaaS users energy-efficient execution trade-offs. This co-
design allows users to decide the flexibility level they agree
to give to their execution. Our evaluation by simulation,
based on real datacenter traces and real application execution
logs, shows that when all users deploy applications that are
flexible in time and size, it is easier for IaaS providers
to allocate resources to applications without the need to
power up additional servers. Up to 5.49% of energy is saved
compared to a scenario already consolidating the workload,
powering down unused servers and where all users prefer
their application execution to start at submission time.

The rest of the article is organized as follows. Section II
presents the context and list the assumptions. The system
architecture is described in Section III and evaluated by
simulation in Section IV. Discussion on limitations is given
in Section V. Section VI discusses the related work. Finally,
we conclude in Section VII.

II. CONTEXT AND ASSUMPTIONS

In this study, we consider a PaaS cloud with users de-
ploying scientific applications. These applications are CPU-
intensive, execute in a single Virtual Machine (VM) and
have a finite execution time. Applications with a continuous
execution (i.e. web application) are not considered here as



Figure 1: Example of a server’s Resource Availability fluctuating
according to the arrival and departure of resource reservations.

they cannot be delayed or changed in size without impacting
users’ satisfaction.

The PaaS negotiates with multiple IaaS providers to
provide virtual resources to its users. We assume that PaaS
users can choose to be tolerant to delaying their application
execution. This flexibility in time has a limit defined in the
PaaS Service Level Agreement (SLA) as the time window
(TW ). Its value defines the maximum number of hours the
execution of an application can be delayed. As application
executions can be delayed, we assume that IaaS resources
can be reserved in advance (within TW ).

VMs have a fixed size in terms of vCPUs, RAM and
disk usage (called flavor), that remains unchanged during
their lifetime (no dynamic resource scaling). However, here
we simplify the problem by defining flavors only by their
number of vCPUs, the most important component for CPU-
intensive applications.

VMs energy consumption can be estimated in advance
and computed more precisely after their execution. For this
calculation to be possible, we make the assumption that
IaaS providers know the power profile of their servers. IaaS
providers optimize reservation placements with an alloca-
tion algorithm that targets the use of a minimum number
of servers. In addition, each provider tries to reduce its
energy consumption by shutting down unused servers [2]
and putting them back online when required.

Based on utilization traces and because workloads tend to
repeat themselves over time (usually on a daily basis), we
assume that IaaS providers can predict the workload of their
servers [6]. The load is defined as the amount of reserved
vCPUs per server. Additionally, the power state of each
server is also known. In other words, it is possible to record
when servers are online or not (powered up/down) during
the day, thus providing information on when resources are
active or not. With this, it is possible to compute the per-
server Resource Availability (RA). This value represents the
amount of unbooked vCPUs when servers are powered up.
As shown in Figure 1, RA fluctuates from 0 to the vCPU
capacity of the server according to the arrival and departure
of resource reservations. When RA reaches 0, it is either
because the server is powered down or because all vCPUs
are allocated. When all vCPUs are available, it means the
server is not used. In this case, the server is powered down,
thus making resources unavailable (RA falls back to 0 at
the end of Figure 1).

Additionally, we make the following assumptions:

Figure 2: Possible scheduling (execution contracts) of an 8 vCPUs
application in an infrastructure with 2 servers and 3 VMs. Starting
the application at submission time (C1) requires to turn on server
2. Delaying (C2) or changing the size (C3) can avoid the need of
server 2, thus saving energy.

• users know the execution time of their applications
for each VM flavor. Typically, scientific applications
are CPU-intensive and executed multiple times, so
users can conveniently know their execution duration
depending on the vCPUs number and the data input
size. Moreover, predicting application’s execution time
for varying number of vCPUs in the VM configuration
has been shown to be possible [7] ;

• each IaaS provider has its own incoming workload in
addition to the one induced by the studied PaaS ;

• virtual resources are given for a specific duration and
are released at the end of this period ;

• requested virtual resources are considered to be fully
booked, regardless of whether the application really use
them or not. CPU overcommitment is not considered.

III. PROPOSITION

A. General Idea

In this work, we propose to benefit from the exchange of
information between PaaS and IaaS layers, as well as the
users’ willingness to change resource size and to delay their
application execution in order to achieve energy savings.

The general idea to achieve energy savings is presented
in Figure 2. Based on the RA information, IaaS providers
are able to propose to their users execution contracts (EC)
with a delayed execution in order to fit with the avail-
ability of resources. An EC corresponds to a spatial and
temporal placement of a VM on servers that stays within
the maximum TW hours tolerated delay. Orange rectangles
in Figure 2 depict three different ECs consuming different
amounts of energy. Two servers owned by an IaaS provider
host a total of three VMs. Server 1 is able to host all VMs,
which explains why server 2 remains powered down. A user
desires to execute her 8 vCPUs application for a duration of
30 minutes. When the VM request occurs, the only way
to execute the application directly is to power up server



Figure 3: Detailed system architecture with the components of both
cloud layers and the interactions between them and the end-user.

2 (App[C1]). This is the most energy consuming contract.
Delaying the execution of the application of about 1 hour
avoids to use server 2 (App[C2]) and reduces the energy
consumption. It is also possible to execute the application
at submission time without powering up the second server
by changing the size to 4 vCPUs (App[C3]). In this simple
use-case, we consider that attributing half of the requested
vCPUs doubles the execution time of the application. This
third contract has the same energy cost as the second contract
but execution results are available sooner.

B. System Architecture Overview

In this section, we present the architecture of our system.
Details on each component are provided in the following
sections. The complete system architecture is presented in
Figure 3. Each step of the overall process given in the
following list is linked to the labels attached to the figure:

1) a user sends a request to the PaaS provider to execute
her application ;

2) the PaaS provider sends several requests adjusted to
the user flexibility to multiple IaaS providers ;

3) each IaaS provider proposes an EC for each request
it received ;

4) the PaaS provider filters the ECs based on their en-
ergy cost and delay in order to propose three contracts
to the user ;

5) the user selects the contract she wants to execute her
application with ;

6) the PaaS provider informs the corresponding IaaS
provider that its contract has been selected ;

7) this IaaS provider plans the execution of the applica-
tion in a VM as defined in the EC.

PaaS users send the following details: the application, the
size S in number of vCPUs (within the available flavors
listed in Table I), and a table of execution lengths according
to each possible size (D[S]).

In a previous work [8], we already showed that proposing
to IaaS users to variate their resource size helps to reduce

datacenters energy consumption. Here, the PaaS provider
acts like an IaaS user and sends 4 different execution
requirement (ER) requests to its collection of known IaaS
providers:

• asks for a VM with S vCPUs (flavorbase) for a
duration of D[flavorbase.cpu] seconds without delay
(as soon as the application submission arrives) ;

• asks for the same size and duration but allows a
maximum delay of TW hours ;

• asks for the flavor one step larger than flavorbase for
a duration of D[flavorbase+1.cpu] seconds within a
maximum of TW hours delay ;

• same as previous requirement but with a flavor
one step smaller than flavorbase and a duration of
D[flavorbase−1.cpu] seconds.

This mechanism, handled by the trade-off size/duration
component of our architecture, is based on the duration table
given by the user.

Whenever an IaaS provider receives an ER request, its
consolidation component searches in its collection of servers
for the most energy efficient EC. If no delay is tolerated, it
searches for a server with just enough available vCPUs at the
current time. This is a bin packing problem. We use a greedy
algorithm that gives priority to servers that are already active.
The scheduling is optimized in order to have the highest
amount of reserved vCPUs on the server. It avoids small
VMs to “pollute” servers with large free spaces that could
be used by larger VMs. If there are not enough available
vCPUs on active servers, the system powers up a new one.

If delay is tolerated, the system uses the resource avail-
ability component that allows to know the availability of
unused vCPUs in the next TW hours. It provides the delay
value of a possible time slot for a VM of the requested size
that stays within the tolerated deadline. If no time slot can
be found, the process informs the PaaS layer and falls back
to a scheduling where no delay is tolerated. More details on
the resource availability are given in Section III-C.

Each EC comes with an estimation of the VM energy
cost. This estimation is based on the power profile of servers,
the VM size and its duration. Details on this calculation are
given in Section III-D.

The consolidation component may find several ECs for
a single ER request. Instead of sending them all to the
PaaS layer, each IaaS provider executes a first filtering
round to only send the most relevant. Contracts are projected
in a graph plotting the energy prediction for the various
delay. Data normalization is used in order to have axes with
equivalent weight. We select the contract with the shortest
Euclidean distance with the (0, 0) coordinates because this
is the one with an equally balanced trade-off between delay
and estimated energy cost.

To summarize, IaaS providers include in their EC
the starting time tstart that is between tsubmission and



tsubmission + TW and the energy EVM that the VM is
estimated to consume.

For each ER request sent by the PaaS, IaaS provider
that has been contacted submits its proposition of EC. At
this stage, the contract filtering component selects the most
energy-efficient EC received for a given ER. It searches
for the contract that is the most equally balanced between
delay and energy consumption. This filtering feature is the
same as the one used for the first filtering round executed
at the IaaS layer (trade-off between delay and energy).

Finally, end-users are given a choice between three ECs
where they can choose the one they prefer:

C1: application execution starts at tsubmission without
changing the requested amount of resources ;

C2: application execution is delayed of up to TW hours
and the requested resources are not changed ;

C3: application execution is delayed of up to TW hours
and the given resources are one size larger or
smaller than originally requested.

Each EC displays its starting and completion time (tstart+
D). Delayed contracts (C2 and C3) display the percentage
of energy they save in comparison with the contract starting
directly (C1). A percentage of energy saved is provided
instead of real values given by IaaS providers because
revealing real values could break the separation of concerns
between cloud layers. In the case of C3, it is also required
to show the new resource configuration.

Each EC is valid for acceptance during a certain amount
of time (few minutes) defined in the IaaS SLA as the user’s
response time. The PaaS user has to select the contract
that suits the most her need within this time. All contracts
that are not accepted within the allowed response time are
released. Her choice is made in terms of execution time
and depending on her motivation in reducing her impact on
energy consumption. When an EC is accepted, the PaaS
layer informs the corresponding IaaS provider to schedule
the VM creation. If the selected contract is still valid, the
IaaS provider executes two actions: the VM creation is
scheduled at time tstart as specified in the EC and resources
taken by the VM are removed from the RA schedule
(resources pre-allocation). Updating RA is required because
the resources that have just been pre-allocated will not be
available when the VM will be created. In the case where
the selected contract is not valid anymore, the PaaS has to
restart its negotiation.

At time tstart, the VM creation component creates the
VM on the server given by the consolidation component.

Next, we detail each component of our architecture.

C. Resource Availability Management

The resource availability informs on when the vCPUs of
a server are expected to be available over time based on its
historical workload. The computation of RA is based on the
IaaS incoming workload excluding the PaaS workload.

Each IaaS provider generates a RA prediction for each
server it owns. A per-server RA differs from a RA at the
datacenter’s level because it allows to know the largest VM
a server can host. As an example, with an aggregated RA
at infrastructure level, when 10 vCPUs are predicted to be
available, it is impossible to know if it is 5 servers with
2 available vCPUs each or a single server with 10 unused
vCPUs.

Each time a VM is instantiated or removed from a server,
the new amount of vCPUs that are available on this server is
recorded. We define ns as the total number of vCPUs on a
server s and the function usages(t) that returns its number
of vCPUs reserved at time t. The RA function can then be
defined as: RA(t) = ns − usages(t).

The consolidation algorithm goes through the RA of each
server in order to find a time slot for a requested VM. A
valid time slot corresponds to a period of time in a server’s
RA when at least S vCPUs are available for a duration of
minimum D[S] seconds. At first, the algorithm searches on
each server for time slots with an availability duration that
is the closest to the application duration. Then, following a
greedy algorithm, in this sub-list of possible time slots, only
the one with the smallest difference between the amount of
available vCPUs and the requested size S is retained. This
time slot, along with its energy estimation cost (described in
Section III-D) are included in the EC returned to the PaaS.

An IaaS provider has to update the corresponding server’s
RA when one of its proposed contract is selected, because of
resources pre-allocation. The amount of vCPUs at the time
slot specified in the contract is subtracted from the vCPUs
that were predicted to be available. The RA schedule evolves
over time as contracts are accepted.

D. Execution Contract Energy Estimation

In order to let the PaaS layer know which contract is the
less energy consuming, each EC includes an estimation of
the VM energy cost.

Our VM energy estimation is the sum of two parts. The
first one is a portion of the idle energy consumption of the
server. This energy is shared with the VMs currently hosted
on the server according to their size. The second energy
value is the maximum dynamic energy that the VM can
consume. The dynamic energy is based on the application
execution duration, the requested number of vCPUs and the
power consumption of a single vCPU. We consider this
CPU-based power model because the processor is known
to be the most energy consuming component of servers [9]
and this work targets CPU-intensive applications. If a server
needs to be powered up for a VM, this energy cost is not
included in the VM energy calculation.

This energy estimation requires two power values for a
given server s: P s

idle and P s
CPU . P s

idle is the power consumed
by a server while not being used (i.e. not hosting any VMs)
and P s

CPU is the power consumption of 1 vCPU used at



its maximum capacity. Power consumption values can be
measured with wattmeters attached to the servers. P s

idle is
reached each time there are no VMs running on the server.
The measurement of P s

CPU relies on P s
max the maximum

consumption with all vCPUs. The calculation of the CPU
power is defined as follows:

P s
CPU = (P s

max − P s
idle)/ns (1)

Following, the equation to calculate the idle energy con-
sumption of a VM.

EVM
idle = P s

idle ×
∫ tstart+D[S]

tstart

S

ns −RA(t) + S
dt (2)

The ratio refers to the requested number of vCPUs (S)
over the total number of allocated and requested vCPUs. It
reaches its closest value to 0 when the smallest VM size
runs in a fully used server, and equals to 1 when any VM
size is running alone on the server. The integral gives the
average ratio over the VM lifetime.

The maximum dynamic energy the VM is expected to
consume is calculated with: EVM

dyn = P s
CPU × S ×D[S].

Finally, the total amount of joules a VM is estimated
to consume corresponds to the sum of idle and dynamic
energies: EVM = EVM

idle + EVM
dyn

The power estimation component allows to have an esti-
mation of the VM energy consumption. However, this esti-
mation can differ from the energy consumed after execution.
As a matter of fact, the ratio used when calculating EVM

idle

evolves according to the update of the RA(t) function.
Therefore, it causes the energy cost to be sometimes over-
estimated.

IV. EVALUATION

A. Experimental Setup

To validate our approach a simulator has been developed.
The simulated PaaS application is the Montage scientific
application (detailed in Section IV-A2) that is executed on
real VMs of all possible sizes in order to get the different
execution time lengths. Our system considers the flavors
listed in Table I. It is based on the types of instances that can
be found on the Amazon EC2 platform. Finally, workloads
used at both IaaS and PaaS levels are traces from real cloud
systems (detailed in Section IV-A3). They define the starting
time, the size and duration of each VM.

Table I: List of VM flavors considered in the simulator with their
Amazon EC2 hourly pricing for the EU Paris region.

Flavor vCPU (S) EC2 cost
t2.small 1 $0.0264/h
c5.large 2 $0.101/h
c5.xlarge 4 $0.202/h
c5.2xlarge 8 $0.404/h
c5.4xlarge 16 $0.808/h

1) Server Model: Simulated servers are based on real
servers that we use to run our scientific application. These
servers, provided by the Grid’5000 platform [10], are Dell
PowerEdge R430 with 16 cores, 64GB of memory and
600GB of disk and equipped with fine-grained wattmeters.
They have an average Pidle of 75.83W and consume 8.81W
when powered down. The originally measured Pmax was
174.04W. However, IaaS servers are usually of a larger size
in order to host an important amount of VMs. To account for
this in the simulator, we double the number of CPU cores per
server to 32. Pmax is adapted accordingly to 272.25W. Based
on Eq. 1, PCPU is 6.14W. Finally, we also measured energy
of on/off state transitions that are respectively 4.92Wh (143
sec) to power up and 0.11Wh (6 sec) to power down. In our
evaluation, this server model is used by all IaaS providers.

The number of servers per IaaS, shown in Table II, is
defined in order to handle the peak usage of resources
defined by their workload.

2) Scientific Application: To load our PaaS cloud with
realistic scientific applications, we use Montage [11] which
is CPU-intensive. Montage is a toolkit for assembling images
into custom mosaics specialized for astronomical images.
By giving a space location and a high/width (in angular
degrees), it downloads all the images from its servers that
match with the given space area. Then, it detects similarities
between all images and finally generates an image of the
space area.

Figure 4: Execution time, hourly price and prorated price of
Montage in all possible VM sizes.

In a preliminary experiment, we execute Montage in VMs
of all possible sizes hosted on a real server. We build a
specific Montage VM image optimized to be CPU intensive.
This image contains the required input images and has a
Montage installation using MPI in order to benefit from all
available cores. This is a common PaaS behavior to have
several VM images, each of them specialized for specific
executions [12]. Figure 4 presents the execution time (D[S])
of Montage for each VM size. It also shows the price it
would cost to execute it on Amazon EC2 instances in an
hourly basis (pay for a full hour, even if reservation is less
than an hour) and prorated (only pay for the exact reservation
duration). This calculation corresponds to the flavor price
given in Table I times the application execution time.

3) Real Datacenter Workloads: We use a real job sub-
mission trace as the input workload of each cloud provider.
The Parallel Workloads Archive [13] provides open source



workload logs. The longest utilization log available (2 years
long) in the archive is from the MetaCentrum Czech Na-
tional Grid [14]. In order to find a typical working day (24h
long workload) as an input of each cloud provider, a k-mean
algorithm is executed to group the days with a similar job
submission distribution. An analysis with 6 groups (k-mean
with k = 6) exhibits one group with a typical working day
trend (load during working hours). Four different days are
taken from this group to represent the 4 IaaS workloads used
in experiments (listed in Table II). All jobs in workloads are
normalized in order to have a size within the available flavor
sizes. Also, only the jobs with a duration between 5 min
and 12 hours are retained. The duration of each IaaS job
is rounded to hours because IaaS clouds, such as Amazon
EC2, provide VMs on an hourly basis.

Table II: Details of the cloud layers.

Cloud layer Nb of servers Workload size
IaaS 1 60 2858 VMs
IaaS 2 60 2273 VMs
IaaS 3 250 3641 VMs
IaaS 4 40 1429 VMs
PaaS N/A 1500 applications

For the PaaS layer, another workload is taken from the
same k-mean group. This workload contains only 2, 4 and
8 vCPU jobs for easing the simulator task. Indeed, the C3
contract tries to scale up and down the resource size, thus
we keep the larger and lower VM sizes for this contract.

B. Experimental Validation of our Approach

We validate our approach by simulation through 4 dif-
ferent experiments. The energy saving is in percent in
comparison with the scenario where all PaaS applications
execute directly without any modification (C1).

1) Energy Saving According to the Contract Selection:
In this first experiment, we show the impact of the contract
selection on the IaaS energy consumption and on the total
monetary cost of applications. In this context, there is
only one IaaS provider (IaaS 1) and the allowed TW is
set to 6 hours for all applications. Figure 5 presents the
energy consumption (blue bars) and the percentage of energy
saving (white curve) when varying the distribution of the
contract selection. It also displays the sum of all applications
monetary cost (orange bars) as defined in Figure 4. For this
experiment, an additional execution contract (C4) is used to
define the selection of the less energy consuming contract
between the 3 proposed contracts.

Firstly, all applications execute with the same contract
(three first bars). In contrast to a normal execution (C1),
when all users select C2 or C3, the IaaS provider achieves
respectively 2.16% and 5.14% of energy saving. It is im-
portant to keep in mind that at datacenter’s scale, each
percent of energy saved is greater than 1kWh. Moreover, the
comparison is made with an IaaS manager that consolidates

Figure 5: Energy saving percentage and total monetary cost of
all PaaS application according to the distribution of the contract
selection made by PaaS users.

resources and shuts down unused servers ; a scenario already
more energy-efficient than currently deployed datacenter
managers. In the case of 100% C2, it is not always possible
to find a time slot within TW . Among the 1500 applications,
58 of them, so less than 4% had to run with a C1 contract
instead of C2 (i.e. their execution were not delayed). Con-
sidering the monetary aspect, costs with C1 and C2 are the
same because the resource size does not change. In the case
of C3, changing the resource size reduces the total cost by
almost 41%. It reveals that resources tend to be reduced in
size (less expensive).

Secondly, a percentage of applications executes with the
less energy consuming contract among all three (this contract
is named C4 for clarity sake) and the remaining applications
with contract C1. Increasing the amount of C4 contracts
from 0% to 100% shows an increasing percentage of energy
saving going up to 5.49%. In the 100% C4 scenario, there is
91.2% of C3 because the high flexibility of C3 shows lower
energy consumption in most cases. As C1 and C2 contracts
can consume less than C3, 100% C4 saves more energy
than when using only C3 contracts. From a monetary point
of view, executing all PaaS applications is less expensive
when more of them execute with the C4 contract.

Results show that, in this context, users acceptance to
delay and change the size of their applications allows to
reduce the energy consumed by the IaaS provider and to
lower the monetary cost for PaaS users.

2) Impact of the Time Window on Energy Consumption:
In the second experiment, we show the link between the
allowed time window TW and the energy savings. Figure 6
presents the results of an IaaS where all applications execute
with the C2 contract and TW increases from 1 to 13 hours
in 2 hours steps.

It shows that a TW of more than 3 hours is required
to reach around 2% of energy savings but remains stable
beyond this value. The red line shows the number of C2
contracts that failed to find a delayed time slot. In this
context, a TW greater than 7 hours is necessary to have
all VMs successfully delayed. This experiment shows that a
minimal length of TW is required to save energy, but a too
large one does not provide additional savings.



Figure 6: Percentage of energy saving with C2 contracts according
to the allowed time window.

3) Increasing the Number of IaaS providers: The goal
of the third experiment is to express the impact of the
number of IaaS used by the PaaS on the trend on delaying
applications execution. This number increases from 1 to 4
IaaS providers following the configuration given in Table II,
the TW is fixed to 6 hours, and all applications execute with
contract C2. In Figure 7, a cumulative distribution function
(CDF) is used to plot the 1500 execution delays for each
number of IaaS.

Figure 7: CDF of application delays according to the number of
IaaS providers when all applications execute with contract C2.

The figure shows that whatever the number of IaaS
providers, the CDF always reaches 100% before 6h of TW .
It means that the system is able to keep execution delays
within the time window constraint. It also shows that each
time an additional IaaS provider is available, the system is
able to execute more applications with a smaller delay. For
example, less than 40% of applications have a maximum
delay of 1h with 1 IaaS provider whereas 3 IaaS providers
cover about 60% of applications for the same delay. In
this scenario, 4 IaaS providers allow to have almost all
applications with a delay that barely exceeds 3h (50% of
the time window limit).

V. DISCUSSIONS

Changing the amount of resources is possible as long as
the duration table is provided. To obtain this table, users
require to execute their applications on all possible VM
sizes or to follow the approach presented in [7]. A more
convenient solution would be to automate this process by
learning from previous executions. The PaaS would record
all application execution times for each VM size.. With a
learning process, the PaaS would then be able to estimate
applications execution time depending on resource size.

PaaS users wait until completion time to get their results.
It corresponds to the sum of the delay and the execution
length, both varying depending on the users flexibility. Thus,
with our system, users wait for a longer time than usual
but our evaluation shows two major benefits. First, it allows
users to contribute to the reduction of datacenters energy
consumption. And second, flexibility on the resource size
tends to lower applications monetary cost.

Each execution contract comes with an energy prediction
that can differ from the energy actually consumed after
execution. Out of the 1500 applications, only 2.93% of
them have a perfect energy prediction with our model. For
about 79% of applications, the prediction is over-estimated.
Indeed, while waiting for the execution to start, the server
might have received other reservations. A higher vCPU
reservation reduces the idle energy part attributed to the
application’s VM (see Eq. 2). The remaining 18% represents
applications consuming more than predicted. The reason of
this difference is because the continuous VM allocation on
servers and the IaaS consolidation algorithm can make some
servers to be better for hosting a VM than the one selected
during the RA generation. Such a change can make a VM
run on a server less used than predicted and thus it accounts
from a larger part of the server’s idle energy. The difference
between predicted and consumed is not an issue because the
overall prediction is over-estimated, and as the experiments
show, these energy estimations provide significant savings.

The proposed system would not work in reality without a
certification of the process. An audit is required in order to
avoid IaaS providers from tampering their energy prediction
so that they can increase their profit. At the PaaS level, it
would force the filtering component to be impartial with
contracts from different IaaS providers.

VI. RELATED WORK

To our knowledge, a few studies exist on the topic of IaaS-
PaaS co-design for reducing datacenter energy consumption.
In their position paper [3], the authors express that an
enhanced interaction between the PaaS and the IaaS layers
could help achieving energy savings. Dupont et al. [4]
present an extension of the traditional SLA that includes
a description of the flexibility of applications deployed in
cloud environments. This approach allows to have tem-
porarily reduced or increased performance according to the
availability of renewable energies. In their approach, the
authors make live optimizations, such as resources scaling,
while in our work we opt for temporal consolidation of
resources that do not change in size over time. Unfortunately,
their proposition does not present validation results. In [15],
Djemame et al. propose a self-adaptive IaaS-PaaS architec-
ture that allows to run energy-efficient cloud operations.
Applications are defined with complex user-defined SLA
rules that express constraints on performance, energy and
price aspects. The PaaS layer negotiates and compares offers



from multiple IaaS providers and selects the best one. These
solutions are similar to our proposition as they enhance the
relation between IaaS and PaaS layers, and take end-users
into account. However, the complex mechanisms proposed
to users might prevent them from using such systems. We
believe that systems including end-users should be designed
to be as simple as possible to use. Additionally, the temporal
placement of VMs based on resource usage prediction is not
considered in these studies. In a non-virtualized datacenter
context, Hsu et al. propose a solution for the waste of
resources in datacenters by looking at the waste of power
budget [16]. Their idea is to group jobs with asynchronous
peak times under the same power node, thus allowing to
reduce the peak power of each server. While their objective
is similar to our waste reduction goal, we focus on resource
wastage instead of power and we consider two user param-
eters: resource size and temporal placement.

VII. CONCLUSION

In this work, we propose to benefit from the flexibility
in time and size of PaaS applications in order to reduce
the energy consumption of underlying IaaS datacenters.
Our approach enhances interactions between PaaS and IaaS
and includes end-users in the resource allocation decisions.
The PaaS layer negotiates execution contracts with multiple
IaaS providers for executing users’ applications. End-users
are then proposed to select between 3 different execution
contracts that allow to save more or less energy.

Through our simulation-based evaluation, we validated
the gain in energy of our approach using real workload
traces and real application execution logs. Allowing PaaS
applications to be flexible in terms of execution delay and
size allows to save up to 5.49% of energy at datacenters’
level in comparison with an already energy-efficient cloud
scenario where VMs are consolidated and unused servers
are powered down. This energy saving is achievable by only
delaying application executions up to a maximum of 6h.

As future work, we would like to enhance the inclusion
of PaaS users by providing an additional flexibility in the
means of dynamic scaling up and down of virtual resources.
Similarly to [4] and the lever we proposed in [8], users
would be able to set triggers in their application execution
to add/remove resources on the fly in order to adapt their
size with the current load. These predictable resource up-
dates, motivated with a reward system, may favor improved
consolidation and thus increase energy savings.
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