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Abstract

In this work  we examine the strategy and the control
architecture to allow an autonomous mobile robot to navigate
in indoor environment. One fundamental property a really
useful autonomous mobile robot equipped with is the
capability to effectively avoid collisions in realtime. The
robot’s control s system includes several processes which run
in parallel by using a specialized hardware. The navigation
subsystem of the mobile robot integrates the position
estimation obtained by ultrasonic system with the position the
estimated by odometry, using the extended Kalman filter.
Obstacle detection is performed by means of set of ultrasonic
sensors. The results presented whether experimented or
simulation, show that our method is well adapted to this type
of problem.

1    Introduction

Although the robots we see in science fiction movies appear to
navigate with effortless precision, in reality mobile robot
navigation is a difficult research. Stated most simply, the
problem of navigation can summarized by the following three
questions : ‘where am I ?’, ‘where am I going ?’, and ‘how
should I get there ?’[12]. The task of a navigation system is to
plan a path to a specified goal and to  execute  this  plan,
modifying it as necessary to avoid unexpeced obstacles.
An autonomous mobile robot is a mobile system capable of
interpreting, planning and executing a given task without any
external support. Therefore , an autonomous robot must be
able to explore an a priori unknown environment
systematically in order to perform some useful, goal-oriented
operation after the exploration phase is finished. During this
exploration phase the robot’s perception system has to
incrementally build up internal models of the environment
which most accurately represent topological and geometrical
properties. Consequently, these world models are the basis for
goal oriented behaviour. The major difficulty in robot
perception is to find out what the sensor signals tell about the
real world-in other words ; the problem is to interpret the
sensor signals in such a way that  each world model represents

an optimal estimate of the real world’s state with respect to
the model’s specific purpose We feel that the design of a
system for sensor signal interpretation basically is an
optimization process, since on the one hand the
requirements of the problem to be solved have to be
considered and on the other the information which can be
provided by the  individual sensors. A crucial problem in
sensing is that of coping with uncertainty. The sensory
integration is the process of combining measurements
obtained by multiple sensors in a statistically significant
way. This is important task in the navigation of
autonomous mobile robots, because the use of several
sensors may reduce uncertainties associated to each sensor
and provide sufficient and reliable information about the
system status, relating to the environment. One of the main
problems in the development of robot systems, which are
able to navigate in unknown environments, is the
monitoring of the vehicle position. Determination of the
actual position and orientation is a fundamental task in
goal-oriented navigation , where a mobile vehicle starts
from an initial point and reaches a destination in
accordance with a pre-planned path.
Our work concerns the problem of monitoring position and
orientation of an autonomous mobile robot in a goal
oriented indoor navigation using the measurements
obtained by the odometer and the ultrasonic sensors. The
static objects of the environment are modeled by means of
a geometric modeler, so that all the objects detected on the
path during robot navigation must be considered obstacles
A set of elementary motion actions (translations and
rotations of the robot) constitute the initial programmed
path, as computed by the path planner for the target
position indicated by the master process. The path must be
re-computed only when unknown obstacles are detected
along it or sensible deviations are estimated. Once the path
to be followed has been defined, the master process
activates the following independent processes.
This paper is organized as follows : section two presents
our experimental autonomous mobile robot, the VAHM.
Thereafter, section three gives a brief survey of related
work in sonar world modeling while section four describes
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our approach, Environmental Modeling Approach for the
VAHM in   detail.   Sections   five   and   six  are   about   the
collision  avoidance  and the odometer resetting methods.
Finally experimental results and conclusions are summarized
in sections seven and eight.

2. Context

Our experimental autonomous mobile robot is a V.A.H.M.
project (Vehicule Autonome pour Handicapé Moteur,
Autonomous vehicle for the disabled) which is centred on the
development of a powered wheelchair for the disabled (see
figure 1). This vehicle is intended to help the disabled with
motor deficiencies in theirs displacements. Due to its specific
application, the system is designed to navigate in rather
structured indoor environnement. The goal of the V.A.H.M.
project is to provide the wheelchair with such functionalities
as automatic path and motion planning, fast obstacle
avoidance, wall  and  person  following, by means of adapted
man-machine interfaces.  The low-cost nature and the real
time use  the  final wheelchair require simple and easy to
handle sensors. Our experimental wheelchair is equipped with
a pair of front castors and a pair of rear drive wheels, and his
localisation and perception are assured by a belt of 14
ultrasonic sensors and an odometer.

Figure 1 : The robot V.A.H.M.

3 Related work in sonar environment modeling

In this work, we use the term sonar to describe airborne
ultrasonic range sensing. Crowley, L. Parisot, Leonard and
Durrant-white have developed world modeling for mobile
robot using ultrasonic ranging [9], [10], [17], [12]. Their
approach based on the representation of the robot environment

by set of the geometric primitives such as planes, lines,
corners, edges,... Crowley in his approaches, introducing
the concept of the composite local model. The composite
local model is built by extracting straight line segments
from sonar data, and is matched to a previously stored
global line segment map to provide localisation.
Beckerman and Oblow have developed a rule-based
approach which deals with the treatment of systematic
errors [2]. Each cell of their grid is either labeled as empty,
occupied,  unknown, or  conflict.  Conflicts  may  occur
whenever an object is being observed at different times
from different locations. The approach has disadvantages
concerning dynamic obstacles, and moreover is time-
consuming since they use a two dimensional sensor model.
The probabilistic approach of Elfes and Moravec generates
an occupancy grid which explicitly represents free and
occupied regions in space [10]. Their sensor model is two-
dimensional, as well. Since they take into account the
ultrasound beam as a whole a large number of grid  cells
corresponding to the projection of the beam has to be
updated. This approach requires quite a lot of computing
time, as well. Borenstein and Koren call their method for
grid-based mapping the vector field histogram [3]. They
use one dimensional sensor model which reduces the real
sound wave to the beam’s acoustic axis. This trivial sensor
model causes a drastic transfer of the sensing-computation
ratio to the credit of sensors and leads to surprisingly good
results.

4   Environmental Modeling Approach for the
V.A.H.M.

In this section we present a modelization method of the
robot environment using sonar. In our work, we have used
the geometric representation of the environment. The
model is built by extracting straight line segment.

4.1   General description of the method

The idea used for ultrasonic calibration has been applied to
realise a perception system to locate the ultrasonic sensors
in the environment. Our approach of modelization permits
to extract the straight line segments of the vehicle
environment. The theory behind our approach to sonar
interpretation follows directly from the published works of
Crowley [8], [9],. The contribution that we feel we have
provided many modifications (alternations) in the
modelization approach. A main difference with Crowley is
that in our approach, the segments are created from alone
impact point. These segments are characterized by their nil
length (the start point equal the arrival point), and their
orientation is perpendicular to the ultrasonic sensor axis.
We have provided a little modification when the segment
is
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processed,  a  new   point   is  added.   Figure 2  shows   the
model    of    the    segment    used    in    our    approach.

The segment equation is :

x∗sinθ − y∗cosθ + ρ=0           (1)

where θ is the segment orientation and ρ  the minimal
distance of  the  segment  in  comparison  to  the  set
reference  origin.

The parameters of the created segments are estimated by a
method of the Recursive Least Square (RLS) with weighting
from the data which are validated by the detection tests. These
tests are based on the trigonometric criterion such width of the
robot. The advantage of  the provided  modification to this
method  is that , the ultrasonic data are not kept in the
memory. These data are directly used and processed to create
the segments.

      Figure 2 : The model of the segment

4.2 Model Building

This sub-section attempts to develop a method of the model
building for the robot mobile navigation. Unfortunately,
combining the capabilities of localization and map building
described earlier is not as straightforward as one might hope.
Wile these issues are important regardless of the sensing
modality employed, for our purpose here we shall maintain
our exclusive focus sonar.
For each sensor measurement acquisition, the fourteen
ultrasonic data are processed one by one in the trigonometric
direction (anticlockwise). As soon as the first sensor data is
processed, a segment in the model building is initialized. This
segment whose length is nil (start point equal and arrival point
are equal), has its orientation perpendicular to the acoustic
axis

of the sensor (more details in 4.2.2). For next acquisition,
each new data is treated as shown in the Figure 3.
Once the fourteen ultrasonic data are treated, the
segmentation algorithm stops. The integration of the new
point to the segment is validated by the following tests
[Crowley] :

the orientation test :  this test is to verify if the
measurement impact angle on the segment of two points,
permits an acoustic reception to the corresponding
ultrasonic sensor. The condition is that :

θ ≤ θsegment +π /2 + var(δ)

where var(δ) is the variance of the sensor range angle
(acoustic axis)

the proximity test : this text is to determine if the
minimal distance of the new point to the segment is
inferior to the uncertainty in point position :

dmin ≤ σd
2 + var(ρ)

where σd
  is the sensor measurement uncertainty which is

given by the constructor. σd=1% of the measured distance.
Var(ρ) is the variance of the segment coefficient ρ.
.

the distance test : this test is to verify if the new point is
moving away from the segment less than the robot width. d
≤ the robot width.

New
Sonar  data

Belongs  to  the
modeled  segments

The  segment  processing
by  the  RLS  method

with  weighting

Initialization  of
the  new  segment

yes

no

yes

Figure 3 : The model algorithm .
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4.2.1 The segments parameters estimate

In this point, we use the method of the Recursive Least Square
(RLS) with weighting. The line segment equation is always :
x∗sinθ − y∗cosθ + ρ=0. The algorithm of RLS with the
weighting has the form :

D Dk k+ = −1

a B Z

a Z B Z

k
k k

k k
T

K k

* *

* * *1+
( )Z Dk

T
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where  Dk , Z k , Bk , and ak  are respectively the segment

estimate in the step k, the variance of Dk , the new

measurement to integrate into the segment estimate, and the
weighting on Z k .

a
dk

k

=
1

var( )
,                                                      (4)

var( d k ) is the variance of the distance d k which is the

distance between the echo sonar sensor and the line  segment
Dk .

After computing the new segment estimate, it is necessary to
determine the new segment ends. In order that the previous
ends and the new measurement are projected into the new line
segment, then we choose among these points the two very
distanced points.

4.2.2 Creation of the new segment

When one measurement is not belongs to any model segment,
a new segment of nil length is created. Its initial point and
final point are equal to impact point, and its orientation is
orthogonal to sonar sensor axis. Its uncertainty is calculated
from the uncertainty of the sensor measurement.
When a new segment is initialized, the initial conditions of
the support straight line are defined. Given Z0  the

coordinates of the measurement point in order to construct the
segment.
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The segment has the form :
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The variance-covariance matrix of the segment parameters
is :

( )B J x y JD m D
T

0 = * , , *ρ θ
(7)

where  ( )ρ θx y m, ,  the variance-covariance matrix of the

impact point coordinates and J D  the jacobian matrix of

the segment coefficients.
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If the created segment really corresponds to an object in
the         environment,  the  other  measurements  can  be
rapidly  put  to correspondence with this segment, and the
say object will be modelized. If the case of the new
segment measures are bad, the say segment is destroyed.
We have given the point threshold. The segment which
contains less than ten points is destroyed.

4.2.3 The reduction of the emission cone

The ultrasonic sensors have a bad lateral resolution
proportional to the width of their emission cone : in fact we
do not know the reception axis for the possible received
echo. In the fault, the measure is placed in the acoustic
axis, which can be a very important error if the measured
distance is considerable. Because of that, the  created  line
segments  from these measurements have the bad
orientation and distance from the reference origin. It is a
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navigation. It’s very import to correct this error (Figure 4).
All that to calculate the angle α  between the normal to the
acoustic axis and the estimated segment

( )α θ π θ= + −sensor segment2                                        (9)

After to have calculated the angle α , the impact points
coordinates are again treated on taking into account this angle,
in order to replace the veritable obstacle orientation in the
emission cone of the correspondent sonar sensor.
From the certain points number(ten) belongs to the segment, it
is supposed that this segment has a good orientation  estimate.
Then  it  can  be  again  processed on

using the RLS algorithm.

Robot
Ultrasonic Sensors

a

The  first  segment  estimate

Placed  measurements  in  the
sensor  axis

Corrected  estimate  of  the
segment

o
Corrected  measurements

Figure 4 : The error reduction of the sonar emission cone.

5 Collision avoidance

This module is activated when the obstacle detection module
discovers some obstacles along the vehicle path. The task of
this module is to provide a steering command letting a mobile
robot reach a goal while avoiding collision with obstacles by
use the of fuzzy logic technique.
More details about this module technique can be found in [15].

Navigation

Previous work in navigation has to treat the problems of
localization, obstacle avoidance, and map building in
isolation. Approaches to obstacle avoidance, such as the
method of potential fields[18], are typically of no use for
localization. Algorithms for globally referenced position
estimation, such as the work of Cox[7], rely on a priori
map, but do not incorporate the construction of such a
map. Many algorithms for map building do not address the
issue of localisation while the is being constructed, relying
instead on odometry or hand measuring of sensing
locations. The challenge posed by a complete
implementation of autonomous navigation is the
simultaneous realisation of these different capabilities.

Sensory fusion can be performed employing an extented
Kalman filter (EKF) model to obtain an optimal estimate
of vehicle position and orientation. The EKF is the basic
tool of our approach to navigation[ ]. Kalman filters are
well-known

tools in theory of stochastic dynamic systems which can be
used to improve the quality of estimates of unknown
quantities .Kalman filtering techniques have been applied
to the problems of map-making and position estimation.
In the framework we have defined for navigation, it is
necessary, step by step, to integrate the two measures of
vehicle position and orientation : the odometer and the
ultrasonic sensor. As we have the segments positions from
the robot, we can use them like <<geometric beacon>> in
order to reset the odometry. The position and orientation of
the vehicle at time step  k by the state vector  X(k) =
[x(k),y(k),θ (k)]T  comprising a Catersien location and a
heading defined with respect to a global coordinate frame.
At initialisation, the robot starts at a known location, and
the robot has an a priori map of nT geometric beacons,
whose locations are specified by set of the known vectors
{pt | 1 ≤ t ≥ nT }. A localization is a cyclic  procedure that
is repeated as frequently possible. The robot evolution
equations are given by the odometry :

              X(k+1)=F(X(k),δd,δθ)+v(k)
(10)

where F(X(k),δd,δθ) is the (non-linear) state transition
function, X(k) : the vehicle’s position and orientation, δd
and δθ : the robot elementary moving ;and v(k) a noise
disturbance.

The observations equations are provided by the ultrasonic
data :
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               Z(k+1)=ht(pt,X(k+1))+w(k+1)                          (11)

where the measurement function h(pt,X(k+1)) expresses an
observation Z(k+1) from ultrasonic data to target t as function
of the vehicle location X(k+1) and the geometric
beacons ;  and   w(k+1)  is   the  gaussian  noise  disturbance.
The  state  transition  function  F(X(k),δd,δθ)  has  the  form :

( )
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x k x k d k k k

y k y k d k k k

k k k
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+ = + +

+ = + +
+ = +










1 2

1 2
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δ θ δθ

δ θ δθ
θ θ δθ

         (12)

The measurement prediction is :

              
(
z (k+1)=h(V(k+1),X(k+1|k))                  (13)

where V(k+1) is the segment estimation and X(k+1 | k) the
state prediction provided by odometry.

The innovation has the form :

              ν(k+1)=[Z(k+1)-h(V(k+1),X(k+1)|k))]              (14)

The innovation variance :

S(k+1)=var(Z(k+1))+var(
(
z (k+1)) 

(15)
            = var(w(k+1)) + Jx*P(k+1 | k)*Jx

T + JV*B(k+1)*JV
T

where w(k+1)  is  the  ultrasonic  data  variance,  P(k+1 | k)
the prediction variance from the odometry ; and Jx and JV are
the jacobian of h(pt,X(k+1)) in the comparison to the variables
X and V.
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where J FX  is the jacobian matrix of the robot position, J dδ δθ,

is the jacobian matrix of the robot moving, and C d( , )δ δθ  is
the variance-covariance  matrix  of  the  robot  moving
increments.
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σd
2  et σg

2  represent the moving increments variances of

each wheel and L the axle way.

The Kalman gain can be written as:
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to compute the updated vehicle position estimate

              X k k X k k K k( / ) ( / ) ( )+ + = + + + ∗1 1 1 1 ν(k+1)
(20)

with associated variance
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(19)

In order  to improve the extraction precision of the
beacons,
we realised the odometer resetting just before integrating
the measurements in the segment (RLS).

7 Experimental results
Several experiments have been carried out to study the
validity of the proposed integration approach. Currently we
are combining the measurements  provided by  odometers
and  the measurements obtained from the set of the
fourteen ultrasonic sensors   to   monitor   continuously
the  robot’s  position  and orientation.

The modules path planner, environmental modeling,
obstacles avoidance and odometer resetting are
implemented on our wheelchair controlled by PENTIUM,
with the MATLAB software.

The experiments have been realised in the rectangular
room. Using the path planner in the Figure 5 an optimal
path is computed  on the basis of the starting and goal
points. This path has the ellipse form. The vehicle moves
along this path which has the ellipse form. For these
experiments, the vehicle has made three circumferences of
this route. The length of the path is 53 metres while the
total distance traveled amounts to 51 metres.



2827

 (0 ; 2.42) (5 ; 2.42)

        A
    (0 ; 0)

B
(5 ; 0)

 y
  x

Figure5 : The optimal path in the trigonometric direction with
the passage points (coordinates in metres)
.
The variances of the increments moving are modeled
by the Mourtalier and Chatila method :

22 )01.0( dd d⋅=σ , σg gd2 20 01= ⋅( . )

The variance of  sonar  measurement  is  proportional  to  the
measure :

σs d2 20 02= ⋅( . )

The odometer resetting process integrates, in the sense of the
EKF approach, the measurements provided from the odometer
and sonar data. The EKF  inverts  when  a Segment has more
15 points.

Fig. 6 shows the real paths executed by the vehicle with the
odometer and with the odometer-sonar integration. Fig. 7
shows the real path executed with the odometer resetting using
the EKF. Fig. 8 shows the errors of the different navigation
methods.

metres

2






metres

2







Figure 6 : The real paths traveled by the vehicle
                           : odometer
                           : odometer-sonar integration

metres

2






metres

2






Figure 7 : The real path executed by the vehicle with the
odometer resetting using the EKF (              )

Odometry 466 0.93
         5.2

odometer -
sonar

Integration

399 0.78         -2

The odometer
restting with

the EKF

71 0.14        -0.5

Position
Error

εεfinal [mm]

Orientation
Error

∆∆θθ final [°]

Error relating
the traveled

distance
εεfinal / distance[%]

Figure 8 : The different localisation errors during the
vehicle navigation.

During the motion of robot, the obstacle detector builds up
a map of the environment using ultrasonic data. In our
experiment we used only the four walls or the room as
obstacles. With our environmental modeling approach, the
walls are modeled with a great precision.

7. Conclusions and future work

In this work we have discussed a strategy and a control
architecture to allow an autonomous mobile robot to
navigate indoors a goal oriented context. We are developed
the environmental modeling approach for the robot
navigation. This approach gives a great results. The use of
the Extented Kaman Filter in the odometer resetting
process provides a framework to integrates the
measurements of the robot’s position and orientation
derived from the odometer and the measurements provided
by the ultrasonic sensors. Experimental results indicate
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orientation.
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