
HAL Id: hal-01856584
https://hal.science/hal-01856584v4

Preprint submitted on 29 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization and fluctuations for interacting
stochastic systems with individual and collective

reinforcement
Pierre-Yves Louis, Meghdad Mirebrahimi

To cite this version:
Pierre-Yves Louis, Meghdad Mirebrahimi. Synchronization and fluctuations for interacting stochastic
systems with individual and collective reinforcement. 2023. �hal-01856584v4�

https://hal.science/hal-01856584v4
https://hal.archives-ouvertes.fr


Synchronization and Fluctuations
for Interacting Stochastic Systems
with Individual and Collective Reinforcement

Pierre-Yves Louis and Meghdad Mirebrahimi

Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université Bourgogne Franche-Comté, F-21000,
Dijon, France
E-mail address: pierre-yves.louis@agrosupdijon.fr

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, 47416-1468,
Babolsar, Iran
E-mail address: me.mirebrahimi@gmail.com

Abstract. The Pólya urn is the most representative example of a reinforced stochastic process.
It leads to a random (non degenerated) time-limit. The Friedman urn is a natural generalization
whose almost sure (a.s.) time-limit is not random any more. In this work, in the stream of previous
recent works, we introduce a new family of (finite size) systems of reinforced stochastic processes,
interacting through an additional collective reinforcement of mean field type. The two reinforcement
rules strengths (one component-wise, one collective) are tuned through (possibly) two different rates.
In special cases, these reinforcements are of Pólya or Friedman type as in urn contexts and may thus
lead to limits which may be random or not. Different parameter regimes need to be considered.

We state two kind of results. First, we study the time-asymptotics and show that L2 and a.s.
convergence always holds. Moreover all the components share the same time-limit (so called syn-
chronization phenomenon). We study the nature of the limit (random/deterministic) according to
the parameters’ regime considered. Second, we study fluctuations by proving central limit theorems.
Scaling coefficients vary according to the regime considered. This gives insights into many different
rates of convergence. In particular, we identify the regimes where synchronization is faster than
convergence towards the shared time-limit.

1. Introduction and model’s definition

In urn models, it is well known that the bicolor Pólya reinforcement rule (reinforcement of the
chosen color) leads to a random limiting a.s. proportion whereas the Friedman rule (reinforcement
of the chosen color as well as the non chosen color) leads to a deterministic time-asymptotics
proportion. This somewhat surprising fact is explained for instance through a fix point Hill et al.
(1980). See Pemantle (2007) too. Following many recent works (see Section 3 for details), this
paper is motivated by the study of asymptotics time behavior of models of (discrete time) stochastic
processes interacting through a reinforcement rule.

Let us define the following new model. Let (Zn(i), 1 ≤ i ≤ N)n≥0 be an N -dimensional stochastic
process with values in [0, 1]N where N ≥ 2. For each component indexed by i (1 ≤ i ≤ N) we
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consider the stochastic dynamics defined through the recursive equation, for any n ∈ N,
Zn+1(i) = (1− r`n − rgn)Zn(i) + r`nξ

`
n+1(i) + rgnξ

g
n+1, (1.1)

where Z0(i) = 1
2 and where ξ`n+1(i) and ξgn+1 denote local (component-wise) and collective rein-

forcements. Let (Fn)n be the natural filtration associated with (Zn(i), 1 ≤ i ≤ N)n≥0. Given the
σ-field Fn, they have independent Bernoulli distributions with

P(ξ`n+1(i) = 1|Fn) = ψ1(Zn(i)) := (1− 2λ1)Zn(i) + λ1, (1.2)

P(ξgn+1 = 1|Fn) = ψ2(Zn) := (1− 2λ2)Zn + λ2, (1.3)

where ψk : [0, 1] −→ [0, 1] (k ∈ {1, 2}) are linear maps with Zn := 1
N

∑N
i=1 Zn(i) (so called

mean field) and where λ1, λ2 ∈ [0, 1] are parameters. The local (resp. the collective) reinforcement
rate (r`n)n (resp. (rgn)n) are real sequences such that 0 ≤ r`n < 1 and 0 ≤ rgn < 1, and

lim
n
nγ1r`n = c1 > 0 and lim

n
nγ2rgn = c2 > 0 (1.4)

where γj ∈ (12 , 1] for j ∈ {1, 2}. This assumption gives that (r`n)n (resp. (rgn)n) satisfy the following
usual assumptions for processes defined through recursive equations like (1.1)∑

r`n = +∞,
∑

(r`n)2 < +∞. (1.5)

Note (r`n)2 stand for the square of r`n. As emphasized in Aletti et al. (2019), in order to state the
CLTs, we actually assume the slightly stricter following assumptions.

Assumption 1.1. There exist real constants γ1, γ2 and c1 > 0, c2 > 0 with (γ1, γ2) ∈ (12 , 1]2, such
that when n→∞

r`n =
c1
nγ1

+O
( 1

n2γ1

)
and rgn =

c2
nγ2

+O
( 1

n2γ2

)
. (1.6)

When the two reinforcement rules compete through the different rates r`n, r
g
n, one individual rule,

one collective (in the sense all the components are involved), is there one leading? In particular,
is there loss of synchronization which means, is there an almost sure limit depending on the com-
ponent? Moreover, in the case were Pólya and Friedman type of reinforcement rule do compete
through the system, and if there is synchronization, may the shared time-limit be random?

As emphasized in the previous works, there are many applications these stochastic models may
be useful for. Urn models are well known Mahmoud (2008) to have applications in economy, in
contagion models Harrington et al. (2019), in clinical trials adaptive design Laruelle and Pagès
(2014), random networks Hofstad (van der). In general, the reinforcement rate (rn)n, may be such
that limn n

γrn = c > 0. The dynamics is nothing but a vector-valued stochastic algorithm Benaïm
(1999); Duflo (1997). Such processes have many applications like in the framework of stochastic
optimization (see for instance Delyon et al., 1999; Gadat and Younès, 2007). In Crimaldi et al. (2019)
and in Aletti et al. (2017) an application of these processes as opinion dynamics was introduced. We
will briefly explain it in our context in Section 3 : each random variable Zn(i) may be considered
as an agent’s inclination towards one of two possible choices.

In the new family of models we introduce and study in this paper, following previous recent
works Dai Pra et al. (2014); Sahasrabudhe (2016); Crimaldi et al. (2016); Aletti et al. (2017, 2019,
2020); Crimaldi et al. (2019); Mirebrahimi (2019), we consider a (finite) system of reinforced sto-
chastic processes defined though recursive equations (1.1). Two kind of reinforcement are involved.
One depending only on the component (ξ`n+1(i))n (see next section for the notations), one creating
the interaction (ξgn+1)n and depending on the average over all components. The interaction holds
through the reinforcement. This is modeling a collective reinforcement effect that may compete with
the individual/local/component-wise reinforcement. For the sake of simplicity, we choose to con-
sider a mean field interaction, in the sense that collective reinforcement depends on the arithmetic
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mean over the system at previous time step. Each reinforcement has its own rate r`n (resp. rgn). Each
rate may have its own asymptotic behavior: r`n ∼ c1n−γ1 (resp. rgn ∼ c2n−γ2). If 1/2 < γ1 < γ2 ≤ 1
(for instance), one may expect the collective reinforcement to become negligible in the long run. A
naive guess could be, the system behaves for large time like a system with independent components,
thus leading to a possible loss of synchronization. We prove later this does not happen: L2/a.s.
synchronization holds (meaning, each component dynamics shares the same random time limit) like
in Dai Pra et al. (2014). Additional issues we address, are: nature (deterministic/random, diffuse
or atomic) of the almost sure (a.s.) time limit distribution according to the type of reinforcement,
scales of fluctuations with respect to this limit, which are stated by proving central limit theorems
(CLT) w.r.t stable convergence. We prove, according to the parameters’ cases, that the rate of
synchronization is quicker, or the same, as the speed of convergence to the limit. In the models
considered in Crimaldi et al. (2019), synchronization quicker than convergence towards the asymp-
totics value Z∞ holds only in cases where Var(Z∞) > 0. In the following models it may happen
even when Z∞ is deterministic.

The paper is organized as follows. In Section 2 we give some preliminary remarks about the
model’s definition. In Section 3 we compare the model with related families studied in previous
works and give some interpretation as models for opinion dynamics. In Section 4 we prove that
L2 and a.s. convergence holds towards a limiting value Z∞ in R shared by all the components
(synchronization). Two main cases are to be distinguished: Theorems 4.1 and 4.2 deals with cases
where Z∞ = 1/2 (the word synchronization is abusive in this situation) whereas Theorem 4.4 deals
with Z∞ random. In Section 5, in the different cases, we state central limit theorems about the
fluctuations of (Zn − Z∞) and (Zn − Zn(i)). Scaling factors are worth of interest. Th. 5.1 consider
the case where each individual and collective reinforcement leads to a deterministic limiting value.
Theorem 5.2 consider the special case when γ1 = γ2 = 1 reminiscent of the Friedman urn context,
in the regime where fluctuations are known not to be gaussian (c1λ1 + c2λ2 <

1
4). Theorem 5.3

deals with the mixed cases where individual and reinforcement type are of different nature. Th. 5.4
consider the case where both the individual and the collective reinforcement lead to a random limit.
Section 6 is dedicated to comments on the model from a stochastic approximation perspective.
Section 7 is dedicated to the proof of the synchronization. Section 8 deals with the proofs of the
CLTs. An appendix A states and recalls for the sake of completeness some technical results.

2. Preliminary remarks

The model is define through the recursive equations (1.1), with (1.2), and general assumption (1.2)
about the rates’ asymptotic behavior. We refer to Crimaldi et al. (2019) for a discussion on the case
0 < γ ≤ 1/2 in another model. We believe that the case 0 < γ ≤ 1/2 leads to a drastically different
behavior, and therefore leave this case for further studies.

For the sake of simplicity, we choose to have some symmetry in the model with respect to 1/2.
For the same reason, according to the previous works cited in the Section 3, we consider the starting
conditions all equal to 1/2 without loss of generality.

Remark 2.1. In the particular case when γ1 = γ2 =: γ, we can rewrite the model as

Zn+1(i) = (1− 2rn)Zn(i) + rnξ̃n+1(i),

where ξ̃n+1(i) = ξ`n+1(i) + ξgn+1, therefore ξ̃n+1(i) ∈ {0, 1, 2}. The other probabilities in (1.2) and
their subsequent relations may be computed in an analogous way. The reinforcement rate remains
such that rn ∼ cn−γ when n→∞.

Remark 2.2. In this paper the parameters λ1, λ2 are kept fixed. Cases where λ1, λ2 may converge
to 0 depending on n,N will be considered in a forthcoming work. Note that when λ1 = λ2 = 1/2
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(see (1.2)), there is no reinforcement. Moreover, when λ1 6= 1/2 and λ2 = 1/2, although we still
have reinforcement on each component individually, we loose the interaction between components.

Remark 2.3. If 0 ≤ λ1 < 1/2 and 0 ≤ λ2 < 1/2, then ψ1 and ψ2 are increasing maps and occurrence
of events {ξn(i) = 1} increases the probability of having {ξn+1(i) = 1} at next time step. This is
the basic original meaning of reinforcement.

The following relationships hold.

E(Zn+1(i)− Zn(i)|Fn) = λ1r
`
n

(
1− 2Zn(i)

)
+ λ2r

g
n

(
1− 2Zn

)
+ rgn

(
Zn − Zn(i)

)
, (2.1)

and by averaging over i in {1, . . . , N}, we have

E(Zn+1 − Zn|Fn) = (λ1r
`
n + λ2r

g
n) (1− 2Zn). (2.2)

3. Related models and application motivations

As emphasized in Crimaldi et al. (2019), the evolution of proportions in urn models satisfies
recursive equation like (1.1) with rgn = 0 (i.e. without interaction) and with γ1 = 1. This family of
models we introduce is related to some other models that were studied recently. We briefly present
them in this section.

3.1. Interacting urns models. The models considered in this paper were introduced in Mirebrahimi
(2019). When rgn ≡ 0 and γ1 = 1, the model is a non interacting system where each component’s
value Zn(i) can be interpreted as the proportion of balls of a given color in a bicolor balanced (same
deterministic number of balls are added whatever the chosen color is) urn classic model. The case
λ1 = 0 leads to ψ1(x) = x which is the basic Pólya reinforcement rule, where a fix number of balls
is added, whose color is the same as the chosen one. It is well known limn→∞ Zn(i) exists a.s. and
defines a Beta distributed random variable Z∞(i), whose parameters depend on the initial number
of balls of each colors. The case λ1 6= 0 leads to a Friedman urn model. The unique fix point of ψ1

is 1/2. It is known, limn→∞ Zn(i) exists a.s. and is equal to this fix point Z∞(i) = 1/2 := Z∞. See
for instance Hill et al. (1980) where very interesting cases of less regular ψ1 maps are considered.
This can be proven using stochastic approximation results Benaïm (1999); Duflo (1997). In our
context we use the terminology Pólya type when λ1 = 0 and Friedman type when λ1 6= 0. A
similar remark holds for the collective reinforcement effect ruled by ψ2 and tuned through γ2 for
the asymptotic behavior of the reinforcement rate rgn and λ2 for the reinforcement’s type.

In Dai Pra et al. (2014), the system introduced and studied is related to the case γ1 = γ2 = 1
and λ1 = λ2 = 0. It solves Equation (1.1) with rgn ≡ 0 and with

P(ξ`n+1(i) = 1|Fn) = (1− α)Zn(i) + αZn

where α ∈ [0, 1] is a parameter. A.s. synchronization towards a random shared limit Z∞ (Var(Z∞) > 0)
was proved as soons as α > 0. Fluctuations were studied in Crimaldi et al. (2016) by proving central
limit theorems. In Sahasrabudhe (2016), a similar interacting model was studied, whose components
dynamics can be interpreted as urn models (reinforcement’s rate behaving like n−1) with a Friedman
reinforcement rule. A.s. convergence holds towards a unique deterministic value. Moreover, it is
known that Friedman urns can exhibit non gaussian fluctuations Janson (2004); Pemantle (2007).
See Flajolet et al. (2006); Chauvin et al. (2015); Lasmar et al. (2018); Mailler (2018); Chauvin
et al. (2011) for more specific recent results about urn models and generalizations. In Sahasrabudhe
(2016), this was proven to have consequences for the mean-field interacting system, where different
speed of convergence may happen. In relationship with systems of interacting urns, some variations
with different kind of urns/reinforcements bias towards one or the other color, were considered
in Louis and Minelli (2018).
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For the model considered in this paper, similar interpretation as bicolor balanced urn model can
be made, when γ1 = γ2 = 1. Each Zn(i) can be interpreted as the proportion of one chosen color
in an urn i. Two reinforcement mechanism hold which can be related to the following one, applied
to each urn i of the systems, independently, between two iterations. One (for instance) ball is
chosen uniformly at random in the urn i and one (for instance) ball of the chosen color is added into
urn i (Pólya reinforcement type, λ1 = 0); resp. one ball of the non chosen color, Friedman type,
λ1 6= 0). Additionally, one ball is chosen uniformly at random in the whole system (proportion Zn
at previous time step) and one ball of the chosen color is added (collective reinforcement of Pólya
type, λ2 = 0) into urn i; resp. one ball of the non chosen color, collective reinforcement of Friedman
type, λ2 6= 0). In fact adding a ball of the non chosen color is similar in general to add a ball of the
chosen color as well as the non chosen color. The reinforcement matrices (for local reinforcement,
resp. for collective reinforcement) defining these numbers are then giving the exact values of λ1
(resp. λ2).

3.2. General reinforcements’ rates. Generalizing the reinforcement rate rn asymptotic behavior from
rn ∼ cn−1 to rn ∼n→∞ cn−γ leads to systems of stochastic processes with reinforcement which can
be considered as interacting stochastic algorithms of Robbins-Monro type. In Crimaldi et al. (2019)
several cases of reinforcement (like Pólya/Friedman) were considered. A.s. synchronization was
stated towards different kind of limit Z∞ (deterministic or not) and speed of convergence studied
through functional central limit theorems (FCLT) for Zn(i)−Zn and Zn−Z∞. It was proved that in
parameters’ regime where the time limit Z∞ is random (in the sense Var(Z∞) > 0), synchronization
happens quicker than convergence to the time limit.

Building a reinforcement with the average proportion Zn (mean field) helps in these interacting
systems since it is enough to deal with closed uni-dimensional recursive equations for (Zn)n and
(Zn−Zn(i))n. The interaction was generalized from mean field to network based interaction in Aletti
et al. (2017), with a reinforcement of Pólya type. The system dynamics is defined, for i ∈ V :=
{1, · · · , N}, through

Zn+1(i) = (1− rn)Zn(i) + rnξn+1(i) (3.1)
where for any n ≥ 0, the random variables {ξn+1(i) : i ∈ V } are conditionally independent given
Fn with

P(ξn+1(i) = 1 | Fn) =
N∑
j=1

wj,iZn(j) (3.2)

with Fn := σ(Zn(i)). The non negative matrix W = [wj,i]j,i∈V×V is considered as a weighted
adjacency matrix of the graph G = (V,E) with V = {1, ..., N} as the set of vertices and E⊂V × V
as the set of directed edges. Each edge (j, i) ∈ E represents the fact that the vertex j has a direct
influence on the vertex i. The weight wi,j ≥ 0 quantifies how much j can influence i. The weights are
assumed to be normalized W>1 = 1 where 1 denotes (1, . . . , 1) ∈ RN . The matrix W is assumed
to be irreducible and diagonalizable. The reinforcement rate rn is assumed to satisfy (1.4) with
γ ∈ (1/2, 1] or a more restrictive condition as (1.6). Synchronization is proven to hold and CLT’s
were stated. The empirical means Nn(i) := N−1

∑N
i=1 ξn(i) are studied in Aletti et al. (2019): a.s.

synchronization toward Z∞ and CLT are proven. Weighted empirical means are studied analogously
in Aletti et al. (2020).

As considered in Crimaldi et al. (2019); Aletti et al. (2019), we may think about following context
for the random evolutions we consider. Let us state in the case where S = {0, 1} represents two
possible choices or actions made by "individuals" or agents i ∈ V . To each vertex i ∈ V is associated
a value Zn(i) ∈ [0, 1]. The quantity Zn(i) (resp. 1−Zn(i)) is interpreted as the inclination to adopt
the choice 1 (resp. 0) at time n. The recursive equation (1.1) means the inclination of agent i at
the next time step, is a convex combination of
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• the inclination Zn(i) with self-reinforcement weight 1− r`n − r
g
n,

• a choice ξ`n+1(i) made with a probability ψ1(Zn(i)) for opinion 1 related to the personal
inclination, with a weight r`n,
• and a collective choice ξgn+1 made with a probability ψ2(Zn) for opinion 1 related to the
collective inclination Zn, average of the personal inclinations, with a weight rgn.

As time goes, the rates r`n and rgn vanish. For larger n, the self-reinforcement leads. The different
speed of convergence towards 0 for r`n and rgn, tuned by γ1, γ2 could mean the influence of collective
actions may disappear quicker than the influence of individual choices. On the contrary, the a.s.
synchronization phenomenon towards a shared inclination Z∞ could be interpreted as the emergence
of a consensus, in the sense every individual shares the same inclination. The special case Z∞ = 1/2
may be interpreted as a complete undetermined ”fifty-fifty” inclination towards the two actions.
Issues we addressed at the beginning of this paper may be reconsidered through this interpretation.

4. Main results: convergence and a.s. synchronization

In this section we state result on the convergence of (Zn)n and the synchronization phenomenon.
Indeed we obtain different kind of time-limit (deterministic or (truly-)random) for (Zn)n according
to the nullity of λ1, λ2. Moreover L2 and a.s. synchronization are stated in all the cases. As
previously mentioned, the choice of the mean-field instead of a network-based interaction allows us
to address the proofs by studying Zn and Zn − Zn(i) instead of dealing with RN valued recursive
equations.

4.1. Case of a deterministic time-asymptotics. We call the case deterministic, if the time limit Z∞
(n → ∞) is not random (Var(Z∞) = 0). This behavior corresponds to cases where at least one
of the following assumptions is true: λ1 > 0 or λ2 > 0. The mean field process (Zn)n is not a
martingale. In order to investigate the behavior of the interacting system, we first consider the time
limits of Var(Zn). Second we show that L2-synchronization holds i.e. limn→∞Var(Zn(i)−Zn) = 0.
We get the rates of convergence too. Finally, we prove that the synchronization holds almost surely
and the deterministic limit is Z∞ := 1

2 .

Theorem 4.1. For any λ1 > 0 and λ2 > 0 the following results hold:
i) Asymptotics of variance as n→∞:

Var(Zn) = O( 1
nγ∗ ) where γ∗ := min(γ1, γ2);

ii) behavior of the L2-distance between Zn and Zn(i) when n→∞:
a) if γ1 ≤ γ2, then E([Zn − Zn(i)]2) = O( 1

nγ1 ),
b) if γ2 < γ1, then E([Zn − Zn(i)]2) = O( 1

n2γ1−γ2 );
iii) almost sure convergence holds i.e.
∀i ∈ {1, ..., N}, limn→+∞ Zn(i) = limn→+∞ Zn = 1

2 =: Z∞ a.s.

Two others choices of parameters λ1, λ2 lead to the following results.

Theorem 4.2. In the following cases: either (λ1 > 0 and λ2 = 0) or (λ1 = 0 and λ2 > 0) it holds
limn→+∞ Zn(i) = limn→+∞ Zn = 1

2 a.s. Moreover, the following table summarizes the L2 speed of
convergence.

λ1 6= 0, λ2 = 0 λ1 = 0, λ2 6= 0

γ1 ≤ γ2 Var(Zn) = O( 1
nγ1 ) Var(Zn) = O( 1

n2γ1−γ2 )

E([Zn − Zn(i)]2) = O( 1
nγ1 ) E([Zn − Zn(i)]2) = O( 1

n2γ1−γ2 )

γ2 < γ1 Var(Zn) = O( 1
n2γ2−γ1 ) Var(Zn) = O( 1

nγ2 )

E([Zn − Zn(i)]2) = O( 1
n2γ1−γ2 ) E([Zn − Zn(i)]2) = O( 1

n2γ1−γ2 )

�
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Remark 4.3. (Comparison of convergence and synchronization rates)
In the case λ1 > 0, λ2 > 0, when γ1 < γ2, the L2 convergence rate of (Zn)n to 1

2 and the L2

rate of convergence of (Zn(i) − Zn)n to 0 are the same. However, when γ2 < γ1, we obtain that
synchronization happen faster than convergence.

Moreover in the case λ1 > 0, λ2 = 0 and when γ1 < γ2, the speed of convergence and synchro-
nization are the same (n−γ1). While when γ2 < γ1, the synchronization is faster than convergence.

Similarly, in the case λ1 = 0, λ2 > 0 and when γ1 ≤ γ2, the speed of convergence and synchro-
nization are the same (n−(2γ1−γ2)), while when γ2 < γ1, the speed of synchronization is faster than
convergence (n−(2γ1−γ2) and n−γ2 respectively).

4.2. Case of a shared random time-asymptotics. Unlike to the previous cases, the case λ1 = λ2 = 0
yields (Zn)n is a martingale. We will prove it leads to a random time-asymptotics Z∞ (Var(Z∞) >
0). We will study the system’s time-asymptotics behavior in a similar way as in the previous cases.
First we show that limn→∞Var(Zn) 6= 0. Second we prove that L2-synchronization holds. Third
we state the almost sure synchronization holds.

Theorem 4.4. When λ1 = λ2 = 0,
i) it holds (n → ∞) Var(Zn) > 0. In particular (Zn)n converges a.s. to a non-degenerated

random limit denoted by Z∞ (Var(Z∞) > 0).
ii) The L2-distance between the mean field Zn and each component Zn(i) behaves as follows,

E[(Zn(i)− Zn)2] = O
( 1

n2γ1−γ2

)
and synchronization holds almost surely. It means, for all i ∈ {1, . . . , N},
limn→∞ Zn(i) = Z∞ a.s.

�

5. Main results: fluctuations through CLT

In this section we study the fluctuations of (Zn(i) − Zn)n (synchronization) w.r.t 0 and also
fluctuations of (Zn)n w.r.t its limit Z∞. These are studied by stating Central Limit Theorems. Pay
attention to the fact that different scalings hold according to (γ1, γ2) relationship. We follow the
proof’s techniques initiated for these models in Crimaldi et al. (2016) based on Theorem A.5 in
Appendix, which leads to stable convergence results.

We first study cases where Z∞ = 1
2 . Theorems 5.1, 5.2 deal with the case λ1 > 0 and λ2 > 0.

Moreover, we show that there is some special regime when 0 < (c1λ1 + c2λ2) <
1
4 . The Theorem 5.3

describes the results of the cases where exactly one of the λj is 0.
Finally we state the behavior when Var(Z∞) > 0 in Theorem 5.4.
The following statements hold, where the generic symbol σ2 denotes the variances (depending on

N and λ1, λ2) make more precise in proofs. In the proofs of Sections 7 and 8 we used c1 = c2 = 1
to simplify. Following statements are nevertheless formulated in full generality.

Theorem 5.1. Let λ1 > 0, λ2 > 0; let γ∗ := min(γ1, γ2).
i) It holds

a) when γ1 ≤ γ2, n
γ1
2 (Zn − Zn(i))

stably−−−→
n→∞

N
(

0, σ̃21

)
,

b) when γ2 < γ1, n
2γ1−γ2

2 (Zn − Zn(i))
stably−−−→
n→∞

N
(

0, σ̃22

)
.

ii) When γ∗ < 1, it holds

n
γ∗
2 (Zn −

1

2
)

stably−−−→
n→∞

N
(

0, σ̂2
)
.

iii) When γ∗ = 1,
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a) if (c1λ1 + c2λ2) >
1

4
,
√
n(Zn −

1

2
)

stably−−−→
n→∞

N
(

0, σ∗
2

1

)
.

b) if (c1λ1 + c2λ2) =
1

4
,
√
n√

lnn
(Zn −

1

2
)

stably−−−→
n→∞

N
(

0, σ∗
2

2

)
.

�

Theorem 5.2. Let λ1 > 0, λ2 > 0. When γ∗ = 1 and when (c1λ1 + c2λ2) <
1

4
, the following

statement holds
n4(c1λ1+c2λ2)(Zn −

1

2
)
a.s./L1

−−−−→
n→∞

X̃,

for some real random variable X̃ such that P(X̃ 6= 0) > 0.

This regime is related to the known non gaussian fluctuation regime of the Friedman urn (see for
instance Th. 2.9 (ii) in Crimaldi et al. (2019) or Th. 4 and 5 in Sahasrabudhe (2016) were additive
assumptions need to be used).

Two other main cases leads to following results. For the sake of readability, the asymptotic
variances are detailed in the proofs.

Theorem 5.3. In the following cases: either (λ1 > 0, λ2 = 0) or (λ1 = 0, λ2 > 0), the stable
convergence towards some Gaussian distribution holds for the quantities (Zn−Zn(i))n and (Zn− 1

2)n.
The following tables summarizes the different scales according to the relationship between γ1, γ2. The
first table deals with γ∗ := min(γ1, γ2) < 1.

λ1 6= 0, λ2 = 0 λ1 = 0, λ2 6= 0

γ1 ≤ γ2 n
γ1
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃23

)
n

2γ1−γ2
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃24

)
n
γ1
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂21

)
n

2γ1−γ2
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂22

)
γ2 < γ1 n

2γ1−γ2
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃25

)
n

2γ1−γ2
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃26

)
n

2γ2−γ1
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂23

)
n
γ2
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂24

)
The following second table holds when γ∗ = 1. The indices i and j are different and belongs to

{1, 2}.

λi = 0, λj >
1
4 λi = 0, λj = 1

4 λi = 0, λj <
1
4

√
n(Zn − 1

2)
stably−−−→ N

(
0, σ∗

2

3

) √
n√

lnn
(Zn − 1

2)
stably−−−→ N

(
0, σ∗

2

4

)
n4(λ1+λ2)(Zn − 1

2)
a.s./L1

−−−−→ χ̃

Theorem 5.4. Assume λ1 = λ2 = 0. The stable convergence towards some Gaussian kernel holds
for the quantities (Zn − Zn(i))n and (Zn − 1

2)n with the following scalings.
(i) It holds

n
2γ1−γ2

2 (Zn − Zn(i))
stably−−−→
n→∞

N
(

0, ϑ Z∞(1− Z∞)
)
.

(ii) With γ∗ := min(γ1, γ2), it holds

n
2γ∗−1

2 (Zn − Z∞)
stably−−−→
n→∞

N
(

0, ϑ Z∞(1− Z∞)
)
,

where ϑ denotes a constant, whose dependency according to N , γ1, γ2 is given in the proofs. �

Remark 5.5. (analogous to Theorem 3.2 in Crimaldi et al. (2016)).
We have P(Z∞ = 0) + P(Z∞ = 1) < 1 and P(Z∞ = z) = 0 for each z ∈ (0, 1). Indeed, it

guarantees that these asymptotic Gaussian kernels are not degenerate.
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Proof : The first part immediately follows from the relation E[Z2
∞] < E[Z∞] by Lemma 7.2. The

second part is a consequence of the almost sure conditional convergence stated in Th. 5.4 (ii) (for
details see proof of Theorem 2.5 in Crimaldi et al., 2019). �

6. Stochastic approximation point of view

The recursive equations (1.1) may be written in the following stochastic approximation forms:

Zn+1(i) = Zn(i) + r`nλ1(1− 2Zn(i)) + r`n∆M̂ `
n+1(i)

+ rgnλ2(1− 2Zn) + rgn(Zn − Zn(i)) + rgn∆Mg
n+1 (6.1)

and
Zn+1 = Zn + (r`nλ1 + rgnλ2)(1− 2Zn) + r`n∆M `

n+1 + rgn∆Mg
n+1 (6.2)

where

∆M̂ `
n+1(i) := ξ`n+1(i)− E(ξ`n+1(i)|Fn), (6.3)

∆M `
n+1 :=

1

N

N∑
i=1

∆M̂ `
n+1(i), (6.4)

∆Mg
n+1 := ξgn+1 − E(ξgn+1|Fn) (6.5)

are martingale differences.
Similarly, it holds for Xn(i) := Zn − Zn(i),

Xn+1(i) = Xn(i)− (2λ1r
`
n + rgn)Xn(i) + r`n(∆M `

n+1 −∆M̂ `
n+1(i)). (6.6)

We refer to the general theorems about asymptotic behavior as stated in Laruelle and Pagès
(2013); Lasmar et al. (2018); Laruelle and Pagès (2019) and classical references therein like Duflo
(1997); Benaïm (1999). According to the cases either γ1 ≤ γ2 or γ2 < γ1 and λi = 0 or not
(i ∈ {1, 2}), then system Zn = (Zn(1), . . . , Zn(N))> satisfies the following framework.

Let Z = (Zn)n≥0 be an N -dimensional stochastic process with values in [0, 1]N , adapted to a
filtration F = (Fn)n≥0. Suppose that Z satisfies

Zn+1 = Zn + rnF(Zn) + rn∆Mn+1 + rnζn+1 , (6.7)

where (rn)n is such that (1.5) hold; F is a bounded C1 vector-valued function on an open subset O
of RN , with [0, 1]N ⊂ O; (∆Mn)n is a bounded martingale difference with respect to F ; and (ζn)n
is a [0, 1]N -valued Fn+1-adapted term such that limn→∞ ζn = 0 a.s. Thus a.s. convergence towards
zeros of F gives the a.s. convergence towards 1/2 when λ1 + λ2 > 0 or towards a value belonging
to the diagonal {z = (z1, . . . , zN ) ∈ [0, 1]N : ∀i ∈ {1, . . . , N}, zi = z1} when λ1 = λ2 = 0. The case
λ1 = λ2 = 0 leads to non isolated zeros of F which is not a case covered by the general stochastic
approximation theorems. The methods developped here, following Dai Pra et al. (2014); Crimaldi
et al. (2016) covers all parameters’ cases, including the one when λ1 = λ2 = 0; and they give L2

rates. These are useful to prove the scales of fluctuations stated in Section 5 thanks to CLT’s w.r.t
stable convergence Crimaldi (2016); Häusler and Luschgy (2015).

7. Proof of a.s. synchronization and rates of convergences

This section is devoted to the proofs of Th. 4.1, Th. 4.2, Th. 4.4. As discussed in Section 6 cases
need indeed to be distinguished according to the nullity of λ1, λ2 (λ1 + λ2 > 0 or λ1 = λ2 = 0).
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7.1. First results about the variances. First remark the assumption ∀i ∈ {1, . . . , N}, Z0(i) = 1
2

leads to ∀n ∈ N, E(Zn) = E(Zn(i)) = 1
2 thanks to (2.1) and (2.2). We then state the following

relationships.

Proposition 7.1. The following recursive equation hold:

Var(Zn+1) = [1− 4
(
λ1r

`
n + λ2r

g
n − 2λ1λ2r

`
nr
g
n − λ21(r`n)2 − λ22(rgn)2 +

(rgn)2

4
(1− 2λ2)

2
)

]Var(Zn)

+
(r`n)2

N
[(1− 2λ1)

2
(1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
+ λ1 − λ21] +

(rgn)2

4
. (7.1)

Proof : From (1.1), we get

Zn+1 = (1− r`n − rgn)Zn +
r`n
N

∑
i

ξ`n+1(i) + rgnξ
g
n+1.

Using (1.1) and (1.2), we compute:

Var(Zn+1|Fn) = Var
[
(1− r`n − rgn)Zn +

r`n
N

∑
i

ξ`n+1(i) + rgnξ
g
n+1

∣∣∣Fn]
=

(r`n)2

N2

N∑
i=1

Var(ξ`n+1(i)|Fn) + (rgn)2Var(ξgn+1|Fn),

then using (2.1),(2.2) and the law of total variance (?), we have

Var(Zn+1)
?
= E[Var(Zn+1|Fn)] + Var[E(Zn+1|Fn)]

=
(r`n)2

N

[
(1− 2λ1)

2
(
E(Zn)− 1

N

N∑
i=1

E(Z2
n(i))

)
+ λ1 − λ21

]
+ (rgn)2

[
(1− 2λ2)

2(E(Zn)− E(Z2
n)) + λ2 − λ22

]
+ (1− 2λ1r

`
n − 2λ2r

g
n)2Var(Zn)

and using the fact Z0(i) = 1/2 leading to the result. �

Lemma 7.2. When λ1 = λ2 = 0, it holds limn→∞Var(Zn) < 1
4 . Moreover, supn E(Z2

n) <
1

2
. �

Remark this implies

lim
n→∞

(1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
> 0. (7.2)

Proof : Since for all i, E(Z2
n(i)) ≤ E(Zn(i)) = 1

2 , it holds obviously Var(Zn) ≤ 1
4 . Using (7.1) with

λ1 = λ2 = 0 gives:

Var(Zn+1) =
(

1− (rgn)2
)
Var(Zn) +

(rgn)2

4
+

(r`n)2

N

(1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
.

Then using the fact that (1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
≤ 1

2
(7.3)

we have

Var(Zn+1) ≤
(
1− (rgn)2

)
Var(Zn) +

(rgn)2

4
+

(r`n)2

2N
.
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Let xn := Var(Zn) − 1
4 ≤ 0, one gets xn+1 ≤

(
1 − (rgn)2

)
xn + (r`n)

2

2N . With Kn = 1
2N , take

xn+1 =
(
1− (rgn)2

)
xn +Kn(r`n)2. Since

∑
n(rgn)2 < +∞, we obtain limn→∞ xn 6= 0 by lemma A.2.

As claimed, limn→∞Var(Zn) < 1
4 , that equivalents to limn E(Z2

n) < 1
2 .

Moreover, since E(Z2
n+1|Fn) = Z2

n + Var(Zn+1|Fn), it holds E(Z2
n+1|Fn) ≥ Z2

n so, (Z2
n)n

is a sub-martingale. Consequently, supn E(Z2
n) = limn E(Z2

n) < 1
2 . �

To treat the cases when (λ1, λ2) 6= (0, 0), we need the following lemma:

Lemma 7.3. If λ1 > 0 or λ2 > 0, then it holds limn→∞Var(Zn) = 0.
In particular, limn→∞Var(Zn) < 1/4 and

lim
n→∞

(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))) > 0.

�

Proof : We re-write (7.1) as:

Var(Zn+1) = (1− 4εn)Var(Zn) +K1
n(r`n)2 +

(rgn)2

4
,

where

εn := λ1r
`
n + λ2r

g
n − 2λ1λ2r

`
nr
g
n − λ21(r`n)2 − λ22(rgn)2 +

(rgn)2

4
(1− 2λ2)

2,

and

K1
n :=

1

N

[
(1− 2λ1)

2
(1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
+ λ1 − λ21

]
.

In all the considered cases,
∑

n εn = +∞. Using (7.3), we get

0 ≤ K1
n ≤

1

2
(1− 2λ1)

2 + λ1 − λ21 ≤ 1.

It follows Var(Zn) ≤ yn where (yn)n is the sequence defined in the proof of lemma A.1 (see (A.3))
with the same εn and Kδn is 1

N (r`n)2 + (rgn)
2

4 . Thus, using Lemma A.1, we get limn→∞Var(Zn) = 0.
Remark that using the same argument as previously, (Z2

n)n≥0 is a sub-martingale. Thus we get

supn E(Z2
n) <

1

2
as claimed. �

7.2. Proofs of L2 and a.s. convergence. We now prove the theorems of Section 4 about convergence
and synchronization.

Proof : Theorem 4.1 (i)
♣ First consider the equation (7.1) summarized as

Var(Zn+1) = (1− 4λr∗n + o(r∗n))Var(Zn) +Kn(r∗n)2 + o((r∗n)2),

where λ =

{
λ1 if γ1 < γ2

λ2 if γ1 > γ2
. and r∗n = 1

nγ∗ .

We now give the values of A and Kn, depending on γ1, γ2, λ1 and λ2 for which this equation
holds, and show how one can apply Lemma A.1 in all different cases.
•When γ1 < γ2, then A = 4λ1 and

Kn =
1

N
((1− 2λ1)

2(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))) + λ1 − λ21)



12 Pierre-Yves Louis and Meghdad Mirebrahimi

is bounded and limn→∞Kn > 0. Indeed, since E(Z2
n) < 1

2 , we get
N∑
i=1

E(Z2
n(i)) = E(Z2

n(j)) +
N−1∑

i=1, i6=j
E(Z2

n(i)) <
1

2
+
N − 1

2
=
N

2
.

By Lemma A.1 we get limn→∞Var(Zn) = 0. Moreover, by Lemma A.2, it holds Var(Zn) = O( 1
nγ1 ).

•When γ1 > γ2, it holds A = 4λ2 andKn = 1
4 thus, by Lemma A.1 it holds limn→∞Var(Zn) = 0

and Var(Zn) = O( 1
nγ2 ) by Lemma A.2.

•When γ1 = γ2(=: γ), we have

Var(Zn+1) =
(

1− 4(λ1 + λ2)rn − ((2λ1 + 2λ2)
2 − (1− 2λ2)

2)r2n

)
Var(Zn) + r2nKn

where A = 4(λ1 + λ2) and

Kn =
1

N
((1− 2λ1)

2(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))) + λ1 − λ21 +

N

4
),

which is bounded and limn→∞Kn > 0, which implies by Lemma A.1 limn→∞Var(Zn) = 0 where by
Lemma A.2, it holds Var(Zn) = O( 1

nγ ). In the case γ = 1 and λ1+λ2 = 1
4 , Var(Zn) = O( lognn ). �

Proof : Theorem 4.1 (ii)
Consider the following recursive equation satisfied, for any i ∈ {1, . . . , N}, by the L2-distance

between one component and the mean field. For symmetry reasons, the following quantity xn does
not depend on the specific choice of the component i. With

xn := E[(Zn(i)− Zn)2] = Var(Zn(i)− Zn),

recall ? means law of total variation and it holds

xn+1
?
= E(Var[(1− r`n − rgn)(Zn(i)− Zn) + r`n(ξ`n(i)− 1

N

∑
j

ξ`n(j))
∣∣∣Fn])

+ Var
[
Zn(i)− 2λ1r

`
nZn(i) + rgn(Zn(i)− (1− 2λ2)Zn)− Zn(1− 2λ1r

`
n − rgn)

]
= (r`n)2E

[
Var(ξ`n(i)− 1

N

∑
i

ξ`n(i)|Fn)
]

+ Var
(

(1− 2λ1r
`
n − rgn)(Zn(i)− Zn)

)
= (1− 2λ1r

`
n − rgn)2Var(Zn(i)− Zn) + (r`n)2

(
(1− 1

N
)2 + (

N − 1

N2
)
)
E
[
Var(ξ`n(i)|Fn)

]
= (1− 2λ1r

`
n − rgn)2xn

+
N − 1

N
(r`n)2

[
(1− 2λ)2[E(Zn(i))− E(Z2

n(i))] + λ1 − λ21
]

Therefore we obtain

xn+1 =
(

1− 4λ1r
`
n − 2rgn + 4λ21(r

`
n)2 + (rgn)2 + 2λ1r

`
nr
g
n

)
xn + (r`n)2Jn, (7.4)

where Jn = N−1
N

(
(1− 2λ1)

2[12 − E(Z2
n(i))] + λ1 − λ21

)
is bounded and not equal zero for N > 1.

(a) When γ1 < γ2 the relation (7.4) gives xn+1 = [1− 4λ1r
`
n− o(r`n)]xn + (r`n)2Jn. It implies by

Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O( 1
nγ1 ) where A = 4λ1c1.

When γ1 = γ2, we have from (7.4)

xn+1 = [(1− rn − 2λ1rn)2]xn + r2nJn = [1− (2 + 4λ1)rn + o(rn)]xn + r2nJn
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which implies by Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O( 1
nγ ) where

A = 2 + 4λ1.

(b) When γ2 < γ1, xn+1 = (1 − 2rgn + o(rgn))xn + Jn(r`n)2 where A = 2 implies by Lemma A.1
limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O( 1

n2γ1−γ2 ).

�

Proof : (iii) Theorem 4.1
• To prove that, in this case, a.s. convergence holds towards 1/2, we use (6.2) and consider

E[(Zn+1 −
1

2
)2|Fn] = (Zn −

1

2
)2[1 + 4(r`n)2λ21 + 4(rgn)2λ22 − 4r`nλ1 − 4rgnλ2 + 4r`nr

g
nλ1λ2]

+ (r`n)2E[(∆M `
n+1)

2|Fn] + (rgn)2E[(∆Mg
n+1)

2|Fn]

= (Zn −
1

2
)2
[
1− 4r`nλ1 − 4rgnλ2 + o(r`n) + o(rgn)

]
+ (r`n)2W `

n + (rgn)2W g
n .

with W `
n := 4λ21(Zn − 1

2)2 + E[(∆M `
n+1)

2|Fn] and W g
n := 4λ22(Zn − 1

2)2 + E[(∆Mg
n+1)

2|Fn].

Thus, E[(Zn+1 − 1
2)2|Fn] ≤ (Zn − 1

2)2 + (r`n)2W `
n + (rgn)2W g

n . Since (γ1, γ2) ∈ (1/2, 1]2, we get
that ((Zn+1 − 1

2)2)n is a positive almost super-martingale and a.s. convergence holds. It is enough
to consider L2 convergence in order to identify the (deterministic) limit.

E(E[(Zn+1 −
1

2
)2|Fn]) = E(Zn −

1

2
)2
[
1− 4r`nλ1 − 4rgnλ2 + 4r`nr

g
nλ1λ2

]
+ (r`n)2K`

n + (rgn)2Kg
n.

With yn := E(Zn − 1
2)2, one gets

yn+1 =
(

1− 4r`nλ1 − 4rgnλ2 + λ21(r
`
n)2 + λ22(r

g
n)2 + 4r`nr

g
nλ1λ2

)
yn + (r`n)2K`

n+1 + (rgn)2Kg
n+1 (7.5)

where 0 < K`
n+1 := E[(∆M `

n+1)
2] ≤ 1, and 0 < Kg

n+1 := E[(∆Mg
n+1)

2] ≤ 1. By lemma A.1 we get
limn→∞ yn = 0.

• When γ1 = γ2, the proof holds similarly. Indeed,

E[(Zn+1 −
1

2
)2|Fn] = (Zn −

1

2
)2[1− 2rn(λ1 + λ2)]

2 + r2nE[∆M̃n+1(i)
2|Fn].

Thus, E[(Zn+1− 1
2)2|Fn] ≤ (Zn−

1

2
)2+r2nW̃n, where W̃n = 4(λ1+λ2)

2(Zn− 1
2)2+E[(∆M̃n+1(i))

2|Fn].

To prove the a.s. synchronization, use (6.6) with Xn(i) := Zn(i) − Zn which means in the
considered case E(Xn+1(i)|Fn) = (1 − 2λ1r

`
n − r

g
n)Xn(i). Thus, we obtain E(Xn+1(i)|Fn) ≤ Xn(i)

and therefore (Zn(i)− Zn)n is a bounded super-martingale and its a.s. limit exists. �

Proof : Theorem 4.2

As expected, we shall consider two different situations of nullity or not for λ1, λ2 and different
relationships between γ1 and γ2.

The proof of following cases follows along the same arguments as above. We only sketch the proof
and list the essential elements below. Then it is easy to get the results.

♣ Case λ1 6= 0, λ2 = 0.
Consider the recursive equations (7.1) and (7.4) and letting λ2 = 0 satisfied by Var(Zn) and L2-
distance respectively.
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• Case γ1 < γ2. To study the variance,

Var(Zn+1) = [1− 4λ1r
`
n + o(r`n)]Var(Zn) +Kn(r`n)2,

where Kn = 1
N

(
(1− 2λ1)

2(12 −
1
N

∑N
i=1 E(Z2

n(i))) + λ1 − λ21
)
and with A = 4λ1.

To study the synchronization,

xn+1 = (1− 4λ1r
`
n + o(r`n))xn + Jn(r`n)2,

where Jn = N−1
N ((1− 2λ1)

2[12 − E(Z2
n(i))] + λ1 − λ21) and with A = 4λ1.

• Case γ2 < γ1. To study the variance

Var(Zn+1) = (1− 4λ1r
`
n)Var(Zn) +Kn(rgn)2,

where Kn =
1

4
with A = 4λ1.

To study the L2-distance’s behavior, xn+1 = (1− 2rgn + o(rgn))xn + Jn(r`n)2 with A = 2.

To prove that a.s. convergence holds towards 1/2 consider to equation (6.2) and let λ2 = 0,

E[(Zn+1 −
1

2
)2|Fn] =

(
Zn −

1

2

)2[
1− 4r`nλ1

]
+ (r`n)2W `

n + (rgn)2W g
n

where W `
n := 4λ21

(
Zn − 1

2

)2
+ E[(∆M `

n+1)
2|Fn] and W g

n := E[(∆Mg
n+1)

2|Fn].

• Case γ1 = γ2(=: γ). To study the variance,

Var(Zn+1) = (1− 4λ1rn + o(rn))Var(Zn) +Knr
2
n,

where Kn = 1
N

(
(1− 2λ1)

2
(
1
2 −

1
N

∑N
i=1 E(Z2

n(i))
)

+ λ1 − λ21 + N
4

)
and with A = 4λ1.

To study the L2-distance’s, xn+1 = (1− (2 + 4λ1)rn + o(rn))xn + Jnr
2
n with A = (2 + 4λ1).

To prove limn→∞ Zn = 1
2 a.s., E[

(
Zn+1− 1

2

)2|Fn] =
(
Zn− 1

2

)2
[1− 2rnλ1]

2 + r2nE[∆M̃n+1(i)
2|Fn].

Finally, to prove the a.s. synchronization, using (6.6), E(Xn+1(i)|Fn) = (1− 2λ1r
`
n − r

g
n)Xn(i).

♣ Case λ1 = 0, λ2 6= 0.

• Case γ1 < γ2. To study the variance,

Var(Zn+1) = (1− 4λ2r
g
n + o(rgn))Var(Zn) +Kn(r`n)2,

where Kn = 1
N

(
1
2 −

1
N

∑N
i=1 E(Z2

n(i))
)
and with A = 4λ2.

To study the L2-distance, xn+1 = (1− 2rgn + o(rgn))xn + Jn(r`n)2, with A = 2.

• Case γ2 < γ1. To study the variance,

Var(Zn+1) = (1− 4λ2r
g
n + o(rgn))Var(Zn) +Kn(rgn)2,

where Kn = 1
4 and with A = 4λ2.

To study the L2-distance, xn+1 = (1− 2rgn)xn + Jn(r`n)2, where A = 2.

To prove limn→∞ Zn = 1
2 a.s.,

E[(Zn+1 −
1

2
)2|Fn] =

(
Zn −

1

2

)2[
1− 4rgnλ2

]
+ (r`n)2W `

n + (rgn)2W g
n .

where W `
n := E[(∆M `

n+1)
2|Fn] and W g

n := 4λ22(Zn − 1
2)2 + E[(∆Mg

n+1)
2|Fn].

• Case γ1 = γ2 =: γ. To study the variance

Var(Zn+1) = (1− 4λ2rn + o(rn)Var(Zn) +Knr
2
n,
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where Kn = 1
N

(
(12 −

1
N

∑N
i=1 E(Z2

n(i))) + N
4

)
and with A = 4λ2.

To study the L2-distance, xn+1 = (1− 2rn + o(rn)xn + Jnr
2
n,.

To prove limn→∞ Zn = 1
2 a.s. E[

(
Zn+1 − 1

2

)2
|Fn] =

(
Zn − 1

2

)2
[1− 2rnλ2]

2 + r2nE[∆M̃n+1(i)
2|Fn].

Finally, to prove the a.s. synchronization, E(Xn+1(i)|Fn) = (1− rgn)Xn(i). �

Proof : Theorem 4.4 (i)
When λ1 = λ2 = 0, (Zn)n is a bounded martingale which therefore converges a.s. to a random

variable Z∞. On the other hand, by Lemma 7.2, Var(Z∞)n <
1
4 . Remark, it means we do not have

Z∞ ∈ {0, 1} a.s. which is a behavior that may happen with some reinforcements like in reinforced
random walks.

Let us use γ∗ = min(γ1, γ2) and r∗n := max(r`n, r
g
n),

Var(Zn+1) = (1− (rgn)2

4
)Var(Zn) +Kn(r∗n)2,

with the following developments.

• When γ1 < γ2, then A = 1 and Kn = 1
N [
(
1
2 −

1
N

∑N
i=1 E(Z2

n(i))
)

] is bounded and not equal

zero. Indeed, since E(Z2
n) < 1

2 by Lemma 7.2, we get

N∑
i=1

E(Z2
n(i)) = E(Z2

n(j)) +
N−1∑

i=1, i6=j
E(Z2

n(i)) <
1

2
+
N − 1

2
=
N

2
.

Using the first part of Lemma A.2, since
∑

n(rgn)2 < +∞ we get Var(Zn) > 0.
• When γ2 < γ1 then, A = 1 and Kn = 1

4 , thus, by the first part of Lemma A.2, we get
Var(Zn) > 0.

•When γ1 = γ2(=: γ),

Var(Zn+1) = (1− r2n)Var(Zn) +Knr
2
n,

where Kn = 1
2 −

1
N

∑N
i=1 E(Z2

n(i)) + N
4 which using Lemma A.1 implies Var(Zn) > 0, where A = 1.

�

Proof : Theorem 4.4 (ii)
To study the synchronization phenomenon, we consider the L2-distance xn between Zn(i) and Zn.

xn+1 = (1− 2rgn + (rgn)2)xn + (r`n)2Jn

where Jn = N−1
N (12−

1
NE(Z2

n(i))) is bounded and not equal zero for N > 1 and then A = 2. Thus, by
Lemma A.1 it holds limn→∞ xn = 0 and Lemma A.2 yields xn = O( 1

n2γ1−γ2 ), meaning in particular
that the L2-synchronization holds as n→∞.

Moreover when γ1 = γ2, xn+1 = (1− 2rn)xn + Jnr
2
n we get xn = O( 1

nγ ).

Finally, using (6.6) where Xn(i) := Zn(i)− Zn, it follows E(Xn+1(i)|Fn) = (1− rgn)Xn(i). Thus,
we get E(Xn+1(i)|Fn) ≤ Xn(i). As bounded super-martingale, (Zn(i)− Zn)n converges a.s. �
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8. Proofs of the CLTs

We now prove the central limit theorems in order to study the scales of the fluctuations. Recall
we are using the notation an ' bn when limn→∞

an
bn

exists and is a constant. We will use Th. A.5

in order to prove the CLT’s w.r.t. stable convergence.

8.1. Proofs of the CLTs (Theorem 5.1). Consider the following definitions.
Define Xk(i) := Zk − Zk(i). Set L0(i) = X0(i) and define

Ln(i) := Xn(i)−
n−1∑
k=0

(E[Xk+1(i)|Fk]−Xk(i)). (8.1)

As (6.6), we get
Xn+1(i) = [1− 2λ1r

`
n − rgn]Xn(i) + ∆Ln+1(i) (8.2)

where ∆Ln+1(i) := Ln+1(i)−Ln(i). Note that (Ln)n is an F-martingale by construction. Iterating
the above relation, we can write

Xn(i) = c1,nX1(i) +
n−1∑
k=1

ck+1,n∆Lk+1(i) (8.3)

where cn,n = 1 and ck,n =
∏n−1
h=k(1− 2λ1r

`
h − r

g
h) for k < n.

Proof : Theorem 5.1 (i-a)

Case γ1 < γ2. Note that in this case γ1 6= 1 because (γ1, γ2) ∈ (1/2, 1].
We get limn→∞ n

γ1
2 c1,n = 0 since,

c1,n =
n−1∏
h=1

[1− 2λ1r
`
h − r

g
h] =

n−1∏
h=1

[1− 2λ1c1
hγ1

− c2
hγ2
−O(

1

h2γ1
)]

= exp[−
n−1∑
h=1

(2λ1c1
hγ1

− c2
hγ2

+O(1)
)

]

= O
(

exp[− 2λ1c1
1− γ1

n1−γ1(1− c2
1− γ2

1− γ1
2λ1c1

1

nγ2−γ1
)]
)

= O
(

exp(
−2λ1
1− γ1

n1−γ1)
)
.

Therefore, using the same argument as previously for ck,n we obtain

ck,n =

n−1∏
h=k

[1− 2λ1r
`
h − r

g
h] = O

(
exp[− 2λ1c1

1− γ1
(n1−γ1 − k1−γ1)(1− c2

1− γ2
1− γ1
2λ1c1

1

nγ2−γ1
)]
)

= O
(

exp
[ −2λ1

1− γ1
(n1−γ1 − k1−γ1)

])
(agree with Lemma A.3).
It is then enough to prove the convergence n

γ1
2
∑

k ck+1,n∆Ln+1(i)→ N (0, (1− 1/N)/16λ1). First,
let us define Un,k = n

γ1
2 ck+1,n∆Lk+1(i) and Gn,k = Fk+1. Thus {Un,k,Gn,k : 1 ≤ k ≤ n} is a

square-integrable martingale difference array.
Indeed we have E(U2

n,k) < +∞ and E(Un,k+1|Gn,k) = n
γ1
2 ck+1,nE(∆Lk+1(i)|Fk+1) = 0. In order to

conclude, we use the Theorem recalled as Th. A.5. We will prove the following three statements for
Un,k := n

γ1
2 ck+1,n∆Lk+1(i).
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a) max1≤k≤n |Un,k| → 0.
b) E[max1≤k≤n U

2
n,k] is bounded in n.

c)
∑n

k=1 U
2
n,k → (1− 1/N)/16λ1 a.s.

• It holds a) since ∆Ln+1(i)− (Xn+1(i)−Xn(i)) = 2λ1Xn(i) n−γ1 , |∆Ln+1(i)| = O(n−γ1).

• To state b), we use a) and

E[ max
1≤k≤n

U2
n,k] ≤ E[

n∑
k=1

U2
n,k]

= nγ1
n∑
k=1

c2k+1,nE[(∆Lk+1(i))
2]

' nγ1
n∑
k=1

e
−4λ1
1−γ1

(n1−γ1−k1−γ1 )O(k−2γ1)

= nγ1e
−4λ1
1−γ1

n1−γ1
n−1∑
k=1

e
4λ1
1−γ1

k1−γ1O(k−2γ1) +
n2O(n−2γ1)

n
.

Thus, E[max1≤k≤n U
2
n,k] is bounded in n.

• Finally, in order to prove c), we have

n∑
k=1

U2
n,k = nγ1

∑
k

c2k+1,n(∆Ln+1(i))
2 ' nγ1

n∑
k=1

k−2γ1e
4λ1
1−γ1

k1−γ1

e
4λ1
1−γ1

n1−γ1
(∆Lk+1(i))

2k2γ1 .

From a) we obtain

∆Lk+1(i)
2 = (Xk+1 −Xk + 2λ1r

`
kXk)

2

= [(Zk+1 − Zk)− (Zk+1(i)− Zk(i))]2 + 4λ21(r
`
k)

2(Zk − Zk(i))2

+ (r`k)(Zk − Zk(i))[(Zk+1 − Zk)− (Zk+1(i)− Zk(i))].

Since Zn − Zn(i)→ 0 a.s. and (r`k)
2X2

k = O(k−2γ1) thus,
n∑
k=1

U2
n,k = nγ1

n∑
k=1

c2k+1,n[(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))].

Let Vk = k2γ1 [(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))] and setting the

sequences bn := 1
nγ1 e

+4λ1
n1−γ1
1−γ1 and ak := k2γ1

c21,n
e
−4λ1 k

1−γ1
1−γ1 . Hence, it holds

1

bn

∑n
k=1

1

ak
−−−→
n→∞

1

4λ1
. Indeed,

lim sup
n

1

bn

n∑
k=1

1

ak
= lim sup

n
nγ1e

−4λ1
1−γ1

n1−γ1
∫ n

1
u−2γ1e

4λ1
u1−γ1
1−γ1 du

= lim sup
n

(
1

4λ1
+
γ1n

γ1

4λ1
e−4λ1

n1−γ1

1− γ1

∫ n

1

1

u1+γ1
e
4λ1

u1−γ1
1−γ1 du) =

1

4λ1
.

The same holds for the limit inferior. Then limn
1

bn

∑n
k=1

1

ak
=

1

4λ1
. It implies by Lemma A.4,

that
∑n

k=1 U
2
n,k converges to

V
4λ1

a.s., where V is (deterministic random variable) defined as limk E(Vk+1|Fk) =
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V. Indeed, we compute

E(k2γ1(Zk+1(i)− Zk(i))2|Fk) =

k2γ1
(

(r`k)
2E((ξ`k+1(i)− Zk(i))2|Fk) + (rgk)

2E((ξgk+1 − Zk(i))
2|Fk)

+ 2r`kr
g
kE
(

(ξ`k+1(i)− Zk(i))(ξ
g
k+1 − Zk(i))|Fk

))
= k2γ1

(
(r`k)

2(Var(ξ`k+1(i)|Fk) + E((ξ`k+1(i)− Zk(i))2|Fk)) + (rgk)
2
(
Var(ξgk+1|Fk) + E((ξgk+1 − Zk(i))

2|Fk)
)

+ 2r`kr
g
kE
(

(ξ`k+1(i)− Zk(i))(ξ
g
k+1 − Zk(i))|Fk

))
which behaves like k2γ1(

(r`k)
2

4 +
(rgk)

2

4 ) when k →∞. Similarly,

E[k2γ1(Zk+1 − Zk)2|Fk] = k2γ1
(

(r`k)
2E
[
(

1

N

∑
i

ξ`k+1(i)− Zk)2|Fk
]

+ (rgk)
2E
[
(ξgk+1 − Zk)

2|Fk
]

+ 2r`kr
g
kE
[
(

1

N

∑
i

ξ`k+1(i)− Zk)(ξ
g
k+1 − Zk)|Fk

])
= k2γ1

(
(r`k)

2
(
Var[

1

N

∑
i

ξ`k+1(i)|Fk] + E2(
1

N

∑
i

ξ`k+1(i)− Zk|Fk)
)

+ (rgk)
2
(
Var[ξgk+1|Fk] + E2(ξgk+1 − Zk|Fk)

)
+ 2r`kr

g
kE
[
(

1

N

∑
i

ξ`k+1(i)− Zk)(ξ
g
k+1 − Zk)|Fk

])
behaves like k2γ1(

(r`k)
2

4N +
(rgk)

2

4 ) when k →∞. And it holds

E[k2γ1(Zk+1 − Zk)(Zk+1(i)− Zk(i))|Fk] =

k2γ1((r`k)
2E
[
(ξ`k+1(i)− Zk(i))(

1

N

∑
i

ξ`k+1(i)− Zk)|Fk
]

+ (rgk)
2E
[
(ξgk+1 − Zk(i))(ξ

g
k+1 − Zk)|Fk

]
)

which behaves like k2γ1(
(r`k)

2

4N +
(rgk)

2

4 ). It follows

E(Vk+1|Fk) = k2γ1 [(r`k)
2
(
Var[ξ`k+1(i)|Fk] + Var[

1

N

∑
i

ξ`k+1(i)|Fk]

−2E
[
(ξ`k+1(i)− Zk(i))

( 1

N

∑
i

ξ`k+1(i)− Zk
)∣∣∣Fk])]

a.s−−→ 1

4
(1− 1

N
).

Thus, Vk
a.s−−→ 1

4(1− 1
N ) and therefore, σ̃21 =

(1− 1
N
)

16λ1
.

The proof of next parts follows similarly as previously. We sketch the proofs and mention the
essential steps below.

• Case γ1 = γ2(=: γ).
We obtain c1,n = O

(
exp[−(1+2λ1)

1−γ n1−γ ]
)
. Therefore limn→∞ n

γ
2 c1,n = 0.

Let bn = 1
nγ e

2(1+2λ1)
1−γ n1−γ

, ak = k2γ

c21,n
e
− 2(1+2λ1)

1−γ k1−γ and
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Vk = k2γ [(Zk+1−Zk)2+(Zk+1(i)−Zk(i))2−2(Zk+1−Zk)(Zk+1(i)−Zk(i))]. Therefore, σ̃21 =
(1− 1

N
)

4(1+2λ1)
.

• Case γ1 = γ2 = 1.
We obtain c1,n :=

∏n
h[1− (1 + 2λ1)rh] = O(n−(1+2λ1)). Then

√
nc1,n → 0.

Let bn := n1+4λ1 , ak := k−4λ1 and
Vk = k2[(Zk+1−Zk)2+(Zk+1(i)−Zk(i))2−2(Zk+1−Zk)(Zk+1(i)−Zk(i))]. Therefore, σ̃21 =

(1− 1
N
)

2(1+4λ1)
.

Proof of Theorem 5.1 (i-b)
Since c1,n =

∏n−1
h=1[1− 2λ1r

`
h − r

g
h] = O(exp[ −11−γ2n

1−γ2 ]) therefore, nγ1−
γ2
2 c1,n → 0.

Let bn := n−(2γ1−γ2) exp( 2
1−γ2n

1−γ2) and ak := k2γ1c−21,n exp(− 2
1−γ2k

1−γ2) and
Vk = k2γ1 [(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))].
Therefore, σ̃22 = 1

8(1− 1
N ).

Proof of Theorem 5.1 (ii)

•When γ1 < γ2, let Xk := Zk −
1

2
so,

Ln = Xn −
n−1∑
k=0

(
E(Zk+1 −

1

2
|Fk)− (Zk −

1

2
)
)

= Xn + 2(λ1r
`
n + λ2r

g
n)

n−1∑
k=0

Xk

andXn+1 = [1−2λ1r
`
n−2λ2r

g
n]Xn+∆Ln+1. So c1,n = O(exp[−2λ11−γ1 n

1−γ1 ]) and therefore n
γ1
2 c1,n −→ 0.

Let bn := 1
nγ1 e

4λ1
1−γ1

n1−γ1
and ak := k2γ1

c21,n
e
−4λ1
1−γ1

k1−γ1 and Vk = k2γ1(Zk+1 − Zk)2 therefore, σ̂2 = 1
16λ1

.

•When γ2 < γ1, it holds c1,n = O(exp[−2λ21−γ2 n
1−γ2 ]) and therefore n

γ2
2 c1,n −→ 0.

Let bn := 1
nγ2 e

4λ2
1−γ2

n1−γ2
, ak := k2γ2

c21,n
e
−4λ2
1−γ2

k1−γ2 and Vk = k2γ2(Zk+1 − Zk)2 therefore, σ̂2 = 1
16λ2

.

•When γ1 = γ2(=: γ), it holds c1,n = O(exp[−2(λ1+λ2)1−γ n1−γ ]) and therefore n
γ
2 c1,n → 0.

Let bn = 1
nγ e

4(λ1+λ2)
1−γ n1−γ1 , ak = k2γ

c21,n
e
−4(λ1+λ2)

1−γ k1−γ and Vk = k2γ(Zk+1 − Zk)2.

Therefore, σ̂2 = 1
16(λ1+λ2)

.

Proof of Theorem 5.1 (iii)

• When γ1 = γ2 = 1, it holds c1,n =
∏n
h[1 − 2(λ1 + λ2)rh] = O(n−2(λ1+λ2)). We then consider

the following sub-cases.
- When (λ1 + λ2) >

1
4 ,
√
n c1,n = n−2(λ1+λ2)+

1
2 −→ 0 then we get

ck,n = O
((k
n

)2(λ1+λ2)).
Moreover,

∑
k U

2
k,n = n

∑
k(
k
n)4(λ1+λ2)(∆Lk+1)

2k2k−2 and therefore using A.4 taking suitable (an)n

and (bn)n, 1
bn

∑n
k=1

1
ak
→ 1

1−4(λ1+λ2) and thus, (∆Ln+1)
2 = (Zk+1 − Zk)2 then

limk→∞ k
2E((Zk+1 − Zk)2|Fk) = 1

4 a.s. and therefore, σ∗21 = 1
4(1−4(λ1+λ2)) .

-When λ1+λ2 = 1
4 , it holds

√
n(log n)−

1
2 c1,n −→ 0. So ck,n = ( kn)

1
2 and Uk,n =

√
n√

logn
ck+1,n∆Lk+1

and
∑n

k=1 U
2
k,n = n

logn

∑n
k=1(

k
n)(∆Lk+1)

2 = 1
logn

∑
k

1
kk

2(∆Lk+1)
2. Using Lemma A.4 leads to con-

clusion with σ∗22 = 1
4 . �



20 Pierre-Yves Louis and Meghdad Mirebrahimi

8.2. Proofs of the CLTs (Theorem 5.2). We now prove Theorem 5.2.

Proof : Let us define X̃n := n4(λ1+λ2)(Zn −
1

2
). Recall we state c1 = c2 = 1 for simplicity. Since

E[X̃2
n] <∞, it is therefore enough to show that (X̃n)n is a quasi-martingale. Indeed, we have

∑
k

E(|E[X̃k+1|Fk]− X̃k]|) =
∑
k

E
(∣∣∣[(1 +

1

k
)4(λ1+λ2)(1− 2(λ1 + λ2)rk)− 1]X̃k

∣∣∣)
=
∑
k

O(
1

k2
)8(λ1 + λ2)

2E(|X̃k|) < +∞.

Moreover, from the computations carried out in the proof of Theorem 5.1, E(X̃2
n) < +∞ and so

it converges a.s and in L1 to some real random variable X̃.
In order to prove that P(X̃ 6= 0) > 0, we will prove that (X̃2

n)n is bounded in Lp for a suitable
p > 1. Indeed this fact implies that X̃2

n converges to X̃2 and so we obtain E(X̃2) = limn E(X̃2
n) =

limn n
4(λ1+λ2)E(X2

n) > 0. To this purpose, we set p = 1 + ε/2, with ε > 0 and zn := E(|Xn|2+ε).
Using the following recursive equation:

Xn+1 = (1− 2rn)Zn +
rn
N

N∑
i=1

ξ̃k+1 −
1

2

one gets

zn+1 = E(|Xn|2+ε)− (2 + ε)rn2ZnE(|Xn|1+ε)

+ (2 + ε)rnE
[
|Xn|1+ε sign(Xn) (Xn)(

1

N

N∑
i

ξ̃k+1(i))
]

+Rn

where Rn = O(n−2). Now since E[ 1
N

∑
i ξ̃n+1(i)|Fn] = 2Zn − 2(λ1 + λ2)(Zn − 1

2), we have

zn+1 = E(|Xn|2+ε)− 2(2 + ε)rnZnE(|Xn|1+ε)
+ (2 + ε)rnE[|Xn|1+ε sign(Xn) (2Zn − 2(λ1 + λ2))Xn] +Rn

= E(|Xn|2+ε)− (2 + ε)rn2(λ1 + λ2)E[|Xn|1+ε sign(Xn) (Xn)Xn] +Rn

= E(|Xn|2+ε)− (2 + ε)rn2(λ1 + λ2)E
(
|Xn|2+ε

)
+Rn

=
(

1− 2(λ1 + λ2)(2 + ε)rn

)
zn + g(n)

with g(n) = O(n−2). Therefore, we have

zn+1 =
(

1− 2(λ1 + λ2)(2 + ε)rn

)
zn + g(n).

Since, for ε > 0 sufficiently small, we have α(2 + ε) < 1 and for n large,
n−1∏
k=0

(
1− 2(λ1 + λ2)(2 + ε)rk

)
= exp[

n−1∑
k=0

(ln
(

1− 2(λ1 + λ2)(2 + ε)
c

kγ
+O(

1

k2γ
))
)

]

= O(exp[−2(λ1 + λ2)(2 + ε) lnn])

= O(n−2(λ1+λ2)(2+ε)).

Thus,

E[|Xn|(2+ε)] = O(
1

n2(λ1+λ2)(2+ε)
)
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which it implies that X̃2 is bounded in L1+ ε
2 . �

8.3. Proofs of the CLTs from Theorem 5.3.

Proof : We organize the proof in two main cases according to nullity of λ1 and λ2.

♣ Case λ1 6= 0, λ2 = 0.
In order to study the evolution of Xn(i) := (Zn − Zn(i)), we consider two sub-cases.

• When γ1 ≤ γ2, Xn+1(i) = (1 − 2λ1r
`
n)Xn(i) + ∆Ln+1(i) and the proof follows like the part

(i)(a) of Theorem 5.1 with σ̃23 =
(1− 1

N
)

16λ1
when γ1 < γ2, σ̃23 =

(1− 1
N
)

4(1+2λ1)
when γ1 = γ2 (denoted by γ)

and σ̃23 =
(1− 1

N
)

2(1+4λ1)
when γ1 = γ2 = 1.

•When γ2 < γ1, Xn+1(i) = (1− rgn)Xn(i) + ∆Ln+1(i), then the proof follows like part (i-b) of
Theorem 5.1 with σ̃25 = 1

8(1− 1
N ).

We further consider Xn := (Zn −
1

2
)n.

• When γ1 ≤ γ2, Xn+1 = (1 − rgn)Xn + ∆Ln+1, then the proof follows in a similar way as the
part (ii) of Theorem 5.1 with σ̂21 = 1

16λ1
when γ1 < γ2 and σ̂21 = 1

16(λ1+λ2)
when γ1 = γ2 = γ.

• When γ2 < γ1, the proof follows along the same lines as previously. We sketch the essential
arguments in the following. We have

Xn+1 = (1− 2λ1r
`
n)Xn + ∆Ln+1.

therefore, c1,n = O(e
−2λ1
1−γ1

n1−γ1
) and thus, nγ2−

γ1
2 c1,n → 0. Following the same steps as in the

previous proof. Only showing that
n∑
k=1

U2
n,k = n2γ2−γ1e

−4λ1
1−γ1

n1−γ1
n∑
k=1

k−2γ2e
4λ1k

1−γ1
1−γ1 k2γ2(∆Lk+1)

2

goes to a constant with limn→∞
1

bn

∑n
k=1

1

ak
=

1

4λ1
and k2γ2(∆Lk+1)

2 ' k2γ2(Zk+1 − Zk)2 '
1

4
.

Therefore, σ̂23 = 1
16λ1

.

♣ Case λ1 = 0, λ2 6= 0.
Concerning the evolution of (Zn − Zn(i)), for both cases γ1 ≤ γ2 and γ2 < γ1, it is proved

analogously as part (i)(b) of Theorem 5.1 with σ̃24 = σ̃26 = 1
8(1− 1

N ).

We now consider Xn :=
(
Zn −

1

2

)
n
.

• When γ1 ≤ γ2, the proof follows in a similar way. We sketch essential arguments below. We
have

Xn+1 = (1− 2λ2r
g
n)Xn + ∆Ln+1,

therefore it holds c1,n = O(e
−2λ2
1−γ2

n1−γ2
) and thus, nγ1−

γ2
2 c1,n → 0. It is enough to show that

n∑
k=1

U2
n,k = n2γ1−γ2e

−4λ2
1−γ2

n1−γ1
n∑
k=1

k−2γ1e
4λ2k

1−γ2
1−γ2 k2γ1(∆Lk+1)

2.

tends to a constant with limn
1

bn

∑n
k=1

1

ak
=

1

4λ2
and k2γ1(∆Lk+1)

2 ' k2γ1(Zk+1 − Zk)
2 ' 1

4
.

Therefore, σ̂22 = 1
16λ2

.
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The proof when γ2 < γ1 follows as in part (ii) of Theorem 5.1 with σ̂24 = 1
16λ2

.

• The case γ1 = γ2 = 1 is proven similarly as in part (iii) Theorem 5.1 with σ∗23 = 1
4(1−4(λ1+λ2))

when λ1 + λ2 >
1
4 , σ

∗2
4 = 1

4 when λ1 + λ2 = 1
4 and Theorem 5.2 when λ1 + λ2 <

1
4 .

�

8.4. Proofs of the CLTs from Theorem 5.4.

Proof :
Proof of Theorem 5.4 (i)
• Case γ1 6= γ2. Define Xk(i) := Zk − Zk(i). Set L0(i) = X0(i) and let us rewrite

Ln(i) = Xn(i)−
n−1∑
k=0

([1− rgk](Zk − Zk(i))− (Zk − Zk(i)))

= Xn(i) +
n−1∑
k=0

rgkXk(i).

Then Xn+1(i) = [1−rgn]Xn(i)+∆Ln+1(i). Note that (Ln(i))n is an F-martingale by construction.
Iterating the above relation, we can write Xn(i) = c1,nX1(i) +

∑n
k=1 ck+1,n∆Ln+1(i) where

cn+1,n = 1 and ck,n =
∏n
h=k[1− r

g
h] for k ≤ n. It holds c1,n =

∏n
h=1[1− r

g
h] = O(exp[ −11−γ2n

1−γ2 ]).

Then nγ1−
γ2
2 c1,n → 0 and ck,n = O(exp[ −11−γ2 (n1−γ2 − k1−γ2)]).

So it is enough to prove that nγ1−
γ2
2
∑

k ck+1,n∆Ln+1(i)→ N
(

0, (1− 1/N)(Z∞ − Z2
∞)
)
.

Again, this can be proved using Theorem A.5 for Un,k+1 = nγ1−
γ2
2
∑

k ck+1,n∆Ln+1(i) and proving
a), b) and c). It is easy to check that conditions a) and b) hold. Let us now consider 3). We have

n∑
k=1

U2
n,k = n2γ1−γ2

∑
k

c2k+1,n(∆Ln+1(i))
2 ' n2γ1−γ2

n∑
k=1

k−2γ1e
1

1−γ2
k1−γ2

e
1

1−γ2
n1−γ2

(∆Ln+1(i))
2k2γ1 .

From 1) we obtain

(∆Ln+1(i))
2 ' [(Zk+1 − Zk)− (Zk+1(i)− Zk(i))]2 + (rgk)

2(Zk − Zk(i))2

+ (rgk)
2(Zk − Zk(i))[(Zk+1 − Zk)− (Zk+1(i)− Zk(i))].

Since Zn − Zn(i)
a.s−−→ 0 and (rgk)

2Xk(i)
2 = O(k−2γ2) so,

n∑
k=1

U2
n,k = n2γ1−γ2

n∑
k=1

c2k+1,n[(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))]

where we use Lemma A.4 with bn := 1
n2γ1−γ2 e

2
1−γ2

n1−γ2
and ak := k2γ1

c21,n
e
− 2

1−γ2
k1−γ2 .

Let Vk = k2γ1 [(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))].
Thus limn→∞

1
bn

∑n
k=1

1
ak

= 1
2 . This implies that

∑n
k=1 U

2
n,k converges to V

2 a.s., where V is such
that limk→∞ E(Vk+1|Fk) = V. Indeed,

E(k2γ1(Zk+1(i)− Zk(i))2|Fk) = k2γ1(r`k)
2E[(ξ`k+1(i)− Zk(i))2|Fk]

= k2γ1(r`k)
2Var[ξ`k+1(i)|Fk]

= k2γ1(r`k)
2(Zk − Z2

k)
a.s−−→ Z∞ − Z2

∞.



Synch. and fluctuations, ind. and collective reinforcement 23

Similarly, E(k2γ1(Zk+1 − Zk)2|Fk)
a.s−−→ Z∞ − Z2

∞, and

E(k2γ1(Zk+1(i)− Zk(i))(Zk+1 − Zk)|Fk)
a.s−−→ Z∞ − Z2

∞
N

.

Thus, limk→∞ U
2
k = ϑ2(1− 1

N )(Z∞ − Z2
∞) a.s. where ϑ = 1

2 .

• Case γ1 = γ2(=: γ). We get c1,n =
∏n
h=1[1 − rh] = O(exp[ −11−γn

1−γ ]). Then n
γ
2 c1,n → 0.

Moreover limn→∞
1
bn

∑n
k=1

1
ak

= 1
2 and Vk = k2γ [(Zk+1 − Zk)

2 + (Zk+1(i) − Zk(i))
2 − 2(Zk+1 −

Zk)(Zk+1(i)− Zk(i))].
Thus, limk→∞ U

2
k = ϑ4(1− 1

N )(Z∞ − Z2
∞) a.s. where ϑ = 1

2 .

• Case γ1 = γ2 = 1. c1,n =
∏n
h=1[1− rh] = O(n−1). Then

√
n c1,n → 0. Choosing bn := n and

ak := 1 and let Vk = k2[(Zk+1−Zk)2 + (Zk+1(i)−Zk(i))2− 2(Zk+1−Zk)(Zk+1(i)−Zk(i))]. Thus,
limk→∞ U

2
k = ϑ4(1− 1

N
)(Z∞ − Z2

∞) a.s. where ϑ = 1.

Proof of Theorem 5.4 (ii)

• Case γ1 < γ2. The process (Zn)n is a (bounded) martingale. Therefore (Zn)n converges a.s.
We want to prove the following two statements

(1) E
[

supk k
γ1− 1

2 |Zk+1 − Zk|
]
< +∞;

(2) n2γ1−1
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 1

N(2γ1−1)(Z∞ − Z
2
∞).

Indeed, the first condition immediately follows from

|Zk+1 − Zk| = |r`n(
1

N

∑
i

ξ`k+1(i)− Zk) + rgn(ξgk+1 − Zk)| = O(k−γ1).

Concerning the condition 2), we observe that

n2γ1−1
∑
k≥n

(Zk+1 − Zk)2 = n2γ1−1
∑
k≥n

k−2γ1(r`k)
2(

∑
i ξk+1(i)

N
− Zk)2k2γ1

and so the desired convergence follows by lemma A.4 with ak := k−2γ1+2, bn := n2γ1−1 and
Uk = k2γ1(r`k)

2(
∑
k ξk+1(i)
N − Zk)2, limn→∞ bn

∑
k≥n

1
akb

2
k

= − 1
1−2γ1 so,

E
((∑

k ξk+1(i)

N
− Zk

)2∣∣F) = Var(
∑

k ξk+1(i)

N
|Fn) =

1

N
(Z∞ − Z2

∞).

Finally, we take ϑ = 1
(2γ1−1) .

• Case γ2 < γ1. We want to prove the following two statements

1) E
(

supk k
γ2− 1

2 |Zk+1 − Zk|
)
< +∞;

2) n2γ2−1
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 1

(2γ2−1)(Z∞ − Z
2
∞).

The first result immediately follows from

|Zk+1 − Zk| = |r`n(
1

N

∑
i

ξ`k+1(i)− Zk) + rgn(ξgk+1 − Zk)| = O(k−γ2).

To prove the second point, we observe that

n2γ2−1
∑
k≥n

(Zk+1 − Zk)2 = n2γ2−1
∑
k≥n

(r`k)
2k−2γ2

(∑N
i=1 ξk+1(i)

N
− Zk

)2
k2γ2
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and the desired convergence follows by lemma A.4 with ak := k2γ2+2, bn := n2γ2−1 and
Uk = k2γ2(rgk)

2(ξgk+1 − Zk)
2, limn→∞ bn

∑
k≥n

1
akb

2
k

= − 1
1−2γ2 and

E(ξgk+1(i)− Zk)
2|F) = Var(ξgk+1|F) = (Z∞ − Z2

∞).

Finally, we take ϑ = 1
(2γ2−1) .

• Case γ1 = γ2(=: γ). The process (Zn)n is a martingale and converges a.s. Indeed,

E(Zn+1|Fn) = (1− 2rn)Zn + rnE
(∑N

i=1 ξ̃n+1(i)

N
|Fn
)

= Zn.

We want to check the following two conditions:

1) E
[

supk k
γ− 1

2 |Zk+1 − Zk|
]
< +∞;

2) n2γ−1
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 2

N(2γ−1)(Z∞ − Z
2
∞).

The first result follows from

|Zk+1 − Zk| =
∣∣∣rn( 1

N

N∑
i=1

ξ̃k+1(i)− 2Zk)
)∣∣∣ = O(k−γ).

And for the second point, we observe that

n2γ−1
∑
k≥n

(Zk+1 − Zk)2 = n2γ−1
∑
k≥n

r2kk
−2γ
(∑

i ξ̃k+1(i)

N
− Zk

)2
k2γ

and so the desired convergence follows by lemma A.5 with ak := k−2γ+2, bn := n2γ−1 and

Uk = k2γr2k

(∑
i ξ̃k+1(i)

N
− 2Zk

)2
,

limn→∞ bn
∑

k≥n
1

akb
2
k

= − 1
1−2γ , and E

[(∑N
i=1 ξ̃k+1(i)

N
− 2Zk

)2
|Fk
]

=
2

N
(Z∞ − Z2

∞). Finally, we

have ϑ = 1
(2γ−1) .

• Case γ1 = γ2 = 1. As usual, we prove

1) E
[

supk k
1
2 |Zk+1 − Zk|

]
< +∞;

2) n
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 2

N (Z∞ − Z2
∞).

First result follows from

|Zk+1 − Zk| = |rn(
1

N

N∑
i=1

ξ̃k+1(i)− 2Zk))| = O(k−1).

Second result comes from

n
∑
k≥n

(Zk+1 − Zk)2 = n
∑
k≥n

r2kk
−2k2(

∑
i ξ̃k+1(i)

N
− Zk)2

and the desired convergence follows then by lemma A.4 with ak := 1, bn := n and

Uk = k2r2k(
∑
i ξ̃k+1(i)
N − 2Zk)

2, limn→∞ bn
∑

k≥n
1

akb
2
k

= 1.

Moreover, E(

∑
i ξ̃k+1(i)

N
− 2Zk)

2|F) =
2

N
Z∞(1− Z∞). Finally, we have ϑ = 1. �
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Appendix A. Appendix

In this section, we prove and recall some technical results. The following Lemma is adapted
from Crimaldi et al. (2019) to the more general cases considered in this work. It is used with
εn = ar`n or εn = argn and δn = (r`n)2 or δn = (rgn)2.

Lemma A.1. Let (xn) be a sequence of positive such that following equation holds:

xn+1 = (1− εn)xn +Knδn (A.1)

where a > 0, rn ≥ 0 and 0 ≤ Kn ≤ K. Assume that (εn)n and (δn)n are positive sequences of reals∑
n

εn = +∞,
∑
n

ε2n < +∞, and
∑
n

δn < +∞. (A.2)

Then limn→+∞ xn = 0. �

Proof. The case K = 0 is well-known. We will prove the statement when K > 0. Let m0 be
such that εn < 1 for all n ≥ m0. Then for n ≥ m0 we have xn ≤ yn, where{

yn+1 = (1− εn)yn +Kδn

y` = x`
. (A.3)

It holds

yn = y`

n−1∏
i=`

(1− εi) +K
n−1∑
i=`

δi

n−1∏
j=i+1

(1− εj). (A.4)

Using the assumptions (A.2) about (εn)n, it follows that

n−1∏
i=`

(1− εi) −→ 0.

Moreover, for every m ≥ m0,
n−1∑
i=`

δi

n−1∏
j=i+1

(1− εj) =

m−1∑
i=`

δi

n−1∏
j=i+1

(1− εj) +

n−1∑
i=m

δi

n−1∏
j=i+1

(1− εj) (A.5)

≤
n−1∏
j=m

(1− εj)
m−1∑
i=`

δi +
+∞∑
i=m

δi.

Using that
∏n−1
j=m(1− εj) −→ 0 and that

∑
n δn < +∞, letting first n→ +∞ and then m→ +∞

in (A.5), the conclusion follows. �

We now present an extended version of the previous result, stating the rate of convergence.
Following Lemma is adapted from Crimaldi et al. (2019). This is in agreement with Aletti et al.
(2020, Lemma A.1), Aletti et al. (2019, Lemma A.1) given here as Lemma A.3 for completeness.
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Lemma A.2. Let (zn)n be a sequence of positive reals satisfying the following equation:

zn+1 = (1−Aεn)zn +Knδn, (A.6)

where A > 0 and ∀n ∈ N, 0 < Kn ≤ K. Assume that (εn)n and (δn)n are positive sequences of reals∑
n

ε2n < +∞ and
∑
n

δn < +∞

Then it holds,
lim

n→+∞
zn = 0⇔

∑
n

εn = +∞.

In particular, assuming lim infnKn > 0 and

εn =
c1
nκ1

+O(
1

n2κ1
),

lim
n
nκ2δn = c2 > 0

where 1
2 < κ1 ≤ 1 < κ2 then, we get that

zn =


O( 1

nκ2−κ1
) if κ1 < 1,

O( logn
nA

) if κ1 = 1 and κ2 −A = 1,

O( 1
nκ2−1 ) if κ1 = 1 and κ2 −A < 1

O( 1
nA

) if κ1 = 1 and κ2 −A > 1.

.

�

Proof : The case K = 0 is well-known and we will prove the statement K > 0. Let ` be such that
Aεn < 1 for all n ≥ `. Then for n ≥ ` we have zn ≤ yn, where{

yn+1 = (1−Aεn)yn +Kδn,

y` = z`.
.

Set ε′n = Aεn and δ′n = Kδn. It holds

yn = y`

n−1∏
h=`

(1− ε′h) +
n−1∑
h=`

δ
′
h

n−1∏
k=h+1

(1− ε′k).

Since
∑

n εn = +∞, then limn→∞
∏n−1
h=` (1− ε

′
h) = 0. Moreover, for every m ≥ `,

n−1∑
h=`

δ
′
h

n−1∏
k=h+1

(1− ε′k) =
m−1∑
h=`

δ
′
h

n−1∏
k=h+1

(1− ε′k) +
n−1∑
h=m

δ
′
h

n−1∏
k=h+1

(1− εk)

≤
n−1∏
k=m

(1− ε′k)
m−1∑
h=`

δ
′
h +

+∞∑
h=m

δ
′
h.

Using the fact that
∏n−1
k=m(1 − ε′k) −→ 0 and that

∑
n δn < +∞, letting first n −→ +∞ and then

m −→ +∞, the conclusion follows. We are left to prove if
∑

n εn < +∞ then limn zn 6= 0.
From (A.6) we have

zn+1 ≥
(

1− ε′n
)
zn

from which it follows

zn ≥ z0
n−1∏
k=0

(
1− ε′n

)
.

Since by assumption,
∑

n εn < +∞, we obtain limn→∞ zn > 0.
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Thus, limn→+∞ zn = 0 ⇔
∑

n εn = +∞ (κ1 ≤ 1). Otherwise, if
∑

n εn < +∞ (κ1 > 1), then
limn→+∞ zn 6= 0.

More specifically, one gets.

• When κ1 < 1. Let z`,n :=
∑n−1

h=` δ
′
h

∏n−1
k=h+1(1− ε

′
k), thus, assuming ` is large enough to replace

εn and δn with their asymptotics, and using the monotony of their asymptotics,

z`,n = O
(∫ n

`

1

sκ2
exp

(
−
∫ n

s

1

uκ1
du
)
ds
)

= O
(∫ n

`

1

sκ2
exp−

[ 1

(1− κ1)uκ1−1
]n
s
ds
)

= O
(∫ n

`

1

sκ2
exp[

1

1− κ1
(

1

sκ1−1
− 1

nκ1−1
)]ds

)
= O

(
e
− 1

(1−κ1)n
κ1−1

∫ n

`

1

sκ2
e

1

(1−κ1)s
κ1−1 ds

)
= O

( 1

nκ2

∫ n
` s
−κ2e

1

(1−κ1)s
κ1−1 ds

n−κ2e
1

(1−κ1)n
κ1−1

)
.

Letting n→∞, using L’Hôpital rule, we obtain

z`,n = O
( 1

nκ2
n−κ2e

1

(1−κ1)n
κ1−1

[(−κ2)n−κ2−1 + n−κ2n−κ1 ]e
1

(1−κ1)s
κ1−1

)
= O

( 1

nκ2
1

−κ2
n + 1

nκ1

)
= O

( 1

nκ2−κ1

( 1

1− κ2nκ1
n

))
.

• When κ1 = 1, set

fn :=
zn∏n−1

k=0(1− ε′k)
.

By (A.6) we obtain,

fn+1 = fn + F (n)

where F (n) = δ
′
n∏n

k=0(1−ε
′
k)
. So, observing that f0 = z0 = 0, we obtain

fn =
n−1∑
h=0

F (h),

or equivalently,

zn =
[ n−1∏
k=0

(1− ε′k)
] n−1∑
h=0

F (h).
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Since
∏n−1
k=0(1− ε′k) = O( 1

nA
) and therefore F (n) = O(nA−κ2), then

zn =
[ n−1∏
k=0

(1− ε′k)
] n−1∑
h=0

F (h) = O
(∑n−1

h=0
1

hκ2−A

nA

)
= O

(∫ n
1 h

A−κ2

nA

)
n→∞

=


O( logn

nA
) if κ2 −A = 1,

O( 1
nb−1 ) if κ2 −A < 1,

O( 1
nA

) if κ2 −A > 1.

.

The conclusion follows. �

As mentioned, previous result agrees with the next lemma which is proved as Lemma A.4 in Aletti
et al. (2017).

Lemma A.3. Let γ be a real in (12 , 1], and c > 0. Let (rn)n be a sequence of real numbers such
that 0 < rn < 1. Assume that

rn =
c

nγ
+O(

1

n2γ
)

as n→∞.
Let a > 0. Denote with m0 ≥ 2 an integer such that ∀m ≥ m0, a < 1

rm
. Let

pm0,n :=
n∏

m=m0

(1− arm) and `m0,n = p−1m0,n.

It holds

pm0,n =

{
O(exp[− ca

1−γn
1−γ ]) if 1

2 < γ < 1

O(n−ca) if γ = 1
.

and

`m0,n =

{
O(exp[ ca

1−γn
1−γ ]) if 1

2 < γ < 1

O(nca) if γ = 1
.

Thus, setting
Fk+1,n :=

pm0,n

pm0,k
for m0 ≤ k ≤ n ,

one gets

Fk+1,n =

{
O(exp( a

1−κ1 (k1−κ1 − n1−κ1))) for 1/2 < κ1 < 1

O(( kn)a) for κ1 = 1.

�

Lemma A.4. Let G be an (increasing) filtration and (Vk) be an G-adapted sequence of real random
variables such that E[Vk|Gk−1] → V a.s. for some real random variable V . Moreover, let (ak) and
(bk) be two sequences of strictly positive real numbers such that

bk ↑ +∞,
∞∑
k=1

E[V 2
k ]

a2kb
2
k

< +∞.

Then we have:
a) If 1

bn

∑n
k=1

1
ak
→ ϑ for some constant ϑ, then 1

bn

∑n
k=1

Vk
ak
→ ϑV .

b) If bn
∑

k≥n
1

akb
2
k
→ ϑ for some constant ϑ, then bn

∑
k≥n

Vk
akb

2
k
→ ϑV . �
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Theorem A.5. (Theorem 3.2 in Hall and Heyde, 1980)
Let {Sn,k,Fn,k : 1 ≤ k ≤ kn, n ≥ 1} be a zero-mean, square-integrable martingale array with
differences Un,k, and let σ2 be an a.s. finite random variable. Suppose that

1) max1≤k≤kn |Un,k|
P−→ 0;

2) E[max1≤k≤kn U
2
n,k] is bounded in n;

3)
∑kn

k=1 U
2
n,k

P−→ σ2

and the σ-fields are nested, i.e. Fn,k ⊆ Fn+1,k for 1 ≤ k ≤ kn, n ≥ 1. Then Sn,kn =
∑kn

k=1 Un,k
converges stably to a random variable with characteristic function φ(u) = E[exp(−σ2u2/2)], i.e. to
the Gaussian kernel N (0, σ2). �
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