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SYNCHRONIZATION AND FLUCTUATIONS FOR
INTERACTING STOCHASTIC SYSTEMS

WITH INDIVIDUAL AND COLLECTIVE REINFORCEMENT

P.-Y. Louis1, M. Mirebrahimi2 3

Abstract. The Pólya urn is the most representative example of a reinforced stochastic process.
It leads to a random (non degenerated) time-limit. The Friedman urn is a natural generalization
whose almost sure (a.s.) time-limit is not random any more. In this work, in the stream of
previous recent works, we introduce a new family of (finite size) systems of reinforced stochastic
processes, interacting through an additional collective reinforcement of mean field type. The two
reinforcement rules strengths (one component-wise, one collective) are tuned through (possibly)
different rates behaving asymptotically like n−γ . In the case the reinforcement rates goes like n−1,
these reinforcements are of Pólya or Friedman type as in urn contexts and may thus lead to limits
which may be random or not. Different parameter regimes need to be considered.

We state two kind of results. First, we study the time-asymptotics and show that L2 and
a.s. convergence always holds. Moreover all the components share the same time-limit (so called
synchronization phenomenon). We study the nature of the limit (random/deterministic) according
to the parameters’ regime considered. Second, we study fluctuations by proving central limit
theorems. Scaling coefficients vary according to the regime considered. This gives insights into
many different rates of convergence. In particular, we identify the regimes where synchronization
is faster than convergence towards the shared time-limit.

Keywords. Reinforced stochastic processes; Interacting random systems; Almost sure convergence;
Central limit theorems; stable convergence; synchronisation; Fluctuations

MSC2010 Classification. Primary 60K35, 60F15, 60F05; Secondary 62L20, 62P35

1. Introduction

In urn models, it is well known that the bicolour Pólya reinforcement rule (reinforcement of the
chosen colour) leads to a random limiting a.s. proportion whereas the Friedman rule (reinforcement
of the chosen colour as well as the non chosen colour) leads to a deterministic time-asymptotics
proportion. This somewhat surprising fact is explained for instance through [HLS80]. See [Pem07]
too. Following many recent works (see section 3 for details), this paper is motivated by the study of
asymptotics time behaviour of models of (discrete time) stochastic processes interacting through a
reinforcement rule. When two reinforcement rules compete through different rates, one individual
rule, one collective (in the sense all the components are involved), is there one leading? In particular,
is there loss of synchronisation ? Moreover, in the case were Pólya and Friedman reinforcement rule
compete, through the system, in case of synchronisation, may the shared time-limit be random?

As emphasized in the previous works, there are many applicative contexts these stochastic models
may be useful for. Urn models are well known [Mah08] to have applications in economy, in contagion
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models [HAG19], in clinical trials adaptive design [LP14], random networks [Hvd16]. In general,
the reinforcement rate (rn)n, may be such that limn n

γrn = c > 0. The dynamics is nothing but a
vector-valued stochastic algorithm [Ben99, Duf97]. Such processes have many applications like in
the framework of stochastic optimisation (see for instance [DLM99, GY07]). In [CDPLM19] and
in [ACG17] an application of these processes as opinion dynamics was introduced. We will briefly
explain it in our context in section 3.

In the new family of models we are introducing and studying in this paper, following previous
recent works, we are considering a (finite) system of reinforced stochastic processes defined though
recursive equations (1). Two kind of reinforcement are involved. One depending only on the compo-
nent (ξln+1(i))n (see next section for the notations), one creating the interaction (ξgn+1)n and depend-
ing on the average over all components. The interaction holds through the reinforcement. This is
modelling a collective reinforcement effect that may compete with the individual/local/component-
wise reinforcement. For the sake of simplicity, we choose to consider a mean field interaction, in the
sense, the collective reinforcement depends on the arithmetic mean over the system at previous time
step. Each reinforcement has its own rate rln (resp. rgn). Each rate may have its own asymptotic
behaviour: rln ∼ c1n

−γ1 (resp. rgn ∼ c2n
−γ2). If 1/2 < γ1 < γ2 ≤ 1 (for instance), one may expect

the collective reinforcement to become negligible in the long run. A naive guess could be, the system
behaves for large time like a system with independent components, thus leading to a possible loss
of synchronisation. We prove later this is not happening: L2/a.s. synchronisation holds (meaning,
each component dynamics shares the same random time limit) like in [DLM14]. Additional issues we
are addressing are: nature (deterministic/random, diffuse or atomic) of the almost sure (a.s.) time
limit distribution according to the type of reinforcement, scales of fluctuations with respect to this
limit, which are stated by proving central limit theorems (CLT) w.r.t stable convergence. We prove,
according to the parameters’ cases, that the rate of synchronisation is quicker, or the same, as the
speed of convergence to the limit. In the models considered in [CDPLM19], synchronisation quicker
than convergence towards the asymptotics value Z∞ holds only in cases where Var(Z∞) > 0. In
the following models it may happen even when Z∞ is deterministic.

The paper is organised as follows. In section 2 we define the new family of models. In section 3
we compare the model with related families studied in previous works and give some interpretation
as models for opinion dynamics. In section 4 we prove that L2 and a.s. convergence holds towards
a limiting value Z∞ in R shared by all the components (synchronisation). Two main cases are to be
distinguished: Theorems 4.1 and 4.2 deals with cases where Z∞ = 1/2 (the word synchronisation is
abusive in this situation) whereas Theorem 4.4 deals with Z∞ random. In section 5, in the different
cases, we state central limit theorems about the fluctuations of (Zn − Z∞) and (Zn − Zn(i)).
Scaling factors are worth of interest. Th. 5.1 consider the case where each individual and collective
reinforcement leads to a deterministic limiting value. Theorem 5.2 consider the special case when
γ1 = γ2 = 1 reminiscent of the Friedman urn context, in the regime where fluctuations are known
not to be gaussian (c1λ1 + c2λ2 <

1
4). Theorem 5.3 deals with the mixed cases where individual

and reinforcement type are of different nature. Th. 5.4 consider the case where both the individual
and the collective reinforcement lead to a random limit. Section 6 is dedicated to comments on
the model from a stochastic approximation perspective. Section 7 is dedicated to the proof of the
synchronisation. Section 8 deals with the proofs of the CLTs. An appendix A states and recalls for
the sake of completeness some technical results.

2. Model’s definition and framework

Let us define the following new model. Let (Fn)n denotes the usual natural filtration. Let N ≥ 2.
For i ∈ {1, ..., N} and n ∈ N, we consider the stochastic dynamics defined through the recursive
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equation

Zn+1(i) = (1− rln − rgn)Zn(i) + rlnξ
l
n+1(i) + rgnξ

g
n+1, (1)

where Z0(i) = 1
2 and where ξln+1(i) and ξgn+1 denote local (component-wise) and collective rein-

forcements’ random variables. Given Fn, they have independent Bernoulli distributions with

P(ξln+1(i) = 1|Fn) = ψ1(Zn(i)) := (1− 2λ1)Zn(i) + λ1,

P(ξgn+1 = 1|Fn) = ψ2(Zn) := (1− 2λ2)Zn + λ2,
(2)

where ψk : [0, 1] −→ [0, 1] (k ∈ {1, 2}) are linear maps with Zn := 1
N

∑N
i=1 Zn(i) (so called mean

field) and where λ1, λ2 ∈ [0, 1] are parameters. The local (resp. collective) reinforcement rate (rln)n
(resp. (rgn)n) are real sequences such that 0 ≤ rln < 1 and 0 ≤ rgn < 1, and

lim
n
nγ1rln = c1 > 0 and lim

n
nγ2rgn = c2 > 0 (3)

where γi ∈ (12 , 1] for i ∈ {1, 2}. This assumption gives that (rln)n (resp. (rgn)n) satisfy the following
usual assumptions for processes defined through equations like (1)∑

rln = +∞,
∑

(rln)2 < +∞. (4)

Note (rln)2 denotes the square of rln. As emphasized in [ACG19], in order to state the CLTs, we
actually assume the slightly stricter following assumptions.

Assumption 2.1. There exist real constants γ1, γ2 and c1 > 0, c2 > 0 with (γ1, γ2) ∈ (12 , 1]2, such
that

rln =
c1
nγ1

+O(
1

n2γ1
) and rgn =

c2
nγ2

+O(
1

n2γ2
). (5)

We refer to [CDPLM19] for a discussion on the case 0 < γ ≤ 1/2 in another model, for which
there is a different asymptotic behaviour of the model that is out of the scope of this paper.

For the sake of simplicity, we choose to have some symmetry in the model with respect to 1/2.
For the same reason, according to the previous works cited in the following section, we consider the
starting conditions all equal to 1/2 without loss of generality.

Remark 2.2. In the particular case when γ1 = γ2 =: γ, we can rewrite the model as

Zn+1(i) = (1− 2rn)Zn(i) + rnξ̃n+1(i),

where ξ̃n+1(i) = ξln+1(i)+ξ
g
n+1, therefore ξ̃n+1(i) ∈ {0, 1, 2}. The other probabilities may be computed

in an analogous way. The reinforcement rate remains such that rn ∼ cn−γ.

Remark 2.3. In this paper the parameters λ1, λ2 are kept fixed. Cases where λ1, λ2 may converge
to 0 depending on n,N will be considered in a forthcoming work. Note that when λ1 = λ2 = 1/2,
there is no reinforcement any more. Moreover, when λ1 6= 1/2 and λ2 = 1/2, although we still have
reinforcement on each component individually, we are loosing the interaction between components.

Remark 2.4. When it is assumed 0 ≤ λ1 < 1/2 and 0 ≤ λ2 < 1/2, then ψ1 and ψ2 are increasing
maps and occurrence of events {ξn(i) = 1} increases the probability of having {ξn+1(i) = 1} at next
time step. This is the basic original meaning of reinforcement. Note we do not need to consider
these cases specifically here.
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Following relationships hold.

E (Zn+1(i)− Zn(i)|Fn) = λ1r
l
n

(
1− 2Zn(i)

)
+ λ2r

g
n

(
1− 2Zn

)
+ rgn

(
Zn − Zn(i)

)
, (6)

and by averaging over i in {1, . . . , N}, we have

E (Zn+1 − Zn|Fn) = (λ1r
l
n + λ2r

g
n) (1− 2Zn). (7)

3. Related models and applicative motivations

As emphasised in [CDPLM19], the evolution of proportions in urn models satisfies recursive
equation like (1) with rgn = 0 (i.e. without interaction) and with γ1 = 1. This family of models we
are introducing is related to some other models that were studied recently. We briefly present them
in this section.

3.1. Interacting urns’ models. The models considered in this paper were introduced in [Mir19].
When rgn ≡ 0 and γ1 = 1, the model is a non interacting system where each component’s value Zn(i)
can be interpreted as the proportion of balls of a given colour in a bicolour balanced (same deter-
ministic number of balls are added whatever the chosen colour is) urn classic model. The case
λ1 = 0 leads to ψ1(x) = x which is the basic Pólya reinforcement rule, where a fix number of balls
is added, whose colour is the same as the chosen one. It is well known limn→∞ Zn(i) exists a.s. and
defines a Beta distributed random variable Z∞(i), whose parameters depend on the initial number
of balls of each colours. The case λ1 6= 0 leads to a Friedman urn model. The unique fix point of ψ1

is 1/2. It is known, limn→∞ Zn(i) exists a.s. and is equal to this fix point Z∞(i) = 1/2 := Z∞.
See for instance [HLS80] where very interesting cases of less regular ψ1 maps are considered. This
can be proven using stochastic approximation results [Ben99, Duf97]. We will use the terminology
Pólya type when λ1 = 0 and Friedman type when λ1 6= 0. Similar remark holds for the collec-
tive reinforcement effect ruled by ψ2 and tuned through γ2 for the asymptotic behaviour of the
reinforcement rate rgn and λ2 for the reinforcement’s type.

In [DLM14], the system introduced and studied is related to the case γ1 = γ2 = 1 and λ1 = λ2 = 0.
It solves the equation (1) with rgn ≡ 0 and with

P(ξln+1(i) = 1|Fn) = (1− α)Zn(i) + αZn

where α ∈ [0, 1] is a parameter. A.s. synchronisation towards a random shared limit Z∞ (Var(Z∞) >
0) was proved as soons as α > 0. Fluctuations were studied in [CDM16] by proving central limit
theorems. In [Sah16], a similar interacting model was studied, whose components dynamics can be
interpreted as urn models (reinforcement’s rate behaving like n−1) with a Friedman reinforcement
rule. A.s. convergence holds towards a unique deterministic value. Moreover, it is known that
Friedman urns can exhibit non gaussian fluctuations [Jan04, Pem07]. See [FDP06, CMP15, LMS18,
Mai18, CPS11] for more specific recent results about urn models and generalisations. In [Sah16],
this was proven to have consequences for the mean-field interacting system, where different speed of
convergence may happen. In relationship with systems of interacting urns, some variations with dif-
ferent kind of urns/reinforcements bias towards one or the other colour, were considered in [LM18].

For the model considered in this paper, similar interpretation as bicolour balanced urn model can
be made, when γ1 = γ2 = 1. Each Zn(i) can be interpreted as the proportion of one chosen colour in
an urn i. Two reinforcement mechanism hold which can be related to the following one, applied to
each urn i of the systems, independently, between two iterations. One (for instance) ball is chosen
uniformly at random in the urn i and one (for instance) ball of the chosen colour is added into
urn i (Pólya reinforcement type, λ1 = 0); resp. one ball of the non chosen colour, Friedman type,
λ1 6= 0). Additively, one ball is chosen uniformly at random in the whole system (proportion Zn
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at previous time step) and one ball of the chosen colour is added (collective reinforcement of Pólya
type, λ2 = 0) into urn i; resp. one ball of the non chosen colour, collective reinforcement of Friedman
type, λ2 6= 0). In fact adding a ball of the non chosen colour is similar in general to add a ball of the
chosen colour as well as the non chosen colour. The reinforcement matrices (for local reinforcement,
resp. for collective reinforcement) defining these numbers is then giving the exact values of λ1
(resp. λ2).

3.2. General reinforcements’ rates. Generalizing the reinforcement rate rn asymptotic be-
haviour from rn ∼ cn−1 to rn ∼n→∞ cn−γ leads to systems of stochastic processes with rein-
forcement which can be considered as interacting stochastic algorithms of Robbins-Monro type.
In [CDPLM19] several cases of reinforcement (like Pólya/Friedman) were considered. A.s. synchro-
nisation was stated towards different kind of limit Z∞ (deterministic or not) and speed of conver-
gence studied through functional central limit theorems (FCLT) for Zn(i)−Zn and Zn−Z∞. It was
proved that in parameters’ regime where the time limit Z∞ is random (in the sense Var(Z∞ > 0),
synchronisation happens quicker than convergence to the time limit.

Building a reinforcement with the average proportion Zn (mean field) helps in these interacting
systems since it is enough to deal with closed unidimensional recursive equations for (Zn)n and (Zn−
Zn(i))n. The interaction was generalized from mean field to network based interaction in [ACG17],
with a reinforcement of Pólya type. The system dynamics is defined, for i ∈ V := {1, · · · , N},
through

Zn+1(i) = (1− rn)Zn(i) + rnξn+1(i) (8)

where for any n ≥ 0, the random variables {ξn+1(i) : i ∈ V } are conditionally independent given
Fn with

P(ξn+1(i) = 1 | Fn) =

N∑
j=1

wj,iZn(j) (9)

with Fn := σ(Zn(i)). The non negative matrix W = [wj,i]j,i∈V×V is considered as a weighted
adjacency matrix of the graph G = (V,E) with V = {1, ..., N} as the set of vertices and E⊂V × V
as the set of directed edges. Each edge (j, i) ∈ E represents the fact that the vertex j has a direct
influence on the vertex i. The weight wi,j ≥ 0 quantifies how much j can influence i. The weights are
assumed to be normalised W>1 = 1 where 1 denotes (1, . . . , 1) ∈ RN . The matrix W is assumed
to be irreducible and diagonalisable. The reinforcement rate rn is assumed to satisfy (3) with
γ ∈ (1/2, 1] or a more restrictive condition as (5). Synchronisation is proven to hold and CLT’s were
stated. The empirical means Nn(i) := n−1

∑N
i=1 ξn(i) are studied in [ACG19]: a.s. synchronisation

toward Z∞ and CLT are proven. Weighted empirical means are studied analogously in [ACG20].

As considered in [CDPLM19, ACG19], we may think about following context for the random
evolutions we are considering. Let us state in the case where S = {0, 1} represents two possible
choices or actions made by "individuals" or agents i ∈ V . To each vertex i ∈ V is associated a
value Zn(i) ∈ [0, 1]. The quantity Zn(i) (resp. 1− Zn(i)) is interpreted as the inclination to adopt
the choice 1 (resp. 0) at time n. The recursive equation (1) means the inclination of agent i at the
next time step, is a convex combination of

• the inclination Zn(i) with self-reinforcement weight 1− rln − r
g
n,

• a choice ξln+1(i) made with a probability ψ1(Zn(i)) for opinion 1 related to the personal
inclination, with a weight rln,
• and a collective choice ξgn+1 made with a probability ψ2(Zn) for opinion 1 related to the
collective inclination Zn, average of the personal inclinations, with a weight rgn.
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As time goes, the rates rln and rgn vanish. For larger n, the self-reinforcement leads. The different
speed of convergence towards 0 for rln and rgn, tuned by γ1, γ2 could mean the influence of collective
actions may disappear quicker than the influence of individual choices. On the contrary, the a.s.
synchronisation phenomenon towards a shared inclination Z∞ could be interpreted as the emergence
of a consensus, in the sense every individual shares the same inclination. The special case Z∞ = 1/2
may be interpreted as a complete undetermined "fifty-fifty" inclination towards the two actions.
Issues we addressed at the beginning of this paper may be reconsidered through this interpretation.

4. Main results: convergence and a.s. synchronisation

In this section we study convergence of (Zn)n and the synchronisation phenomenon. Indeed
we obtain different kind of time-limit (deterministic or (truly-)random) for (Zn)n according to the
nullity of λ1, λ2. Moreover L2 and a.s. synchronisation are stated in all the cases. As previously
mentioned, the choice of the mean-field instead of a network-based interaction allows us to address
the proofs by studying Zn and Zn − Zn(i) instead of dealing with RN valued recursive equations.

4.1. Case of a deterministic time-asymptotics. We call deterministic, the case when the time
limit Z∞ (n → ∞) is not random (Var(Z∞) = 0). This behaviour corresponds to cases where at
least one of the following assumptions is true λ1 > 0 or λ2 > 0. The mean field process (Zn)n is
not a martingale. In order to investigate the behaviour of the interacting system, we first consider
the time limits of the variances Var(Zn(i)) and Var(Zn). Second we show that L2-synchronisation
holds i.e. limn→∞Var(Zn(i) − Zn) = 0. We get the rates of convergence too. Finally, we prove
that the synchronisation holds almost surely and the deterministic limit is Z∞ := 1

2

Theorem 4.1. For any λ1 > 0 and λ2 > 0 following results hold:
i) asymptotics of variances (n→∞):
Var(Zn) = O( 1

nγ ) and Var(Zn(i)) = O( 1
nγ ) where γ := min(γ1, γ2);

ii) behaviour of the L2-distance between Zn and Zn(i) when n→∞:
a) if γ1 ≤ γ2, then E

(
[Zn − Zn(i)]2

)
= O( 1

nγ1 ),
b) if γ2 < γ1, then E

(
[Zn − Zn(i)]2

)
= O( 1

n2γ1−γ2 );
iii) almost sure convergence holds i.e.
∀i ∈ {1, ..., N}, limn→+∞ Zn(i) = limn→+∞ Zn = 1

2 := Z∞ a.s.

Two others choices of parameters λ1, λ2 lead to the following results.

Theorem 4.2. In the following cases: either (λ1 > 0 and λ2 = 0) or (λ1 = 0 and λ2 > 0) it holds
limn→+∞ Zn(i) = limn→+∞ Zn = 1

2 a.s. Moreover, the following table summarizes the L2 speed of
convergence with γ := min(γ1, γ2).

λ1 6= 0, λ2 = 0 λ1 = 0, λ2 6= 0

γ1 ≤ γ2 Var(Zn) = O( 1
nγ1 ) Var(Zn) = O( 1

n2γ1−γ2 )

E
(
[Zn − Zn(i)]2

)
= O( 1

nγ1 ) E
(
[Zn − Zn(i)]2

)
= O( 1

n2γ1−γ2 )

γ2 < γ1 Var(Zn) = O( 1
n2γ2−γ1 ) Var(Zn) = O( 1

nγ2 )

E
(
[Zn − Zn(i)]2

)
= O( 1

n2γ1−γ2 ) E
(
[Zn − Zn(i)]2

)
= O( 1

n2γ1−γ2 )

�

Remark 4.3. (Comparison of convergence and synchronisation rates)
In the case λ1 > 0, λ2 > 0, when γ1 < γ2, the L2 convergence rate of (Zn)n to 1

2 and the L2

rate of convergence of (Zn(i) − Zn)n to 0 are the same. However, when γ2 < γ1, we obtain that
synchronisation happen faster than convergence.
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Moreover in the case λ1 > 0, λ2 = 0 and when γ1 < γ2, the speed of convergence and synchroni-
sation are the same (n−γ1). While when γ2 < γ1, the synchronisation is faster than convergence.

Similarly, in the case λ1 = 0, λ2 > 0 and when γ2 < γ1, the speed of convergence and synchro-
nisation are the same (n−(2γ1−γ2)), while when γ2 < γ1, the speed of synchronisation is faster than
convergence (n−(2γ1−γ2) and n−γ2 respectively).

4.2. Case of a common shared random time-asymptotics. Differently to the previous cases,
the case λ1 = λ2 = 0 yields (Zn)n is a martingale. We will prove it leads to a random time-
asymptotics Z∞ (Var(Z∞) > 0). We will study the system’s time-asymptotics behaviour in a
similar way as in the previous cases. First we show that limn→∞Var(Zn) 6= 0. Second we prove
that L2-synchronisation holds. Third we state the almost sure synchronisation holds.

Theorem 4.4. When λ1 = λ2 = 0,
(i) it holds (n → ∞) Var(Zn) > 0. In particular (Zn)n converges a.s. to a non-degenerated

random limit denoted by Z∞ (Var(Z∞) > 0).
(ii) The L2-distance between the mean field Zn and each component Zn(i) behaves as follows,

E
(
[Zn(i)− Zn]2

)
= O(

1

n2γ1−γ2
)

and synchronisation holds almost surely. It means, for all i ∈ {1, . . . , N},
limn→∞ Zn(i) = Z∞ a.s.

�

5. Main results: fluctuations through CLT

In this section we study the fluctuations of (Zn(i) − Zn)n (synchronisation) w.r.t 0 and also
fluctuations of (Zn)n w.r.t its limit Z∞. These are studied by stating Central Limit Theorems. Pay
attention different scalings hold according to (γ1, γ2) relationship. We follow the proof’s techniques
initiated for these models in [CDM16] based on Theorem A.5 in Appendix, which leads to stable
convergence results.

We first study cases where Z∞ = 1
2 . The Theorems 5.1, 5.2 deals with the case λ1 > 0 and

λ2 > 0. Moreover, we show that there is a some special regime when 0 < (c1λ1 + c2λ2) <
1
4 . The

Theorem 5.3 describe the results of the cases where exactly one of the λj is 0.
Finally we state the behaviour when Var(Z∞) > 0 with Theorem 5.4.
The following statements hold, where the generic symbol σ2 denotes the variances (depending

on N and λ1, λ2) are precised in proofs. In the proofs of sections 7 and 8 we used c1 = c2 = 1 to
simplify. Following statements are nevertheless formulated in full generality.

Theorem 5.1. Let λ1 > 0, λ2 > 0; let γ := min(γ1, γ2).
i) It holds

a) when γ1 ≤ γ2, n
γ1
2 (Zn − Zn(i))

stably−−−→
n→∞

N
(

0, σ̃21

)
,

b) when γ2 < γ1, n
2γ1−γ2

2 (Zn − Zn(i))
stably−−−→
n→∞

N
(

0, σ̃22

)
.

ii) When γ < 1, it holds

n
γ
2 (Zn −

1

2
)

stably−−−→
n→∞

N
(

0, σ̂2
)
.

iii) When γ1 = γ2 = 1,

a) for (c1λ1 + c2λ2) >
1

4
,
√
n(Zn −

1

2
)

stably−−−→
n→∞

N
(

0, σ∗
2

1

)
.

b) for (c1λ1 + c2λ2) =
1

4
,
√
n√

lnn
(Zn −

1

2
)

stably−−−→
n→∞

N
(

0, σ∗
2

2

)
.
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�

Theorem 5.2. Let λ1 > 0, λ2 > 0. When γ1 = γ2 = 1 and when (c1λ1 + c2λ2) <
1

4
, the following

statement holds
n4(c1λ1+c2λ2)(Zn −

1

2
)
a.s./L1

−−−−→
n→∞

X̃,

for some real random variable X̃ such that P(X̃ 6= 0) > 0.

This regime is related to the known non gaussian fluctuation regime of the Friedman urn (see for
instance Th. 2.9 (ii) in [CDPLM19] or Th. 4 and 5 in [Sah16] were additive assumptions need to be
used).

Two other main cases leads to following results. For the sake of readability, the asymptotic
variances are detailed in the proofs.

Theorem 5.3. In the following cases: either (λ1 > 0, λ2 = 0) or (λ1 = 0, λ2 > 0), the stable
convergence towards some Gaussian distribution holds for the quantities (Zn−Zn(i))n and (Zn− 1

2)n.
The following tables summarizes the different scales according to the relationship between γ1, γ2.
The first table deals with γ := min(γ1, γ2) < 1.

λ1 6= 0, λ2 = 0 λ1 = 0, λ2 6= 0

γ1 ≤ γ2 n
γ1
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃23

)
n

2γ1−γ2
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃24

)
n
γ1
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂21

)
n

2γ1−γ2
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂22

)
γ2 < γ1 n

2γ1−γ2
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃25

)
n

2γ1−γ2
2 (Zn − Zn(i))

stably−−−→ N
(

0, σ̃26

)
n

2γ2−γ1
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂23

)
n
γ2
2 (Zn − 1

2)
stably−−−→ N

(
0, σ̂24

)
The following second table holds when γ1 = γ2 = 1. The indices i and j are different and belongs

to {1, 2}.

λi = 0, λj >
1
4 λi = 0, λj = 1

4 λi = 0, λj <
1
4

√
n(Zn − 1

2)
stably−−−→ N

(
0, σ∗

2

3

) √
n√

lnn
(Zn − 1

2)
stably−−−→ N

(
0, σ∗

2

4

)
n4(λ1+λ2)(Zn − 1

2)
a.s./L1

−−−−→ χ̃

Theorem 5.4. Assume λ1 = λ2 = 0. The stable convergence towards some Gaussian kernel holds
for the quantities (Zn − Zn(i))n and (Zn − 1

2)n with the following scalings.
(i) It holds

n
2γ1−γ2

2 (Zn − Zn(i))
stably−−−→
n→∞

N
(

0, ϑ Z∞(1− Z∞)
)
.

(ii) With γ := min(γ1, γ2), it holds

n
2γ−1

2 (Zn − Z∞)
stably−−−→
n→∞

N
(

0, ϑ Z∞(1− Z∞)
)
,

where ϑ denotes a constant, whose dependency according to N , γ1, γ2 is given in the proofs. �

Remark 5.5. (analogous to Theorem 3.2 in [CDM16]). We have P(Z∞ = 0) +P(Z∞ = 1) < 1 and
P(Z∞ = z) = 0 for each z ∈ (0, 1). Indeed, it guarantees that these asymptotic Gaussian kernels
are not degenerate.

Proof. The first part immediately follows from the relation E[Z2
∞] < E[Z∞] by Lemma 7.2. The

second part is a consequence of the almost sure conditional convergence stated in Th. 5.4 (ii) (for
details see proof of Theorem 2.5 in [CDPLM19]). �
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6. Stochastic approximation point of view

The recursive equations (1) may be written in the following stochastic approximation forms:

Zn+1(i) = Zn(i) + rlnλ1(1− 2Zn(i)) + rln∆M̂ l
n+1(i)

+rgnλ2(1− 2Zn) + rgn(Zn − Zn(i)) + rgn∆Mg
n+1 (10)

and
Zn+1 = Zn + (rlnλ1 + rgnλ2)(1− 2Zn) + rln∆M l

n+1 + rgn∆Mg
n+1 (11)

where

∆M̂ l
n+1(i) := ξln+1(i)− E

(
ξln+1(i)|Fn

)
, (12)

∆M l
n+1 :=

1

N

N∑
i=1

∆M̂ l
n+1(i), (13)

∆Mg
n+1 := ξgn+1 − E(ξgn+1|Fn) (14)

are martingale differences.
Similarly, it holds for Xn(i) := Zn − Zn(i),

Xn+1(i) = Xn(i)−
(

2λ1r
l
n + rgn

)
Xn(i) + rln

(
∆M l

n+1 −∆M̂ l
n+1(i)

)
. (15)

We refer to the general theorems about asymptotic behavior as stated in [LP13, LMS18, LP19]
and classical references therein like [Duf97, Ben99]. According to the cases either γ1 ≤ γ2 or γ2 < γ1
and λi = 0 or not (i ∈ {1, 2}), then system Zn = (Zn(1), . . . , Zn(N))> is satisfying the following
framework.

Let Z = (Zn)n≥0 be an N -dimensional stochastic process with values in [0, 1]N , adapted to a
filtration F = (Fn)n≥0. Suppose that Z satisfies

Zn+1 = Zn + rnF(Zn) + rn∆Mn+1 + rnζn+1 , (16)

where (rn)n is such that (4) hold; F is a bounded C1 vector-valued function on an open subset
O of RN , with [0, 1]N ⊂ O; (∆Mn)n is a bounded martingale difference with respect to F ; and
(ζn)n is a [0, 1]N -valued Fn+1-adapted term such that limn→∞ ζn = 0 a.s. Thus a.s. convergence
towards zeros of F gives the a.s. convergence towards 1/2 when λ1 + λ2 > 0 or towards a value
belonging to the diagonal {z = (z1, . . . , zN ) ∈ [0, 1]N : ∀i ∈ {1, . . . , N}, zi = z1} when λ1 = λ2 = 0.
The case λ1 = λ2 = 0 leads to non isolated zeros of F which is not a case covered by the general
stochastic approximation theorems. The methods developped here, following [DLM14, CDM16]
is covering all parameters’ cases, including the one when λ1 = λ2 = 0; and they give L2 rates.
These are useful to prove the scales of fluctuations stated in section 5 thanks to CLT’s w.r.t stable
convergence [Cri16, HL15].

7. Proof of a.s. synchronisation and rates of convergences

This section is devoted to the proofs of Th. 4.1, Th. 4.2, Th. 4.4. As indicated by section 6 cases
need indeed to be distinguished according to the nullity of λ1, λ2 (λ1 + λ2 > 0 or λ1 = λ2 = 0).

7.1. First results about the variances. First remark, the assumption ∀i ∈ {1, . . . , N}, Z0(i) = 1
2

leads to ∀n ∈ N, E(Zn) = E(Zn(i)) = 1
2 thanks to (6) and (7). We then state the following

relationships.
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Proposition 7.1. The following recursive equations hold:

Var(Zn+1) =

[
1− 4

(
λ1r

l
n + λ2r

g
n − 2λ1λ2r

l
nr
g
n − λ21(rln)2 − λ22(rgn)2 +

(rgn)2

4
(1− 2λ2)

)]
Var(Zn)

+
(rln)2

N

[
(1− 2λ1)

2
(1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
+ λ1 − λ21

]
+

(rgn)2

4
. (17)

and

Var(Zn+1(i)) =
[
(1− 2λ1r

l
n − rgn)2 − (rln)2(1− 2λ1)

2)
]
Var(Zn(i))

+
(rln)2

4
+

(rgn)2

4

+ 2
(

1− 2λ1r
l
n − rgn

)
(1− 2λ2)Var(Zn) rgn. (18)

Proof. Using (6) and (7), we compute:

Var(Zn+1(i)|Fn) = Var
[
(1− rln − rgn)Zn + rlnξ

l
n+1(i) + rgnξ

g
n+1

∣∣∣Fn]
= (rln)2

[
(1− 2λ1)

2(Zn(i)− Z2
n(i)) + λ1 − λ21

]
+ (rgn)2

[
(1− 2λ2)

2(Zn − Z2
n) + λ2 − λ22

]
,

then using the law of total variance (∗), we have

Var(Zn+1(i))
∗
= E[Var(Zn+1(i)|Fn)] +Var[E(Zn+1(i)|Fn)]

= (rln)2
[
(1− 2λ1)

2(Zn(i)− Z2
n(i)) + λ1 − λ21

]
+ (rgn)2

[
(1− 2λ2)

2(Zn − Z2
n) + λ2 − λ22

]
+(1−2λ1r

l
n−rgn)2Var(Zn(i))+(1−2λ2)

2(rgn)2Var(Zn)+2(1−2λ2)(1−2λ1r
l
n−rgn)rgnVar(Zn),

(19)

where in the last equation we used that Cov(Zn(i), Zn) = Var(Zn) by symmetry. Moreover,

Var(Zn+1|Fn)) =
(rln)2

N2

N∑
i=1

Var(ξln+1(i)|Fn) + (rgn)2Var(ξgn+1|Fn)

=
(rln)2

N

[
(1− 2λ1)

2
(
Zn −

1

N

N∑
i=1

Z2
n(i)

)
+ λ1 − λ21

]
+(rgn)2

[
(1− 2λ2)

2(Zn − Z2
n) + λ2 − λ22

]
leading to the result. �

Lemma 7.2. When λ1 = λ2 = 0, it holds limn→∞Var(Zn) < 1
4 . Moreover, supnE(Z2

n) <
1

2
. �

Remark, this implies

lim
n→∞

(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
> 0. (20)

Proof. Since for all i, E(Z2
n(i)) ≤ E(Zn(i)) = 1

2 , it holds obviously Var(Zn) ≤ 1
4 . Using (17) with

λ1 = λ2 = 0 gives:

Var(Zn+1) =
(

1− (rgn)2
)
Var(Zn) +

(rgn)2

4
+

(rln)2

N

(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
.



SYNCH. AND FLUCTUATIONS, IND. AND COLLECTIVE REINFORCEMENT 11

From the above relationships, since∣∣∣∣∣12 − 1

N

N∑
i=1

E(Z2
n(i))

∣∣∣∣∣ ≤ 1

2
(21)

we have

Var(Zn+1) ≤
(

1− (rgn)2
)
Var(Zn) +

(rgn)2

4
+

(rln)2

2N
.

Let xn := 1
4 −Var(Zn) ≥ 0, one gets xn+1 ≥

(
1− (rgn)2

)
xn from which it follows

xn ≥ x0
∏n−1
k=0

(
1− (rgk)

2
)
. Since

∑
n(rgn)2 < +∞, we obtain limn→∞ xn > 0.

Moreover, E(Z2
n) <

1

2
= E(Zn). Since E(Z2

n+1|Fn) = Z2
n+Var(Zn+1|Fn), it holds E(Z2

n+1|Fn) ≥
Z2
n so, (Z2

n)n is a sub-martingale. Consequently, supnE(Z2
n) = limnE(Z2

n) < 1
2 . �

For the three other cases about (λ1, λ2), let us prove the following lemma.

Lemma 7.3. If λ1 > 0 or λ2 > 0, then it holds limn→∞Var(Zn) = 0.
In particular, limn→∞Var(Zn) < 1/4 and

lim
n→∞

(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
> 0.

�

Proof. Use (17), synthetically written as:

Var(Zn+1) = (1− 4εn)Var(Zn) +K1
n(rln)2 +

1

4
(rgn)2

where

εn := λ1r
l
n + λ2r

g
n − 2λ1λ2r

l
nr
g
n − λ21(rln)2 − λ22(rgn)2 +

(rgn)2

4
(1− 2λ2)

and

K1
n :=

1

N

[
(1− 2λ1)

2
(1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
+ λ1 − λ21

]
.

It holds
∑

n εn = +∞ in all the considered cases. Using (21), it holds

0 ≤ K1
n ≤

1

2
(1− 2λ1)

2 + λ1 − λ21 ≤ 1.

It follows Var(Zn) ≤ yn where (yn)n is the sequence defined in appendix’lemma A.1 through (31)
with the same εn and Kδn is 1

N (rln)2 + (rgn)
2

4 . Thus, using Lemma A.1, we get limn→∞Var(Zn) = 0.
Remark, that using the same argument as previously, (Z2

n)n≥0 is a sub-martingale. Thus we get

supnE(Z2
n) <

1

2
. �
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7.2. Proofs of L2 and a.s. convergence. We now prove the theorems of section 4 about conver-
gence and synchronisation.

Proof. Theorem 4.1 (i)
♣ First consider the equation (17) summarised as

Var(Zn+1) = (1− 4λrn + o(rn))Var(Zn) +Kn(rn)2 + o((rn)2),

where λ =

{
λ1 if γ1 < γ2
λ2 if γ1 > γ2

.

•When γ1 < γ2, then A = 4λ1 and

Kn =
1

N

(
(1− 2λ1)

2

(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
+ λ1 − λ21

)
is bounded and limn→∞Kn > 0. Indeed, since E(Z2

n) < 1
2 , we get

N∑
i=1

E(Z2
n(i)) = E(Z2

n(j)) +
N−1∑

i=1, i6=j
E(Z2

n(i)) <
1

2
+
N − 1

2
=
N

2
.

By Lemma A.1 we get limn→∞Var(Zn) = 0. Moreover, by Lemma A.2, it holds Var(Zn) = O( 1
nγ1 ).

•When γ1 > γ2, it holds A = 4λ2 andKn = 1
4 thus, by Lemma A.1 it holds limn→∞Var(Zn) = 0

and Var(Zn) = O( 1
nγ2 ) by Lemma A.2.

♣ In order to investigate the behaviour of Var(Zn(i)), consider (18):

Var(Zn+1(i)) =
[
1− 4λ1r

l
n − 2rgn + 4λ2(rln)2 + 4λ1r

l
nr
g
n − (rln)2(1− 2λ1)

2
]
Var(Zn(i))

+
(rln)2

4
+

(rgn)2

4
+ 2(1− 2λ1r

l
n − rgn)rgn(1− 2λ2)Var(Zn).

We then go further according to the three following cases.

•When γ1 < γ2, since Var(Zn) = O( 1
nγ1 ) thus,

Var(Zn+1(i)) =
[
1− 4λ1r

l
n + o(rln)

]
Var(Zn(i)) +

(rln)2

4
+ o((rln)2)

then A = 4λ1 and Kn = 1
4 which implies by Lemma A.1, limn→∞Var(Zn) = 0 and Var(Zn(i)) =

O( 1
nγ1 ) by Lemma A.2.

•When γ2 < γ1 we have Var(Zn) = O( 1
nγ2 ). Thus,

Var(Zn+1(i)) = [1− 2rgn + o(rgn)]Var(Zn(i)) +
(rgn)2

4
+ 2(1− 2λ2)(r

g
n)2

then A = 2 and Kn =
[
1
4 + 2(1−2λ2)

16λ2

]
= 1

8λ2
. It implies by Lemma A.2, that Var(Zn(i)) = O( 1

nγ2 ).

•When γ1 = γ2, we have

Var(Zn+1) = (1− 4(λ1 + λ2)rn −N(1− 2λ2)
2r2n)Var(Zn) + r2nKn
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where A = 4(λ1 + λ2) and

Kn =
1

N

(
(1− 2λ1)

2

(
1

2
− 1

N

N∑
i=1

E(Z2
n(i))

)
+ λ1 − λ21 +

N

4

)
,

which is bounded and limn→∞Kn > 0, which implies by Lemma A.1 limn→∞Var(Zn) = 0 where
by Lemma A.2, it holds Var(Zn) = O( 1

nγ ). In the case γ = 1 and λ1 +λ2 = 1
4 , Var(Zn) = O( lognn ).

Moreover, using the recursive equation and Var(Zn) = O( 1
nγ ),

Var(Zn+1(i)) =
[
(1− rn(2λ1 + 1))2 − rn(1− 2λ1)

2
]
Var(Zn(i)) + r2nKn.

Then A = 3 + 4λ21 and Kn = 1
2 + [(1 − 2λ2)

2 + rn(1 − rn(2λ1 + 1))(1 − 2λ1)] which implies by
Lemma A.1, limn→∞Var(Zn) = 0. By Lemma A.2, it then holds Var(Zn(i)) = O( 1

nγ ). �

Proof. Theorem 4.1 (ii)
Consider the following recursive equation satisfied, for any i ∈ {1, . . . , N}, by the L2-distance

between one component and the mean field. For symetry reasons, the following quantity xn is not
depending on the specific choice of the component i. With

xn := E[(Zn(i)− Zn)2] = Var(Zn(i)− Zn),

it holds

xn+1
∗
= E

Var

(1− rln − rgn)(Zn(i)− Zn) + rln(ξln(i)− 1

N

∑
j

ξln(j))
∣∣∣Fn


+ Var
[
Zn(i)− 2λ1r

l
nZn(i) + rgn(Zn(i)− (1− 2λ2)Zn)− Zn(1− 2λ1r

l
n − rgn)

]
= (rln)2E

[
Var(ξln(i)− 1

N

∑
i

ξln(i)|Fn)
]

+Var
(

(1− 2λ1r
l
n − rgn)(Zn(i)− Zn)

)
= (1− 2λ1r

l
n − rgn)2Var(Zn(i)− Zn) + (rln)2

(
(1− 1

N
)2 + (

N − 1

N2
)
)
E
[
Var(ξln(i)|Fn)

]
= (1− 2λ1r

l
n − rgn)2xn

+
N − 1

N
(rln)2

[[
(1− 2λ1)E(Zn(i)) + λ1

]
−
[(1− 2λ1)

2

N
E(Z2

n(i)) + λ21 + 2λ1(1− 2λ1)E(Zn))
]]
.

Therefore we obtain

xn+1 =
(

1− 4λ1r
l
n − 2rgn + 4λ21(r

l
n)2 + (rgn)2 + 2λ1r

l
nr
g
n

)
xn + (rln)2Jn, (22)

where Jn = N−1
N

(
1
2 − [ (1−2λ1)

2

N E(Z2
n(i)) + λ1 − λ21]

)
is bounded and not equal zero for N > 1.

(a) When γ1 < γ2 the relation (22) gives xn+1 = [1− 4λ1r
l
n − o(rln)]xn + (rln)2Jn. It implies by

Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O( 1
nγ1 ) where A = 4λ1c1.

(b) When γ1 = γ2, we have from (22)

xn+1 = [(1− rn − 2λ1rn)2]xn + r2nJn = [1− (2 + 4λ1)rn + o(rn)]xn + r2nJn

which implies by Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O( 1
nγ ) where

A = 2 + 4λ1.
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(c) When γ2 < γ1, xn+1 = (1 − 2rgn + o(rgn))xn + Jn(rln)2 where A = 2 implies by Lemma A.1
limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O( 1

n2γ1−γ2 ).

�

Proof. (iii) Theorem 4.1
• To prove that, in this case, a.s. convergence holds towards 1/2, we use (11) and consider

E[(Zn+1 −
1

2
)2|Fn]

=

(
Zn −

1

2

)2

[1 + 4(rln)2λ21 + 4(rgn)2λ22 − 4rlnλ1 − 4rgnλ2 + 4rlnr
g
nλ1λ2]

+ (rln)2E[(∆M l
n+1)

2|Fn] + (rgn)2E[(∆Mg
n+1)

2|Fn]

=

(
Zn −

1

2

)2 [
1− 4rlnλ1 − 4rgnλ2 + o(rln) + o(rgn)

]
+ (rln)2

[
4λ21(Zn −

1

2
)2 + E[(∆M l

n+1)
2|Fn]

]
+ (rgn)2

[
4λ22(Zn −

1

2
)2 + E[(∆Mg

n+1)
2|Fn]

]
.

Thus, E[(Zn+1 − 1
2)2|Fn] ≤ (Zn − 1

2)2 + (rln)2W l
n + (rgn)2W g

n with

W l
n := 4λ21

(
Zn −

1

2

)2

+ E[(∆M l
n+1)

2|Fn],

W g
n := 4λ22

(
Zn −

1

2

)2

+ E[(∆Mg
n+1)

2|Fn].

Since (γ1, γ2) ∈ (1/2, 1]2, we get that ((Zn+1− 1
2)2)n is a positive almost super-martingale and a.s.

convergence holds. It is enough to consider L2 convergence in order to identify the (deterministic)
limit.

E

(
E

[(
Zn+1 −

1

2

)2

|Fn

])
= E

(
Zn −

1

2

)2 [
1− 4rlnλ1 − 4rgnλ2 + 4rlnr

g
nλ1λ2

]
+ (rln)2K l

n + (rgn)2Kg
n.

With yn := E(Zn − 1
2)2, one gets

yn+1 =
(

1− 4rlnλ1 − 4rgnλ2 + λ21(r
l
n)2 + λ22(r

g
n)2 + 4rlnr

g
nλ1λ2

)
yn + (rln)2K l

n+1 + (rgn)2Kg
n+1 (23)

where 0 < K l
n+1 := E[(∆M l

n+1)
2] ≤ 1, and 0 < Kg

n+1 := E[(∆Mg
n+1)

2] ≤ 1. By lemma A.1 we get
limn→∞ yn = 0.

• When γ1 = γ2, the proof holds similarly. Indeed,

E[

(
Zn+1 −

1

2

)2

|Fn] =

(
Zn −

1

2

)2

[1− 2rn(λ1 + λ2)]
2 + r2nE[∆M̃n+1(i)

2|Fn]

+ 2

(
Zn −

1

2

)
[1− 2rn(λ1 + λ2)]rnE[∆M̃n+1(i)|Fn].

Thus E[(Zn+1 − 1
2)2|Fn] ≤ (Zn −

1

2
)2 + r2nW̃n, where

W̃n = r2n

(
4(λ1 + λ2)

2(Zn −
1

2
)2 + E[(∆M̃n+1(i))

2|Fn]

)
.
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To prove the a.s. synchronisation, use (15) with Xn(i) := Zn(i) − Zn which means in the
considered case E(Xn+1(i)|Fn) = (1 − 2λ1r

l
n − r

g
n)Xn(i). Thus, we obtain E(Xn+1(i)|Fn) ≤ Xn(i)

and therefore (Zn(i)− Zn)n is a bounded super-martingale and its a.s. limit exists. �

Proof. Theorem 4.2

As expected, we shall consider two different situations of nullity or not for λ1, λ2 and different
relationships between γ1 and γ2.
♣ Case λ1 6= 0, λ2 = 0.

First consider the recursive equation (17) satisfied by Var(Zn).

• Case γ1 < γ2. One gets

Var(Zn+1) = [1− 4λ1r
l
n + o(rln)]Var(Zn) +Kn(rln)2,

where

Kn =
1

N

(
1

2
− (1− 2λ1)

2

N

N∑
i=1

E(Z2
n(i)) + (λ1 − λ21)

)
,

and A = 4λ1, it implies by Lemma A.1 limn→∞Var(Zn) = 0 and it holds, by Lemma A.2,Var(Zn) =
O( 1

nγ1 ). It thus means (Zn)n converges to a constant.
To study the synchronisation, consider to the L2-distance (22) which behaves as follows

xn+1 = (1− 4λ1r
l
n + o(rln))xn + Jn(rln)2,

where Jn = N−1
N

(
1
2 − [ (1−2λ1)

2

N E(Z2
n(i)) + λ1 − λ21]

)
and A = 4λ1. One can then derive by

Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O( 1
nγ1 ).

• Case γ2 < γ1. Let us consider the recursive equation (17),

Var(Zn+1) = (1− 4λ1r
l
n)Var(Zn) +Kn(rgn)2,

whereA = 4λ1 which implies by Lemma A.1 limn→∞Var(Zn) = 0 and it holds, by Lemma A.2,Var(Zn) =
O( 1

n2γ2−γ1 ) thus, (Zn)n converges to a constant. Moreover considering the L2-distance’s (22) be-
haves,

xn+1 = (1− 2rgn + o(rgn))xn + Jn(rln)2,

where A = 2 which implies by Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn =
O( 1

n2γ1−γ2 ).

Now we prove limn→∞ Zn = 1
2 a.s. (γ1 < γ2 or γ1 > γ2). Indeed, using (11) with λ2 = 0, the

result holds since

E[(Zn+1 −
1

2
)2|Fn] =

(
Zn −

1

2

)2 [
1− 4rlnλ1

]
+ (rln)2

[
4λ21(Zn −

1

2
)2 + E[(∆M l

n+1)
2|Fn]

]
+ (rgn)2E[(∆Mg

n+1)
2|Fn].

Thus, E[(Zn+1 − 1
2)2|Fn] ≤ (Zn − 1

2)2 + (rln)2W l
n + (rgn)2W g

n where

W l
n := 4λ21

(
Zn −

1

2

)2

+ E[(∆M l
n+1)

2|Fn],

W g
n := E[(∆Mg

n+1)
2|Fn].
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By assumption (γ1, γ2) ∈ (1/2, 1]2, thus (Zn+1 − 1
2)2n is a positive almost super-martingale and

almost sure convergence holds. Again, we need for instance then to consider L2 convergence in
order to identify the (deterministic) limit.

E

(
E

[(
Zn+1 −

1

2

)2

|Fn

])
= E

(
Zn −

1

2

)2 [
1− 4rlnλ1

]
+ (rln)2K l

n + (rgn)2Kg
n.

Let yn := E(Zn − 1
2)2. One gets

yn+1 =
(

1− 4rlnλ1 + λ21(r
l
n)2
)
yn + (rln)2K l

n+1 + (rgn)2Kg
n+1 (24)

where 0 < K l
n+1 := E[(∆M l

n+1)
2] ≤ 1, 0 < Kg

n+1 := E[(∆Mg
n+1)

2] ≤ 1, by λi ≤ 1 and by
Lemma A.1 limn→∞ yn = 0. So, limE(Zn − 1

2)2 = 0. It then follows Zn
a.s.−−→ 1

2 .
• Case γ1 = γ2(=: γ). The relationship (17) writes

Var(Zn+1) = (1− 4λ1rn + o(rn))Var(Zn) +Knr
2
n,

whereA = 4λ1 which implies by Lemma A.1 limn→∞Var(Zn) = 0 and it holds, by Lemma A.2,Var(Zn) =

O( 1
nγ ) ( lognn when γ = 1 and λ1 = 1

4). To study the L2-distance’s behaviour, consider (22)

xn+1 = (1− (2 + 4λ1)rn + o(rn))xn + Jnr
2
n,

where A = (2 + 4λ1) which implies by Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2,
xn = O( 1

nγ ).

To prove limn→∞ Zn = 1
2 a.s., it then follows as before. Indeed,

E[

(
Zn+1 −

1

2

)2

|Fn] =

(
Zn −

1

2

)2

[1− 2rnλ1]
2 + r2nE[∆M̃n+1(i)

2|Fn]

+ 2

(
Zn −

1

2

)
[1− 2rnλ1]rnE[∆M̃n+1(i)|Fn].

So E[(Zn+1 − 1
2)2|Fn] ≤ (Zn −

1

2
)2 + r2nW̃n, where

W̃n = r2n

(
4λ21(Zn −

1

2
)2 + E[(∆M̃n+1(i))

2|Fn]

)
.

To prove the a.s. synchronisation, since L2 synchronisation holds, it is enough to show the a.s
limit exists for Zn(i)− Zn. Use (15) with Xn(i) := Zn(i)− Zn which means

E(Xn+1(i)|Fn) = (1− 2λ1r
l
n − rgn)Xn(i).

Thus, we obtain E(Xn+1(i)|Fn) ≤ Xn(i) and therefore (Zn(i)−Zn)n is a bounded super-martingale
and its a.s. limit exists.

♣ Case λ1 = 0, λ2 6= 0.
• Case γ1 < γ2. It holds

Var(Zn+1) = (1− 4λ2r
g
n + o(rgn))Var(Zn) +Kn(rln)2,

whereA = 4λ2 andKn = 1
N

(
1
2−

1
N

∑N
i=1E(Z2

n(i))
)
which implies by Lemma A.1 limn→∞Var(Zn) =

0 and more precisely, by Lemma A.2,Var(Zn) = O( 1
n2γ1−γ2 ). To study the synchronisation, consider
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the L2-distance which behaves as follows

xn+1 = (1− 2rgn + o(rgn))xn + Jn(rln)2,

where A = 2 which implies by Lemma A.1 limn→∞ xn = 0 and more precisely, by Lemma A.2,
xn = O( 1

n2γ1−γ2 ).

• Case γ2 < γ1. Let us consider the recursive equation (17),

Var(Zn+1) = (1− 4λ2r
g
n + o(rgn))Var(Zn) +Kn(rgn)2,

where A = 4λ2 which implies by Lemma A.1 limn→∞Var(Zn) = 0 and by Lemma A.2, Var(Zn) =
O( 1

nγ2 ). Thus, Zn converges to constant.To study the synchronisation, consider the L2-distance
which behaves as follows

xn+1 = (1− 2rgn)xn + Jn(rln)2,

where A = 2 which implies by Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn =
O( 1

n2γ1−γ2 ).

Now we prove limn→∞ Zn = 1
2 a.s. (γ1 < γ2 or γ1 > γ2) by using (11). Indeed,

E[(Zn+1 −
1

2
)2|Fn] =

(
Zn −

1

2

)2 [
1− 4rgnλ2

]
+

(rln)2
[
E[(∆M l

n+1)
2|Fn]

]
+ (rgn)2

[
4λ22(Zn −

1

2
)2 + E[(∆Mg

n+1)
2|Fn]

]
.

Thus, E[(Zn+1 − 1
2)2|Fn] ≤ (Zn − 1

2)2 + (rln)2W l
n + (rgn)2W g

n where

W l
n := E[(∆M l

n+1)
2|Fn],

W g
n := 4λ22

(
Zn −

1

2

)2

+ E[(∆Mg
n+1)

2|Fn].

Then, ((Zn+1 − 1
2)2)n is a positive almost super-martingale and almost sure convergence holds.

It is enough to consider L2 convergence in order to identify the (deterministic) limit.

E

(
E

[(
Zn+1 −

1

2

)2

|Fn

])
= E

(
Zn −

1

2

)2 [
1− 4rgnλ2

]
+ (rln)2K l

n + (rgn)2Kg
n.

Let yn := E(Zn − 1
2)2, so

yn+1 =
(

1− 4rgnλ2 + λ22(r
g
n)2
)
yn + (rln)2K l

n+1 + (rgn)2Kg
n+1 (25)

where 0 < K l
n+1 := E[(∆M l

n+1)
2] ≤ 1, 0 < Kg

n+1 := E[(∆Mg
n+1)

2] ≤ 1. By lemma A.1 we get
limn→∞ yn = 0. So, limE(Zn − 1

2)2 = 0. Using the fact that (Zn)n converges almost surely, then
Zn

a.s.−−→ 1
2 .

• Case γ1 = γ2. It holds

Var(Zn+1) = (1− 4λ2rn + o(rn)Var(Zn) +Knr
2
n,

where A = 4λ2 which implies by Lemma A.1 limn→∞Var(Zn) = 0 and it holds, by Lemma A.2,
Var(Zn) = O( 1

nγ ) ( lognn where γ = 1 and λ2 = 1
4). To study the L2-distance’s behaviour,

xn+1 = (1− 2rn + o(rn)xn + Jnr
2
n,
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which implies by Lemma A.1 limn→∞ xn = 0 and it holds, by Lemma A.2, xn = O(
1

nγ
).

To prove limn→∞ Zn = 1
2 a.s. is mainly the same as previously. Indeed,

E[

(
Zn+1 −

1

2

)2

|Fn] =

(
Zn −

1

2

)2

[1− 2rnλ2]
2 + r2nE[∆M̃n+1(i)

2|Fn]

+ 2

(
Zn −

1

2

)
[1− 2rnλ2]rnE[∆M̃n+1(i)|Fn].

Thus E[(Zn+1 − 1
2)2|Fn] ≤ (Zn −

1

2
)2 + r2nW̃n, where

W̃n = r2n

(
4λ22(Zn −

1

2
)2 + E[(∆M̃n+1(i))

2|Fn]

)
.

To prove the a.s. synchronisation, since L2 synchronisation holds, it is enough to show a.s limit
exists for Zn(i)− Zn. Use (15) with Xn(i) := Zn(i)− Zn which means

E(Xn+1(i)|Fn) = (1− rgn)Xn(i).

Thus, we obtain E(Xn+1(i)|Fn) ≤ Xn(i) and therefore (Zn(i)−Zn)n is a bounded super-martingale
and its a.s. limit exists. �

Proof. Theorem 4.4 (i)
When λ1 = λ2 = 0, (Zn)n is a bounded martingale which therefore converges a.s. to a random

variable Z∞. On the other hand, by Lemma 7.2, Var(Z∞)n <
1
4 . Remark, it means we do not have

Z∞ ∈ {0, 1} a.s. which is a behaviour that may happen with some reinforcements like in reinforced
random walks.

Let us use γ = min(γ1, γ2) and rn := rln ∨ r
g
n,

Var(Zn+1) = (1− (rgn)2

4
)Var(Zn) +Kn(rn)2,

with the following developments.

• When γ1 < γ2, then A = 1 and Kn = 1
N

[(
1
2 −

1
N

∑N
i=1E(Z2

n(i))
)]

is bounded and not equal

zero. Indeed, since E(Z2
n) < 1

2 by Lemma 7.2, we get

N∑
i=1

E(Z2
n(i)) = E(Z2

n(j)) +
N−1∑

i=1, i6=j
E(Z2

n(i)) <
1

2
+
N − 1

2
=
N

2
.

Using the first part of Lemma A.2, since
∑

n(rgn)2 < +∞ we get Var(Zn) > 0.
• When γ2 < γ1 then, A = 1 and Kn = 1

4 , thus, by the first part of Lemma A.2, we get
Var(Zn) > 0.

•When γ1 = γ2,
Var(Zn+1) = (1− r2n)Var(Zn) +Knr

2
n,

where Kn = 1
2−

1
N

∑N
i=1E(Z2

n(i))+ N
4 which using Lemma A.1 implies Var(Zn) > 0, where A = 1.

�
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Proof. Theorem 4.4 (ii)
To study the synchronisation phenomenon, we consider the L2-distance xn between Zn(i) and Zn.

xn+1 = (1− 2rgn + (rgn)2)xn + (rln)2Jn

where Jn = N−1
N

(
1
2 −

1
N E(Z2

n(i))
)
is bounded and not equal zero for N > 1 and then A = 2.

Thus, by Lemma A.1 it holds limn→∞ xn = 0 and Lemma A.2 yields xn = O( 1
n2γ1−γ2 ), meaning in

particular that the L2-synchronisation holds as n→∞.

Moreover when γ1 = γ2, xn+1 = (1− 2rn)xn + Jnr
2
n we get xn = O( 1

nγ ).

Finally, using (15) where Xn(i) := Zn(i)− Zn, it follows E(Xn+1(i)|Fn) = (1− rgn)Xn(i). Thus,
we get E(Xn+1(i)|Fn) ≤ Xn(i). As bounded super-martingale, (Zn(i)− Zn)n converges a.s. �

8. Proofs of the CLTs

We now prove the central limit theorems in order to study the scales of the fluctuations. Recall
we are using the notation an ' bn when limn→∞

an
bn

exists and is a constant. We will use Th. A.5

in order to prove the CLT’s w.r.t. stable convergence.

8.1. Proofs of the CLTs (Theorem 5.1). Consider the following definitions. Define Xk(i) :=
Zk − Zk(i). Set L0(i) = X0(i) and define

Ln(i) := Xn(i)−
n−1∑
k=0

(E[Xk+1(i)|Fk]−Xk(i)). (26)

As (15), we get

Xn+1(i) = [1− 2λ1r
l
n − rgn]Xn(i) + ∆Ln+1(i) (27)

where ∆Ln+1(i) := Ln+1(i)−Ln(i). Note that (Ln)n is an F-martingale by construction. Iterating
the above relation, we can write

Xn(i) = c1,nX1(i) +

n−1∑
k=1

ck+1,n∆Lk+1(i) (28)

where cn,n = 1 and ck,n =
∏n−1
h=k

(
1− 2λ1r

l
h − r

g
h

)
for k < n.

Proof. Theorem 5.1 (i-a)

Case γ1 < γ2. It is easy to check that limn→∞ n
γ1
2 c1,n = 0 since,

c1,n =

n−1∏
h=1

[1− 2λ1r
l
h − r

g
h] =

n−1∏
h=1

[1− 2λ1c1
hγ1

− c2
hγ2
−O(

1

h2γ1
)]

= exp[−
n−1∑
h=1

(
2λ1c1
hγ1

−
n−1∑
h=1

c2
hγ2

+O(1)

)
]

= O
(

exp[−−2λ1c1
1− γ1

n1−γ1(1− c2
1− γ2

1− γ1
2λ1c1

1

nγ2−γ1
)]
)

= O
(

exp

(
−2λ1
1− γ1

n1−γ1
))

.
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Therefore, thanks to Lemma A.3, we obtain

ck,n = O
(

exp

[
−2λ1
1− γ1

(n1−γ1 − k1−γ1)

])
.

It is then enough to prove the convergence n
γ1
2
∑

k ck+1,n∆Ln+1(i)→ N (0, (1− 1/N)/16λ1). First,
let us define Un,k = n

γ1
2 ck+1,n∆Lk+1(i) and Gn,k = Fk+1. Thus {Un,k,Gn,k : 1 ≤ k ≤ n} is a

square-integrable martingale difference array.
Indeed we have E(U2

n,k) < +∞ and E(Un,k+1|Gn,k) = n
γ1
2 ck+1,nE(∆Lk+1(i)|Fk+1) = 0. In order to

conclude, we use the Theorem recalled as Th. A.5. We will prove the following three statements for
Un,k := n

γ1
2 ck+1,n∆Lk+1(i).

a) max1≤k≤n |Un,k| → 0.
b) E[max1≤k≤n U

2
n,k] is bounded in n.

c)
∑n

k=1 U
2
n,k → (1− 1/N)/16λ1 a.s.

• It holds a) since ∆Ln+1(i)− (Xn+1(i)−Xn(i)) = 2λ1Xn(i) n−γ1 , |∆Ln+1(i)| = O(n−γ1).

• To state b), we use a) and

E[ max
1≤k≤n

U2
n,k] ≤ E[

n∑
k=1

U2
n,k]

= nγ1
n∑
k=1

c2k+1,nE[(∆Lk+1(i))
2]

' nγ1
n∑
k=1

e
−4λ1
1−γ1

(n1−γ1−k1−γ1 )O(k−2γ1)

= nγ1e
−4λ1
1−γ1

n1−γ1
n−1∑
k=1

e
4λ1
1−γ1

k1−γ1O(k−2γ1) +
n2O(n−2γ1)

n
.

Thus, E[max1≤k≤n U
2
n,k] is bounded in n.

• Finally, in order to prove c), we have

n∑
k=1

U2
n,k = nγ1

∑
k

c2k+1,n(∆Ln+1(i))
2 ' nγ1

n∑
k=1

k−2γ1e
4λ1
1−γ1

k1−γ1

e
4λ1
1−γ1

n1−γ1
(∆Lk+1(i))

2k2γ1 .

From a) we obtain

∆Lk+1(i)
2 = (Xk+1 −Xk + 2λ1r

l
kXk)

2

= [(Zk+1 − Zk)− (Zk+1(i)− Zk(i))]2 + 4λ21(r
l
k)

2(Zk − Zk(i))2

+ (rlk)(Zk − Zk(i))[(Zk+1 − Zk)− (Zk+1(i)− Zk(i))].

Since Zn − Zn(i)→ 0 a.s. and (rlk)
2X2

k = O(k−2γ1) thus,

n∑
k=1

U2
n,k = nγ1

n∑
k=1

c2k+1,n[(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))].
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Let Vk = k2γ1 [(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))] and setting the

sequences bn := 1
nγ1 e

+4λ1
n1−γ1
1−γ1 and ak := k2γ1

c21,n
e
−4λ1 k

1−γ1
1−γ1 . Hence, it holds

1

bn

∑n
k=1

1

ak
−−−→
n→∞

1

4λ1
. Indeed,

lim sup
n

1

bn

n∑
k=1

1

ak
= lim sup

n
nγ1e

−4λ1
1−γ1

n1−γ1
∫ n

1
u−2γ1e

4λ1
u1−γ1
1−γ1 du

= lim sup
n

(
1

4λ1
+
γ1n

γ1

4λ1
e−4λ1

n1−γ1

1− γ1

∫ n

1

1

u1+γ1
e
4λ1

u1−γ1
1−γ1 du

)
=

1

4λ1
.

The same holds for the limit inferior. Then limn
1

bn

∑n
k=1

1

ak
=

1

4λ1
. It implies by Lemma A.4,

that
∑n

k=1 U
2
n,k converges to

V
4λ1

a.s., where V is (deterministic random variable) defined as limk E(Vk+1|Fk) =
V. Indeed, we compute

E
(
k2γ1(Zk+1(i)− Zk(i))2|Fk

)
=

k2γ1
(

(rlk)
2E
(

(ξlk+1(i)− Zk(i))2|Fk
)

+ (rgk)
2E
(
(ξgk+1 − Zk(i))

2|Fk
)

+ 2rlkr
g
k E
(

(ξlk+1(i)− Zk(i))(ξ
g
k+1 − Zk(i))|Fk

))
= k2γ1

(
(rlk)

2
(
Var(ξlk+1(i)|Fk) + E((ξlk+1(i)− Zk(i))2|Fk)

)
+ (rgk)

2
(
Var(ξgk+1|Fk) + E((ξgk+1 − Zk(i))

2|Fk)
)

+ 2rlkr
g
k E
(

(ξlk+1(i)− Zk(i))(ξ
g
k+1 − Zk(i))|Fk

))
which behaves like k2γ1(

(rlk)
2

4 +
(rgk)

2

4 ) when k →∞. Similarly,

E[k2γ1(Zk+1 − Zk)2|Fk] = k2γ1
(

(rlk)
2E
[
(

1

N

∑
i

ξlk+1(i)− Zk)2|Fk
]

+ (rgk)
2E
[
(ξgk+1 − Zk)

2|Fk
]

+ 2rlkr
g
k E
[
(

1

N

∑
i

ξlk+1(i)− Zk)(ξ
g
k+1 − Zk)|Fk

])
= k2γ1

(
(rlk)

2
(
Var[

1

N

∑
i

ξlk+1(i)|Fk] + E2(
1

N

∑
i

ξlk+1(i)− Zk|Fk)
)

+ (rgk)
2
(
Var[ξgk+1|Fk] + E2(ξgk+1 − Zk|Fk)

)
+ 2rlkr

g
k E
[
(

1

N

∑
i

ξlk+1(i)− Zk)(ξ
g
k+1 − Zk)|Fk

])

behaves like k2γ1(
(rlk)

2

4N +
(rgk)

2

4 ) when k →∞. And it holds

E[k2γ1(Zk+1 − Zk)(Zk+1(i)− Zk(i))|Fk] =

k2γ1

(
(rlk)

2E
[
(ξlk+1(i)− Zk(i))(

1

N

∑
i

ξlk+1(i)− Zk)|Fk
]

+ (rgk)
2E
[
(ξgk+1 − Zk(i))(ξ

g
k+1 − Zk)|Fk

])
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which behaves like k2γ1
(
(rlk)

2

4N +
(rgk)

2

4

)
. It follows

E(Vk+1|Fk) = k2γ1

[
(rlk)

2
(
Var[ξlk+1(i)|Fk] +Var[

1

N

∑
i

ξlk+1(i)|Fk]

− 2E
[
(ξlk+1(i)− Zk(i))

(
1

N

∑
i

ξlk+1(i)− Zk

)∣∣∣Fk])
]

a.s−−→ 1

4
(1− 1

N
).

Thus, Vk
a.s−−→ 1

4(1− 1
N ) and therefore, σ̃21 =

(1− 1
N
)

16λ1
.

The proof of next parts and the other theorems follows similarly as previously.

• Case γ1 = γ2(=: γ). We obtain with the same argument as before that c1,n = O
(

exp[−(1+2λ1)
1−γ n1−γ ]

)
.

Therefore limn→∞ n
γ
2 c1,n = 0. So,

ck,n = O
(

exp[
−(1 + 2λ1)

1− γ
(n1−γ − k1−γ)]

)
and a), b) hold (as in proof of (i-a)). So it is enough to prove that

∑n
k=1 U

2
n,k → (1−1/N)/4(1+2λ1).

By Lemma A.4 and letting bn = 1
nγ e

2(1+2λ1)
1−γ n1−γ

and ak = k2γ

c21,n
e
− 2(1+2λ1)

1−γ k1−γ , thus 1
bn

∑n
k=1

1
ak
→

1
2(1+2λ1)

. Then we consider

lim
k→∞

E(k2γ(Zk+1(i)− Zk(i))2|Fk) = lim
k→∞

k2γr2γk E[(ξ̃k+1(i)− Zk(i))2|Fk] =

(1− 2λ1)

2
+ λ1(1− λ1)−

(1− 2λ1)
2

4
− λ1(1− 2λ1)

+
(1− 2λ2)

2
+ λ2(1− λ2)−

(1− 2λ2)
2

4
− λ2(1− 2λ2) =

1

2
a.s..

Similarly, limk→∞E(k2γ(Zk+1 − Zk)2|Fk) = limk→∞ k
2γr2γk E[( 1

N

∑
i ξ̃k+1(i) − Zk(i))2|Fk] = 1

2N ,
a.s. and

E(k2γ(Zk+1(i)− Zk(i))(Zk+1 − Zk)|Fk) = k2γr2γk E[(ξ̃k+1(i)− Zk(i))(
1

N

∑
i

ξ̃k+1(i)− Zk)|Fk]
a.s−−→ 1

2N
,

thus Vk
a.s−−→ 1

2(1− 1
N ) and therefore, σ̃21 =

(1− 1
N
)

4(1+2λ1)
.

• Case γ1 = γ2 = 1. We obtain c1,n :=
∏n
h[1− (1 + 2λ1)rh] = O(n−(1+2λ1)). Then

√
nc1,n → 0.

We then prove that
√
n
∑

k ck+1,n∆Ln+1(i)→ N (0, (1−1/N)/2(1+4λ1)) thanks to the usual three
conditions for Un,k+1 =

√
n
∑

k ck+1,n∆Ln+1(i). The relationships a), b) (as in previous proofs)
and c)

∑n
k=1 U

2
n,k → (1− 1/N)/(2(1 + 4λ1)).

We now prove these conditions. First consider a). Since ∆Ln+1(i) = Xn+1(i) − Xn(i) + (1 +
2λ1)Xn(i)n−1, one gets |∆Ln+1(i)| = O(n−1).

In order to state b), using a) to obtain

E[ max
1≤k≤n

U2
n,k] ≤ E[

n∑
k=1

U2
n,k]
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where the limit of the r.h.s is the same as the one from

1

n1+4λ1

n−1∑
k=1

k2O(k−2)

k−4λ1
+
n2O(n−2)

n
.

Thus, E[max1≤k≤n U
2
n,k] is bounded in n. Let us now consider 3). We have

n∑
k=1

U2
n,k = n

∑
k

c2k+1,n(∆Ln+1(i))
2 ' 1

n1+4λ1

n∑
k=1

k2(∆Ln+1(i))
2

k−4λ1
.

From a) we get

∆Ln+1(i)
2 ' [(Zk+1 − Zk)− (Zk+1(i)− Zk(i))]2 + r2k(Zk − Zk(i))2

+ r2k(Zk − Zk(i))[(Zk+1 − Zk)− (Zk+1(i)− Zk(i))].

Since Zn − Zn(i)→ 0 a.s. and r2kX
2
k = O(k−2), we get

lim
n→∞

n∑
k=1

U2
n,k = lim

n→∞
n

n∑
k=1

c2k+1,n[(Zk+1−Zk)2+(Zk+1(i)−Zk(i))2−2(Zk+1−Zk)(Zk+1(i)−Zk(i))] a.s.

We use Lemma A.4 with bn := n1+4λ1 and ak := k−4λ1 .
Let Vk = k2[(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))].
So 1

bn

∑n
k=1

1
ak
→ 1

1+4λ1
. This implies that

∑n
k=1 U

2
n,k converges to V

1+4λ1
a.s., where V is deter-

ministic such that limk→∞E(Vk+1|Fk) = V. Indeed, E(k2(Zk+1(i) − Zk(i))2|Fk)
a.s−−→ 1

2 . Similarly,
E(k2(Zk+1 − Zk)2|Fk)

a.s−−→ 1
2N , and E(k2(Zk+1(i)− Zk(i))(Zk+1 − Zk)|Fk)

a.s−−→ 1
2N .

Thus, Vk
a.s−−→ 1

2(1− 1
N ) and therefore, σ̃21 =

(1− 1
N
)

2(1+4λ1)
.

Proof of Theorem 5.1 (i-b)
• Case γ2 < γ1. Since c1,n =

∏n−1
h=1[1− 2λ1r

l
h − r

g
h] = O(exp[ −11−γ2n

1−γ2 ]) therefore,

nγ1−
γ2
2 c1,n → 0. Thus

ck,n = O(exp[
−1

1− γ2
(n1−γ2 − k1−γ2)]).

Results 1) and 2) hold. So it is enough to prove that∑n
k=1 U

2
n,k → (1− 1/N)/4. We have

(∆Ln+1(i))
2 ' [(Zk+1 − Zk)− (Zk+1(i)− Zk(i))]2 + (rgk)

2(Zk − Zk(i))2

+ (rgk)
2(Zk − Zk(i))[(Zk+1 − Zk)− (Zk+1(i)− Zk(i))].

Since Zn − Zn(i)→ 0 a.s. and (rgk)
2X2

k = O(k−2γ2) so,
n∑
k=1

U2
n,k = n2γ1−γ2

n∑
k=1

c2k+1,n[(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))].

We use Lemma A.4 with bn := n−(2γ1−γ2) exp( 2
1−γ2n

1−γ2) and ak := k2γ1c−21,n exp(− 2
1−γ2k

1−γ2) thus,
1
bn

∑n
k=1

1
ak
→ 1

2 .
Let Vk = k2γ1 [(Zk+1−Zk)2 +(Zk+1(i)−Zk(i))2−2(Zk+1−Zk)(Zk+1(i)−Zk(i))]. This implies that∑n

k=1 U
2
n,k converges to V a.s., where V is deterministic such that E(Vk+1|Fk) −→ V. Similarly to

what was previously done, we know that in this case Vk
a.s−−→ 1

4(1− 1
N ) and therefore, σ̃22 = 1

8(1− 1
N ).
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Proof of Theorem 5.1 (ii)

•When γ1 < γ2, let Xk := Zk −
1

2
so,

Ln = Xn −
n−1∑
k=0

(
E(Zk+1 −

1

2
|Fk)− (Zk −

1

2
)
)

= Xn + 2(λ1r
l
n + λ2r

g
n)

n−1∑
k=0

Xk

andXn+1 = [1−2λ1r
l
n−2λ2r

g
n]Xn+∆Ln+1. So c1,n = O(exp[−2λ11−γ1 n

1−γ1 ]) and therefore n
γ1
2 c1,n −→ 0.

Then

ck,n = O(exp[
−2λ1
1− γ1

(n1−γ1 − k1−γ1)]).

It is enough to show that
∑n

k=1 U
2
n,k = nγ1

∑n
k=1 c

2
k+1,nk

−2γ1(∆Lk+1)
2k2γ1 is a constant. Using

Lemma A.4 with bn := 1
nγ1 e

4λ1
1−γ1

n1−γ1
and ak := k2γ1

c21,n
e
−4λ1
1−γ1

k1−γ1 . Therefore 1
bn

∑
k

1
ak
→ 1

4λ1
. Also

(∆Ln+1)
2 = (Zk+1 − Zk + 2λ1r

l
n(Zk −

1

2
))2 = (Zk+1 − Zk)2. Then k2γ1 E((Zk+1 − Zk)2|Fk) = 1

4 .

and σ̂2 = 1
16λ1

.

• When γ2 < γ1, set Xk := Zk −
1

2
then Ln = Xn + 2(λ1r

l
n + λ2r

g
n)
∑n−1

k=0 Xk. So Xn+1 =

[1 − 2λ1r
l
n − 2λ2r

g
n]Xn + ∆Ln+1. Thus, c1,n = O(exp[−2λ21−γ2 n

1−γ2 ]) and therefore n
γ2
2 c1,n −→ 0.

Then

ck,n = O(exp[
−2λ2
1− γ2

(n1−γ2 − k1−γ2)]).

It is enough to show that
∑n

k=1 U
2
n,k = nγ2

∑n
k=1 c

2
k+1,nk

−2γ2(∆Lk+1)
2k2γ2 is a constant. Using

Lemma A.4 with bn := 1
nγ2 e

4λ2
1−γ2

n1−γ2
and ak := k2γ2

c21,n
e
−4λ2
1−γ2

k1−γ2 . Therefore 1
bn

∑
k

1
ak
→ 1

4λ2
. Also

(∆Ln+1)
2 = (Xn+1 −Xn − 2λ2r

g
nXn)2

= (Zk+1 − Zk + 2λ2r
g
n(Zk −

1

2
))2 = (Zk+1 − Zk)2.

Thus, k2γ2 E((Zk+1 − Zk)2|Fk) = 1
4 and σ̂2 = 1

16λ2
.

• When γ1 = γ2(=: γ), set Xk := Zk − 1
2 then Xn+1 = [1 − 2rn(λ1 + λ2)]Xn + ∆Ln+1 and

c1,n = O(exp[−2(λ1+λ2)1−γ n1−γ ]) and therefore n
γ
2 c1,n → 0. Then

ck,n = O(exp[
−2(λ1 + λ2)

1− γ
(n1−γ − k1−γ)]).

It is enough to show that
∑n

k=1 U
2
n,k = nγ

∑n
k=1 c

2
k+1,nk

−2γ(∆Lk+1)
2k2γ is a constant. Using

Lemma A.4 with bn = 1
nγ e

4(λ1+λ2)
1−γ n1−γ1 and ak = k2γ

c21,n
e
−4(λ1+λ2)

1−γ k1−γ .

Therefore 1
bn

∑
k

1
ak
→ 1

4(λ1+λ2)
. Also (∆Ln+1)

2 = (Zk+1−Zk)2 and so k2γ E((Zk+1−Zk)2|Fk) = 1
4

and σ̂2 = 1
16(λ1+λ2)

.

Proof of Theorem 5.1 (iii)

• When γ1 = γ2 = 1, it holds c1,n =
∏n
h[1 − 2(λ1 + λ2)rh] = O(n−2(λ1+λ2)). We then consider

the following sub-cases.
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- When (λ1 + λ2) >
1
4 ,
√
n c1,n = n−2(λ1+λ2)+

1
2 −→ 0 then we get

ck,n = O

((
k

n

)2(λ1+λ2)
)
.

Moreover,
∑

k U
2
k,n = n

∑
k(
k
n)4(λ1+λ2)(∆Lk+1)

2k2k−2 and therefore using A.4 taking suitable (an)n

and (bn)n, 1
bn

∑n
k=1

1
ak
→ 1

1−4(λ1+λ2) and thus, (∆Ln+1)
2 = (Zk+1 − Zk)2 then

limk→∞ k
2E((Zk+1 − Zk)2|Fk) = 1

4 a.s. and therefore, σ∗21 = 1
4(1−4(λ1+λ2)) .

-When λ1+λ2 = 1
4 , it holds

√
n(log n)−

1
2 c1,n −→ 0. So ck,n = ( kn)

1
2 and Uk,n =

√
n√

logn
ck+1,n∆Lk+1

and
∑n

k=1 U
2
k,n = n

logn

∑n
k=1(

k
n)(∆Lk+1)

2 = 1
logn

∑
k

1
kk

2(∆Lk+1)
2. Using Lemma A.4 leads to con-

clusion with σ∗22 = 1
4 . �

8.2. Proofs of the CLTs (Theorem 5.2). We now prove Theorem 5.2.

Proof. Let us define X̃n := n4(λ1+λ2)(Zn −
1

2
). Recall we are stating c1 = c2 = 1 for simplicity.

Since E[X̃2
n] <∞, it is therefore enough to show that (X̃n)n is a quasi-martingale. Indeed, we have

∑
k

E
(
|E[X̃k+1|Fk]− X̃k]|

)
=

∑
k

E
(∣∣∣[(1 +

1

k
)4(λ1+λ2)(1− 2(λ1 + λ2)rk)− 1]X̃k

∣∣∣)
=

∑
k

O(
1

k2
)8(λ1 + λ2)

2E(|X̃k|) < +∞.

Moreover, from the computations carried out in the proof of Theorem 5.1, E(X̃2
n) < +∞ and so

it converges a.s and in L1 to some real random variable X̃.
In order to prove that P(X̃ 6= 0) > 0, we will prove that (X̃2

n)n is bounded in Lp for a suitable
p > 1. Indeed this fact implies that X̃2

n converges to X̃2 and so we obtain E(X̃2) = limnE(X̃2
n) =

limn n
4(λ1+λ2)E(X2

n) > 0. To this purpose, we set p = 1 + ε/2, with ε > 0 and zn := E(|Xn|2+ε).
Using the following recursive equation:

Xn+1 = (1− 2rn)Zn +
rn
N

N∑
i=1

ξ̃k+1 −
1

2

one gets

zn+1 = E(|Xn|2+ε)− (2 + ε)rn2ZnE(|Xn|1+ε)

+ (2 + ε)rnE

[
|Xn|1+ε sign(Xn) (Xn)(

1

N

N∑
i

ξ̃k+1(i))

]
+Rn
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where Rn = O(n−2). Now since E[ 1
N

∑
i ξ̃n+1(i)|Fn] = 2Zn − 2(λ1 + λ2)(Zn − 1

2), we have

zn+1 = E(|Xn|2+ε)− 2(2 + ε)rnZnE(|Xn|1+ε)
+ (2 + ε)rnE[|Xn|1+ε sign(Xn) (2Zn − 2(λ1 + λ2))Xn] +Rn

= E(|Xn|2+ε)− (2 + ε)rn2(λ1 + λ2)E[|Xn|1+ε sign(Xn) (Xn)Xn] +Rn

= E(|Xn|2+ε)− (2 + ε)rn2(λ1 + λ2)E
(
|Xn|2+ε

)
+Rn

=
(

1− 2(λ1 + λ2)(2 + ε)rn

)
zn + g(n)

with g(n) = O(n−2). Therefore, we have

zn+1 =
(

1− 2(λ1 + λ2)(2 + ε)rn

)
zn + g(n).

Since, for ε > 0 sufficiently small, we have α(2 + ε) < 1 and for n large,

n−1∏
k=0

(
1− 2(λ1 + λ2)(2 + ε)rk

)
= exp[

n−1∑
k=0

(ln
(

1− 2(λ1 + λ2)(2 + ε)
c

kγ
+O(

1

k2γ
))
)

]

= O(exp[−2(λ1 + λ2)(2 + ε) lnn])

= O(n−2(λ1+λ2)(2+ε)).

Thus,

E[|Xn|(2+ε)] = O(
1

n2(λ1+λ2)(2+ε)
)

which it implies that X̃2 is bounded in L1+ ε
2 . �

8.3. Proofs of the CLTs from Theorem 5.3.

Proof. We organize the proof in two main cases according to nullity of λ1 and λ2.

♣ Case λ1 6= 0, λ2 = 0.
In order to study the evolution of Xn(i) := (Zn − Zn(i)), we consider two sub-cases.

• When γ1 ≤ γ2, Xn+1(i) = (1 − 2λ1r
l
n)Xn(i) + ∆Ln+1(i) and the proof follows like the part

(i)(a) of Theorem 5.1 with σ̃23 =
(1− 1

N
)

16λ1
when γ1 < γ2, σ̃23 =

(1− 1
N
)

4(1+2λ1)
when γ1 = γ2 (denoted by γ)

and σ̃23 =
(1− 1

N
)

2(1+4λ1)
when γ1 = γ2 = 1.

•When γ2 < γ1, Xn+1(i) = (1− rgn)Xn(i) + ∆Ln+1(i), then the proof follows like part (i-b) of
Theorem 5.1 with σ̃25 = 1

8(1− 1
N ).

We further consider Xn :=

(
Zn −

1

2

)
n

.

• When γ1 ≤ γ2, Xn+1 = (1 − rgn)Xn + ∆Ln+1, then the proof follows in a similar way as the
part (ii) of Theorem 5.1 with σ̂21 = 1

16λ1
when γ1 < γ2 and σ̂21 = 1

16(λ1+λ2
when γ1 = γ2 = γ.

• When γ2 < γ1, the proof follows along the same lines as previously. We sketch the essential
arguments in the following. We have

Xn+1 = (1− 2λ1r
l
n)Xn + ∆Ln+1.
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therefore, c1,n = O(e
−2λ1
1−γ1

n1−γ1
) and thus, nγ2−

γ1
2 c1,n → 0. Following the same steps as in the

previous proof, it be can checked that 1) and 2) hold. Only showing that
n∑
k=1

U2
n,k = n2γ2−γ1e

−4λ1
1−γ1

n1−γ1
n∑
k=1

k−2γ2e
4λ1k

1−γ1
1−γ1 k2γ2(∆Lk+1)

2

goes to a constant. It is easy to derive by Lemma A.4 that limn→∞
1

bn

∑n
k=1

1

ak
=

1

4λ1
and

k2γ2(∆Lk+1)
2 ' k2γ2(Zk+1 − Zk)2 '

1

4
. Therefore, σ̂23 = 1

16λ1
.

♣ Case λ1 = 0, λ2 6= 0.
Concerning the evolution of (Zn − Zn(i)), for both cases γ1 ≤ γ2 and γ2 < γ1, it is proved

analogously as part (i)(b) of Theorem 5.1 with σ̃24 = σ̃26 = 1
8(1− 1

N ).

We now consider Xn :=

(
Zn −

1

2

)
n

.

•When γ1 ≤ γ2, the proof follows in a similar way. We sketch essential arguments below. We
have

Xn+1 = (1− 2λ2r
g
n)Xn + ∆Ln+1,

therefore it holds c1,n = O(e
−2λ2
1−γ2

n1−γ2
) and thus, nγ1−

γ2
2 c1,n → 0.

It can then be checked that 1) and 2) hold. It is enough to show that
n∑
k=1

U2
n,k = n2γ1−γ2e

−4λ2
1−γ2

n1−γ1
n∑
k=1

k−2γ1e
4λ2k

1−γ2
1−γ2 k2γ1(∆Lk+1)

2.

tends to a constant.
It is easy to derive by Lemma A.4 that limn

1

bn

∑n
k=1

1

ak
=

1

4λ2
and k2γ1(∆Lk+1)

2 ' k2γ1(Zk+1 −

Zk)
2 ' 1

4
. Therefore, σ̂22 = 1

16λ2
.

The proof when γ2 < γ1 follows as in part (ii) of Theorem 5.1 with σ̂24 = 1
16λ2

.

• The case γ1 = γ2 = 1 is proven similarly as in part (iii) Theorem 5.1 with σ∗23 = 1
4(1−4(λ1+λ2))

when λ1 + λ2 >
1
4 , σ

∗2
4 = 1

4 when λ1 + λ2 = 1
4 and Theorem 5.2 when λ1 + λ2 <

1
4 .

�

8.4. Proofs of the CLTs from Theorem 5.4.

Proof.
Proof of Theorem 5.4 (i)
• Case γ1 6= γ2. Define Xk(i) := Zk − Zk(i). Set L0(i) = X0(i) and let us rewrite

Ln(i) = Xn(i)−
n−1∑
k=0

(E[Xk+1(i)|Fn]−Xk)

= Xn(i)−
n−1∑
k=0

([1− rgk](Zk − Zk(i))− (Zk − Zk(i))) = Xn(i) +
n−1∑
k=0

rgkXk(i).
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Then Xn+1(i) = [1−rgn]Xn(i)+∆Ln+1(i). Note that (Ln(i))n is an F-martingale by construction.
Iterating the above relation, we can write Xn(i) = c1,nX1(i)+

∑n
k=1 ck+1,n∆Ln+1(i) where cn+1,n =

1 and ck,n =
∏n
h=k[1− r

g
h] for k ≤ n. It holds c1,n =

∏n
h=1[1− r

g
h] = O(exp[ −11−γ2n

1−γ2 ]).

Then nγ1−
γ2
2 c1,n → 0 and

ck,n = O(exp[
−1

1− γ2
(n1−γ2 − k1−γ2)]).

So it is enough to prove that nγ1−
γ2
2
∑

k ck+1,n∆Ln+1(i)→ N
(

0, (1− 1/N)(Z∞ − Z2
∞)
)
.

Again, this can be proved using Theorem A.5 for Un,k+1 = nγ1−
γ2
2
∑

k ck+1,n∆Ln+1(i) and proving
a), b) and c). It is easy to check that conditions a) and b) hold. Let us now consider 3). We have

n∑
k=1

U2
n,k = n2γ1−γ2

∑
k

c2k+1,n(∆Ln+1(i))
2 ' n2γ1−γ2

n∑
k=1

k−2γ1e
1

1−γ2
k1−γ2

e
1

1−γ2
n1−γ2

(∆Ln+1(i))
2k2γ1 .

From 1) we obtain

(∆Ln+1(i))
2 ' [(Zk+1 − Zk)− (Zk+1(i)− Zk(i))]2 + (rgk)

2(Zk − Zk(i))2

+ (rgk)
2(Zk − Zk(i))[(Zk+1 − Zk)− (Zk+1(i)− Zk(i))].

Since Zn − Zn(i)
a.s−−→ 0 and (rgk)

2Xk(i)
2 = O(k−2γ2) so,

n∑
k=1

U2
n,k = n2γ1−γ2

n∑
k=1

c2k+1,n[(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))]

where we use Lemma A.4 with bn := 1
n2γ1−γ2 e

2
1−γ2

n1−γ2
and ak := k2γ1

c21,n
e
− 2

1−γ2
k1−γ2 .

Let Vk = k2γ1 [(Zk+1 − Zk)2 + (Zk+1(i)− Zk(i))2 − 2(Zk+1 − Zk)(Zk+1(i)− Zk(i))].
Thus limn→∞

1
bn

∑n
k=1

1
ak

= 1
2 . This implies that

∑n
k=1 U

2
n,k converges to V

2 a.s., where V is such
that limk→∞E(Vk+1|Fk) = V. Indeed,

E
(
k2γ1(Zk+1(i)− Zk(i))2|Fk

)
= k2γ1(rlk)

2E[(ξlk+1(i)− Zk(i))2|Fk]
= k2γ1(rlk)

2Var[ξlk+1(i)|Fk]
= k2γ1(rlk)

2
(
Zk − Z2

k

) a.s−−→ Z∞ − Z2
∞.

Similarly, E(k2γ1(Zk+1 − Zk)2|Fk)
a.s−−→ Z∞ − Z2

∞, and

E(k2γ1(Zk+1(i)− Zk(i))(Zk+1 − Zk)|Fk)
a.s−−→ Z∞ − Z2

∞
N

.

Thus, limk→∞ U
2
k = ϑ2(1− 1

N )(Z∞ − Z2
∞) a.s. where ϑ = 1

2 .

• Case γ1 = γ2(=: γ). Since Ln(i) = Xn(i) +
∑n−1

k=0 rnXk(i), it holds
Ln+1(i)− Ln(i) = Xn+1(i)− (1− rn)Xn(i). So Xn+1(i) = (1− rn)Xn(i) + ∆Ln+1(i). Iterating the
above relation, we can write
Xn(i) = c1,nX1(i) +

∑n
k=1 ck+1,n∆Ln+1(i) where cn+1,n = 1 and ck,n =

∏n
h=k(1 − rh) for k ≤ n.

We get c1,n =
∏n
h=1[1− rh] = O(exp[ −11−γn

1−γ ]). Then n
γ
2 c1,n → 0.
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Moreover limn→∞
1
bn

∑n
k=1

1
ak

= 1
2 and then,

E(k2γ(Zk+1(i)− Zk(i))2|Fk) = k2γr2γk E[(ξ̃k+1(i)− Zk(i))2|Fk]
= k2γr2γk Var[ξ̃k+1(i)|Fk]

a.s−−→ 2(Z∞ − Z2
∞).

Similarly, E(k2γ(Zk+1 − Zk)2|Fk)
a.s−−→ 2(Z∞ − Z2

∞), and

E(k2γ(Zk+1(i)− Zk(i))(Zk+1 − Zk)|Fk)
a.s−−→ 2(Z∞ − Z2

∞)

N

Thus, limk→∞ U
2
k = ϑ4(1− 1

N )(Z∞ − Z2
∞) a.s. where ϑ = 1

2 .

• Case γ1 = γ2 = 1. It holds Xn+1(i) = [1− rn]Xn(i) + ∆Ln+1(i). Iterating the above relation,
we can write Xn(i) = c1,nX1(i) +

∑n
k=1 ck+1,n∆Ln+1(i) where cn+1,n = 1 and ck,n =

∏n
h=k[1− rh]

for k ≤ n. c1,n =
∏n
h=1[1 − rh] = O(n−1). Then

√
n c1,n → 0. Choosing bn := n and ak := 1,

limn→∞
1
bn

∑n
k=1

1
ak

= 1. It holds

E(k2γ(Zk+1(i)− Zk(i))2|Fk)
a.s−−→ 2(Z∞ − Z2

∞).

Similarly, E(k2γ(Zk+1 − Zk)2|Fk)
a.s−−→ 2(Z∞ − Z2

∞), and

E(k2γ(Zk+1(i)− Zk(i))(Zk+1 − Zk)|Fk)
a.s−−→ 2(Z∞ − Z2

∞)

N
.

Thus, limk→∞ U
2
k = ϑ4(1− 1

N
)(Z∞ − Z2

∞) a.s. where ϑ = 1.

Proof of Theorem 5.4 (ii)

• Case γ1 < γ2. The process (Zn)n is a (bounded) martingale. Therefore (Zn)n converges a.s.
We want to prove the following two statements

(1) E
[

supk k
γ1− 1

2 |Zk+1 − Zk|
]
< +∞;

(2) n2γ1−1
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 1

N(2γ1−1)(Z∞ − Z
2
∞).

Indeed, the first condition immediately follows from

|Zk+1 − Zk| = |rln(
1

N

∑
i

ξlk+1(i)− Zk) + rgn(ξgk+1 − Zk)| = O(k−γ1).

Concerning the condition 2), we observe that

n2γ1−1
∑
k≥n

(Zk+1 − Zk)2 = n2γ1−1
∑
k≥n

k−2γ1(rlk)
2(

∑
i ξk+1(i)

N
− Zk)2k2γ1

and so the desired convergence follows by lemma A.4 with ak := k−2γ1+2, bn := n2γ1−1 and
Uk = k2γ1(rlk)

2(
∑
k ξk+1(i)
N − Zk)2, limn→∞ bn

∑
k≥n

1
akb

2
k

= − 1
1−2γ1 so,

E

((∑
k ξk+1(i)

N
− Zk

)2∣∣F) = Var(
∑

k ξk+1(i)

N
|Fn) =

1

N
(Z∞ − Z2

∞).

Finally, we take ϑ = 1
(2γ1−1) .

• Case γ2 < γ1. We want to prove the following two statements
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1) E
(

supk k
γ2− 1

2 |Zk+1 − Zk|
)
< +∞;

2) n2γ2−1
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 1

(2γ2−1)(Z∞ − Z
2
∞).

The first result immediately follows from

|Zk+1 − Zk| = |rln(
1

N

∑
i

ξlk+1(i)− Zk) + rgn(ξgk+1 − Zk)| = O(k−γ2).

To prove the second point, we observe that

n2γ2−1
∑
k≥n

(Zk+1 − Zk)2 = n2γ2−1
∑
k≥n

(rlk)
2k−2γ2

(∑N
i=1 ξk+1(i)

N
− Zk

)2

k2γ2

and the desired convergence follows by lemma A.4 with ak := k2γ2+2, bn := n2γ2−1 and
Uk = k2γ2(rgk)

2(ξgk+1 − Zk)
2, limn→∞ bn

∑
k≥n

1
akb

2
k

= − 1
1−2γ2 and

E(ξgk+1(i)− Zk)
2|F) = Var(ξgk+1|F) = (Z∞ − Z2

∞).

Finally, we take ϑ = 1
(2γ2−1) .

• Case γ1 = γ2(=: γ). The process (Zn)n is a martingale and converges a.s. Indeed,

E(Zn+1|Fn) = (1− 2rn)Zn + rnE

(∑N
i=1 ξ̃n+1(i)

N
|Fn

)
= Zn.

We want to check the following two conditions:

1) E
[

supk k
γ− 1

2 |Zk+1 − Zk|
]
< +∞;

2) n2γ−1
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 2

N(2γ−1)(Z∞ − Z
2
∞).

The first result follows from

|Zk+1 − Zk| =

∣∣∣∣∣rn
(

1

N

N∑
i=1

ξ̃k+1(i)− 2Zk)

)∣∣∣∣∣ = O(k−γ).

And for the second point, we observe that

n2γ−1
∑
k≥n

(Zk+1 − Zk)2 = n2γ−1
∑
k≥n

r2kk
−2γ

(∑
i ξ̃k+1(i)

N
− Zk

)2

k2γ

and so the desired convergence follows by lemma A.5 with ak := k−2γ+2, bn := n2γ−1 and

Uk = k2γr2k

(∑
i ξ̃k+1(i)

N
− 2Zk

)2

,

limn→∞ bn
∑

k≥n
1

akb
2
k

= − 1
1−2γ , and E

((∑N
i=1 ξ̃k+1(i)

N
− 2Zk

)2
|Fk

)
=

2

N
(Z∞−Z2

∞). Finally, we

have ϑ = 1
(2γ−1) .

• Case γ1 = γ2 = 1. As usual, we prove

1) E
[

supk k
1
2 |Zk+1 − Zk|

]
< +∞;

2) n
∑

k≥n(Zk+1 − Zk)2
a.s−−→ 2

N (Z∞ − Z2
∞).
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First result follows from

|Zk+1 − Zk| = |rn(
1

N

N∑
i=1

ξ̃k+1(i)− 2Zk))| = O(k−1).

Second result comes from

n
∑
k≥n

(Zk+1 − Zk)2 = n
∑
k≥n

r2kk
−2k2(

∑
i ξ̃k+1(i)

N
− Zk)2

and the desired convergence follows then by lemma A.4 with ak := 1, bn := n and

Uk = k2r2k(
∑
i ξ̃k+1(i)
N − 2Zk)

2, limn→∞ bn
∑

k≥n
1

akb
2
k

= 1.

E(

∑
i ξ̃k+1(i)

N
− 2Zk)

2|F) =
2

N
Z∞(1− Z∞).

Finally, we have ϑ = 1. �
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Appendix A. Appendix

In this section, we prove and recall some technical results. The following Lemma is adapted
from [CDPLM19] to the more general cases considered in this work. It is used with εn = arln or
εn = argn and δn = (rln)2 or δn = (rgn)2.

Lemma A.1. Let (xn) be a sequence of positive such that following equation holds:

xn+1 = (1− εn)xn +Knδn (29)

where a > 0, rn ≥ 0 and 0 ≤ Kn ≤ K. Assume that (εn)n and (δn)n are positive sequences of reals∑
n

εn = +∞,
∑
n

ε2n < +∞, and
∑
n

δn < +∞. (30)

Then limn→+∞ xn = 0. �

Proof. The case K = 0 is well-known. We will prove the statement when K > 0. Let m0 be
such that εn < 1 for all n ≥ m0. Then for n ≥ m0 we have xn ≤ yn, where{

yn+1 = (1− εn)yn +Kδn
yl = xl

(31)

It holds

yn = yl

n−1∏
i=l

(1− εi) +K
n−1∑
i=l

δi

n−1∏
j=i+1

(1− εj). (32)

Using the assumptions (30) about (εn)n, it follows that
n−1∏
i=l

(1− εi) −→ 0.
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Moreover, for every m ≥ m0,
n−1∑
i=l

δi

n−1∏
j=i+1

(1− εj) =
m−1∑
i=l

δi

n−1∏
j=i+1

(1− εj) +
n−1∑
i=m

δi

n−1∏
j=i+1

(1− εj) (33)

≤
n−1∏
j=m

(1− εj)
m−1∑
i=l

δi +

+∞∑
i=m

δi.

Using that
∏n−1
j=m(1− εj) −→ 0 and that

∑
n δn < +∞, letting first n→ +∞ and then m→ +∞

in (33), the conclusion follows. �

We now present an extended version of the previous result, stating the rate of convergence.
Following Lemma is adapted from [CDPLM19]. This is in agreement with [ACG20, Lemma A.1],
[ACG19, Lemma A.1] given here as Lemma A.3 for completeness.

Lemma A.2. Let (zn)n be a sequence of positive reals satisfying the following equation:

zn+1 = (1−Aεn) zn +Knδn, (34)

where A > 0 and ∀n ∈ N, 0 < Kn ≤ K. Assume that (εn)n and (δn)n are positive sequences of reals∑
n

ε2n < +∞ and
∑
n

δn < +∞

Then it holds,

lim
n→+∞

zn = 0⇔
∑
n

εn = +∞.

In particular, assume lim infnKn > 0 and

εn =
c1
nκ1

+O(
1

n2κ1
),

lim
n
nκ2δn = c2 > 0

where 1
2 < κ1 ≤ 1 < κ2 then,

xn =


O( 1

nκ2−κ1
) if κ1 < 1,

O( logn
nA

) if κ1 = 1 and κ2 −A = 1,

O( 1
nκ2−1 ) if κ1 = 1 and κ2 −A < 1

O( 1
nA

) if κ1 = 1 and κ2 −A > 1.

�

Proof. The case K = 0 is well-known and we will prove the statement K > 0. Let l be such that
Aεn < 1 for all n ≥ l. Then for n ≥ l we have zn ≤ yn, where{

yn+1 = (1−Aεn) yn +Kδn,
yl = zl.

Set ε′n = Aεn and δ′n = Kδn. It holds

yn = yl

n−1∏
h=l

(1− ε′h) +
n−1∑
h=l

δ
′
h

n−1∏
k=h+1

(1− ε′k).
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Since
∑

n εn = +∞, then limn→∞
∏n−1
h=l (1− ε

′
h) = 0. Moreover, for every m ≥ l,

n−1∑
h=l

δ
′
h

n−1∏
k=h+1

(1− ε′k) =

m−1∑
h=l

δ
′
h

n−1∏
k=h+1

(1− ε′k) +

n−1∑
h=m

δ
′
h

n−1∏
k=h+1

(1− εk)

≤
n−1∏
k=m

(1− ε′k)
m−1∑
h=l

δ
′
h +

+∞∑
h=m

δ
′
h.

Using the fact that
∏n−1
k=m(1 − ε′k) −→ 0 and that

∑
n δn < +∞, letting first n −→ +∞ and then

m −→ +∞, the conclusion follows. We are left to prove if
∑

n εn < +∞ then limn zn 6= 0.
From (34) we have

zn+1 ≥
(

1− ε′n
)
zn

from which it follows

zn ≥ z0
n−1∏
k=0

(
1− ε′n

)
.

Since by assumption,
∑

n εn < +∞, we obtain limn→∞ zn > 0.
Thus, limn→+∞ zn = 0 ⇔

∑
n εn = +∞ (κ1 ≤ 1). Otherwise, if

∑
n εn < +∞ (κ1 > 1), then

limn→+∞ zn 6= 0.

More specifically, one gets.

• When κ1 < 1. Let xl,n :=
∑n−1

h=l δ
′
h

∏n−1
k=h+1(1− ε

′
k), thus, assuming l is large enough to replace

εn and δn with their asymptotics, and using the monotonicity of their asymptotics ,

xl,n = O
(∫ n

l

1

sκ2
exp

(
−
∫ n

s

1

uκ1
du
)
ds
)

= O
(∫ n

l

1

sκ2
exp−

[ 1

(1− κ1)uκ1−1
]n
s
ds
)

= O
(∫ n

l

1

sκ2
exp[

1

1− κ1
(

1

sκ1−1
− 1

nκ1−1
)]ds

)
= O

(
e
− 1

(1−κ1)n
κ1−1

∫ n

l

1

sκ2
e

1

(1−κ1)s
κ1−1 ds

)
= O

( 1

nκ2

∫ n
l s
−κ2e

1

(1−κ1)s
κ1−1 ds

n−κ2e
1

(1−κ1)n
κ1−1

)
.

Letting n→∞, using of L’Hôpital rule, it holds

xl,n = O
( 1

nκ2
n−κ2e

1

(1−κ1)n
κ1−1

[(−κ2)n−κ2−1 + n−κ2n−κ1 ]e
1

(1−κ1)s
κ1−1

)
= O

( 1

nκ2
1

−κ2
n + 1

nκ1

)
= O

( 1

nκ2−κ1

( 1

1− κ2nκ1
n

))
.

• When κ1 = 1, set
fn :=

zn∏n−1
k=0(1− ε′k)

.
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By (34) we obtain,
fn+1 = fn + F (n)

where F (n) = δ
′
n∏n

k=0(1−ε
′
k)
. So, observing that f0 = z0 = 0, we obtain

fn =

n−1∑
h=0

F (h),

or equivalently,

zn =
[ n−1∏
k=0

(1− ε′k)
] n−1∑
h=0

F (h).

Since
∏n−1
k=0(1− ε′k) = O( 1

nA
) and therefore F (n) = O(nA−κ2), then

zn =
[ n−1∏
k=0

(1− ε′k)
] n−1∑
h=0

F (h) = O
(∑n−1

h=0
1

hκ2−A

nA

)
= O

(∫ n
1 h

A−κ2

nA

)
n→∞

=


O( logn

nA
) if κ2 −A = 1,

O( 1
nb−1 ) if κ2 −A < 1,

O( 1
nA

) if κ2 −A > 1.

The conclusion follows. �

As mentioned, previous result agrees with the next Lemma which is proved as Lemma A.4
in [ACG17].

Lemma A.3. Let γ be a real in ]12 , 1], and c > 0. Let (rn)n be a sequence of real numbers such that
0 < rn < 1. Let

rn =
c

nγ
+O

(
1

n2γ

)
.

Let a > 0. Denote with l ≥ 2 an integer such that ∀m ≥ m0, a < 1
rm0

. Let

pm0,n :=

n∏
m=m0

(1− arm) and lm0,n = p−1m0,n.

It holds

pm0,n =

{
O
(

exp
[
− ca

1−γn
1−γ
])

if 1
2 < γ < 1

O (n−ca) if γ = 1

and

lm0,n =

{
O
(

exp
[
ca
1−γn

1−γ
])

if 1
2 < γ < 1

O (nca) if γ = 1

Thus, setting
Fk+1,n :=

pm0,n

pm0,k
for m0 ≤ k ≤ n ,

one gets

Fk+1,n =

O
(

exp
(

a
1−κ1 (k1−κ1 − n1−κ1)

))
for 1/2 < κ1 < 1

O
((

k
n

)a) for κ1 = 1.
(35)

�
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Lemma A.4. Let G be an (increasing) filtration and (Vk) be an G-adapted sequence of real random
variables such that E[Vk|Gk−1] → V a.s. for some real random variable V . Moreover, let (ak) and
(bk) be two sequences of strictly positive real numbers such that

bk ↑ +∞,
∞∑
k=1

E[V 2
k ]

a2kb
2
k

< +∞.

Then we have:
a) If 1

bn

∑n
k=1

1
ak
→ ϑ for some constant ϑ, then 1

bn

∑n
k=1

Vk
ak
→ ϑV .

b) If bn
∑

k≥n
1

akb
2
k
→ ϑ for some constant ϑ, then bn

∑
k≥n

Vk
akb

2
k
→ ϑV . �

Theorem A.5. (Theorem 3.2 in [HH80])
Let {Sn,k,Fn,k : 1 ≤ k ≤ kn, n ≥ 1} be a zero-mean, square-integrable martingale array with
differences Un,k, and let σ2 be an a.s. finite random variable. Suppose that

1) max1≤k≤kn |Un,k|
P−→ 0;

2) E[max1≤k≤kn U
2
n,k] is bounded in n;

3)
∑kn

k=1 U
2
n,k

P−→ σ2

and the σ-fields are nested, i.e. Fn,k ⊆ Fn+1,k for 1 ≤ k ≤ kn, n ≥ 1. Then Sn,kn =
∑kn

k=1 Un,k
converges stably to a random variable with characteristic function φ(u) = E[exp(−σ2u2/2)], i.e. to
the Gaussian kernel N (0, σ2). �
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