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WITH INDIVIDUAL AND COLLECTIVE REINFORCEMENT
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Abstract

The Poélya urn is the paradigmatic example of a reinforced stochastic process.
It leads to a random time-limit. The Friedman urn is a generalization whose
a.s. time-limit is not random anymore. In this work, following previous recent
works, we introduce a new family of (finite) systems of reinforced stochastic
processes, interacting through an additive collective reinforcement of mean
field type. The two reinforcement rules strengths are tuned through different
rates n~”. In the case the reinforcement rates are like n ™!, these reinforcements
are of Pélya or Friedman type and may thus lead to random limits or not.
Different parameter regimes needs to be considered.

We state two kind of results. First, we study the time-asymptotics and
show that L? and almost sure convergence always holds. In particular, all
the components share the same time-limit. We show, the nature of the
limit (random/deterministic) depends on the parameters’ regime considered.
Second, we study fluctuations and prove central limit theorems whose scaling
coefficient vary according to the regime considered.

Keywords: Reinforced stochastic processes; Interacting random systems; Al-
most sure convergence/Synchronization; Central limit theorems
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1. Introduction

This work is motivated by systems of interacting stochastic processes (discrete time)
related to the one considered in the publications [4] and [6]. These are systems
of interacting reinforced stochastic processes where the interaction holds through a
reinforcement scheme. In some special cases, these are models of interacting urns. We
generalize a new model type (1) which is able to behaves both random or deterministic
in time limit distribution according to the type of reinforcement. Issues are including:
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nature of the almost sure time limit distribution (deterministic or random) according
to the type of reinforcement (Polya or Friedman like in case of urn model, see [5, 13]);
existence of a.s. synchronization in the system (in the sens, each component dynamics
share the same random time-limit); fluctuations with respect to this limit (see [4, 6, 16])
through central limit theorems with adapted scaling. As for stochastic algorithms,
these dynamics are defined through recursive equations and a step size is defined. This
work is considering generalization with competing local/collective aspects. To be more
specific with the motivation, synchronization phenomenon for stochastic systems have
received a considerable interest recently (Kuramoto model for instance), both for their
impact in applications and their intrinsic mathematical value. Synchronization occurs
in many natural contexts and is a common topic of different scientific fields. This is a
general concept for a phenomenon observed in multicomponent dynamical evolutions.
The following are constituting aspect: notion of unit (cell, component, individual) with
a proper dynamics; finite (possibly large) number of units (here N); interaction among
units which influences their dynamics (here, mean field interaction); the units after
some time adopt the same kind of behavior, each individual behavior being coordinated
to a collective common characteristic. A basic model of self-reinforcement is the well
known Pélya urn. In Physics, Biology or social science and economy, reinforcement is
defined as an action which increases the frequency of a certain behavior. We may define
a reinforced process as a stochastic process where an event which has occurred many
times in the past has a higher probability to occur in the future. To survey on this kind
of processes see [15]. There is a big variety of reinforced processes, urn models belong
to them. The Polya urn is the simplest. We briefly describe it below. See Chap. 7 in [3]
too for an introduction. At time 0 an urn contains a red balls and b blue balls. At
each discrete time n > 0, a ball is drawn out and it is replaced in the urn together with
¢ balls of the same color. We denote by Z,, the proportion of red balls in the urn at
time n, namely, the conditional probability of choosing a red ball at time n + 1, given
the proportion of the red ball at time n. We are interested in the distribution of Z,
when n is large. An easy calculation shows that (Z,,),>0 is bounded martingale, thus it
converges almost surely to a (non degenerate) random variable Z.,. Moreover it can be
proved that Z., has Beta distribution with parameters a/c and b/c [11]. Generalized
Pdolya urns may exhibit very different behaviors, even when some seemingly slight
changes in the reinforcement scheme is made. An example is given by the Friedman
urn [7]: at each step the ball selected is replaced by « balls of the same color and 3
balls of the color not drawn, where @ > 8 > 0. A theorem was stated in [8] proving the
proportion Z,, of red balls converges a.s. to 1/2. Thus, modifying the reinforcement
scheme may leads to a deterministic limit distribution.

If we be interested in studying, as main component of an interacting system, reinforced
stochastic processes (urn models) can defined through the following recursive equation:

1
Vn € N, ZnJrl:(l_rn) Dp +1n €n+17 Z0:§

where the Bernoulli law of the random variable &1 is a transformation of Z, such
that P(¢,41 = 1|F,) = ¢(Z,,) where ¢ is a map from [0, 1] to [0,1], 7, =n + 37" and
Fn = 0{Z1,...,Z,}. Regarding this point of view, a well known result [10] states
that: Assume ¢ is continuous then, (Z,), converges a.s. and its limit Z, is such that
W(Zx) = Zso ass;
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e Case p(x) = z is the well known evolution of the proportion of one color in a
two-color Pélya urn context. The random time-asymptotics proportion Z, is
beta-distributed.

e Case ¢(x) = 1 — x corresponds to the proportion when a Friedman replacement
scheme is used, meaning at each time step, a balls of the chosen color are added
to the urn and b > 0 balls from the not chosen color. Z,, = % a.s.

We are interested in studying finite size systems {(Z,(i))n, 1 < i < N} of such
processes for N > 1 where an interaction takes place through the reinforcement
mechanism. Such systems proved to have very interesting properties, as it was stated
in previous recent works [6, 5, 16]. Motivated by [4, 1], we want to study different
strength of reinforcement considering r,, ~ 7%. In the case v = 1, we come back to the
urn model as known as Pdlya and Friedman. The objects are organized as two main
concepts. The first one is dedicated to the asymptotic behavior of reinforced interacting
systems such as convergence and synchronization similar to those were studied in [4]
and [6]. The second is study to fluctuations of these type of model which in the tools

and methods are based on [5] and [16].

2. Framework

Let us define the following new model. For i € {1,..., N} and n € N, we counsider
the stochastic dynamics defined through the recursive relation

Zn1 (i) = (L= rpy = 18) Zn (i) + 17,6041 (1) + 75011, (1)

where Zy(i) = % and where & 41(@) and &7 | denote local and collective reinforcements
schema, sequences of random variables which are conditionally independent given
Fn =0(Zy, Z1, ..., Zy,) as a Borel o-algebra. Given F,,, they are Bernoulli distribution
such that

P (€41 (0) = 1Fn) = ¥1(Za(0)) = (1 = 204) Zn (i) + A1,

IP( rgL+1 =1|Fn) = ¥2(Zn) = (1 = 2X2) Z, + A2,
for ¢y : [0,1] — [0,1] (k € {1,2}) where Z,, = & Zfil Z, (i) and A1, A2 € [0,1] are

parameters. The local and collective reinforcement rates are such that rl, ~ 1%1 and
r9 ~ L2 with ~ meaning lim,,_, nr;, is a constant (like Dy, Do)

Remark 1. In the specific case when 77 = 9 =, we can rewrite the model such as
Zni1 (i) = (1 = 2r0) Z0 (4) + o€t (i),
where &,41(i) = &1 (i) + &2, ;. therefore &,.1(i) € {0,1,2} such that

P (€1 (i) = 21Fn) = P41 () = 1F,) x P(E] 1 = 1|F)
The reinforcement rate is r,, ~ 2”%,.
Remark 2. As mentioned earlier, we can have two different behaviors of time limit
distribution with defining a proper reinforcement which comes from the role of pa-
rameters A;s which in play. Indeed, parameters \;s (being equal 0 or not) let the
transformation ;s to make a different character of reinforcement (Polya or Friedman
respectively).
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This is straightforward, to compute the following relationships that will be used
frequently in this paper:

E[Zp1 ()| Fn] = (1 = 207h —79)Z,(3) +79(1 — 200) Zyy + Ml + X079, (2)
and by averaging over ¢ in {1,..., N}, we have
E[Zpi1|Fn]l = (1 = 207h — 20079) Z,, + Mirl 4+ Agrd. (3)

Remark 3. In this paper the parameters A;, A2 are kept fixed. Cases where \; may
converge to 0 depending on n, N are work in progress and will be considered in a
forthecoming work [14].

3. Convergence and synchronization

In this section we study convergence of (Z,), and synchronization phenomenon.
Indeed considering the different regime of ;, for % < v; <1, we obtain different kind
of limit (deterministic or random) of Z,, with different rate. Moreover synchronization
happens with different rate according to 7;’s regimes. The following theorems describe
them.

3.1. Case of a deterministic time-asymptotics

We call deterministic, the case when the limit is not random.

Theorem 1. For any A1 > 0 and \s > 0 and for % < (71,72) < 1, following results
hold, where C denotes a generic constant:

i) asymptotics of variances (n — o0):
Var(Z,) ~ < and Var(Z,(i)) ~ 7% where v := min(vy1,¥2);

nYy

ii) behavior of the L? distance between Z, and Z, (i) when n — 0o:

a) if y1 < Yo, then B[Z, — Z,(1)]* ~ &=

nyi’

b) if v2 <1, then BlZ, — Z,(i)]* ~ -z

i11) almost sure convergence holds i.e.
. . . . 1
Vi=1,...,N, limy, s oo Zn (1) = limy 400 Zn = 5 a.5.

Two others cases lead to the following similar results.

Theorem 2. In the following cases: either A1 £ 0 and Ao = 0 or A\; = 0 and A2 # 0
and for % < (71,72) <1, it holds limy, 4 oo Zy (1) = limy, 400 Zp = % a.s. Moreover,

the following table summarizes the L? speed of convergence with ~ := min(y;,v2) and
where C' denotes a generic constant.

A #£0, Aa=0 A1 =0, Aa#0
7 <7 Var(Z,) ~ -5 Var(Zy) ~ wro=s
E[Z, — Zn(i)]2 ~ n% E[Z, — Zn(i)}2 ™~ s
72 <M Var(Zy) ~ rs=r Var(Z,) ~ -5
E[Z, — Zn(i)]Q ~ P E[Z, — Zn(i)P ~ n%l%
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3.2. Case of a common shared random time-asymptotics
Theorem 3. For A\; = Ay =0, with § < (71,72) <1,

(i) it holds (n — oo0) Var(Z,) — e~ ~ o where v := min(y1,72) and
C denotes a generic (known) constant, and {(s) := > n~* is Riemann’s zeta

function. In particular (Z,), converges a.s. to a non-degenerated random limit
denoted by Zy, i.e. Var(Z,,) > 0.

(ii) The L?*-distance behaves as follows,
C

n2v1—72

E[Zn(l) - Zn]2 ~
and synchronization holds almost surely in the sense limy, o0 Zy (i) = Zoo a.s.

4. Fluctuations

Theorem 4. Let \y > 0, Ay > 0; let v := min(y1,72). The following statements hold,
where C' is denoting a generic constant (depending on N and X; ).

i) Fory <1, v2 <1, then
a) when y1 < y2, 2 (Zn — Zn(i)) stably, N(O,C),
n—oo

b) when yo < v1, N F (Zy — Zn(i )) stably, N(O C)

1) When at least one of these conditions hold: v1 <1 or v2 < 1, It holds

n¥(Zy — %) e, wr(0,0)

i11) When both v, and o are equal 1

0) for (M + \o) > i Ji(Z — %) 2w, wr(0.0).
1 sta
b) Jor (O +Xe) = 7 J= (Za — 5) R N(O c)

Proposition 1. Let /\1 > 0,2 > 0; when v1 = v = 1 following statement hold.
1
When (A1 + A2) < L
1 a.s. 1 ind
Va(Zy — =) 25

2 n— o0

for some real random variable X such that P(X # 0) > 0.

9

Proposition 2. In the following cases: A1 # 0, Ao =0 and Ay =0, Ay #£0

M A0 A =0 N =0, 2 £0
< | 0 (2 - Zal) L N(0,0) |0 # (2, - Za(0) 2% N (0,0)
n# (2, - 1) =% N (0,0) =% (2, - §) =% N (0,C)
o< | 0 F (Zy = Za(i) T N(0,C) | 0 F (2, - Zuli) 2 N (0,C)
% (2, - §) % N (0,C) w2(Z, - 3) =% N (0,0)
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Ai=0, \;> 1 Ai 0)\—% Ai=0, A\ <
o - 1 stably NG 1 stably _1 a.s./L*
== | VilZa = 3) 2 N (0,0) | 20— 5) 2 N (0.0) | Valz, - 5) S5 X

Theorem 5. Let Ay = Ao = 0. Following statements hold.
(i) For any & < (v1,72) <1, it holds

W= R (Zy — Zn(i)) b, N(o, C Zoo(1— Zoo)).

n—oo

i) For L < (y1,72) <1, let v := min(y1,v2), it holds
3 v

7‘%(Zn 7, Steb, stably /\/’(0 CnZ (1 _Zoo))'

n—oo

5. Proofs
5.1. First results about the variances

Using (2) and (3), we compute recursive equations satisfied by variance of Z, (i)
Var(Zo1 (i) Fa) = Var [(1= vl = 19)Zn + rheh 1 () + 7960, | 7

and Z,,:
= (r},)? Var(&), 1 (D) Fn) + (7)) Var(€5,, | F,)
= (r)? [(1=200)2(Z0 (i) = Za()*) + M1 = AT] + (r9)? [(1 = 200)(Zn — Z32) + X2 — N3],

then using the usual decomposition (x), we have

Var( n+1(.)) = E[Var(zn-&-l(l” 7L)]+Var[ ( n+1(i)|]:n)]

= (r)? [(1 = 2M)*(Z0 (i) = Zn(0)?) + M = A]+(r9)? [(1 = 202)*(Zn = Z7) + A2 = A3]

+(1=2M178 =19)2 Var(Z, (i) +(r9)*(1-2X2)? Var(Z, ) +2(1 =217, —r9)r9 (1-2X;) Var(Z,).
(4)

Where in the last equation we used the fact that Cov(Z, (i), Z,) = Var(Z,). Indeed
by symmetry

1 1 o
E(Zu()Z0) = = Y E(Zu(i)Z0) = B (5 Yo (Z0(0)) 20| = B(2Z2).

j=1 j=1

N
Z (1 (D)|Fn) + (r8)? Var(€] | Fn)

(1)’ - 2
- o [(1—2&)(”—]\[; >+/\1 \2

+(r8)? [(1 = 2X2)*(Z = Z3) + X2 — 3]
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Var(Z,,1) = (1 —2\rl — 2)\79)2 Var(Z,)
+ ol [(1 -2 (B2 - im(znu)?)) - Aﬂ
N N !
+(r9)? [(1 = 20)*(E(Z,) — B(Z2)) + Aa — A3]  (5)

Furthermore we can rewrite the (1) as
| X
Zutr = Zn =T, (N D Enin (@) - zn> 18 (€1~ Za). (6)
i=1
also we can obtain easily

( > el )‘fn>:(1—2)\1)Zn+)\l,

IE( Z+1|fn) =(1-2X2)Z, + Xa.

Finally, note that defining the following quantities
1 & 1 &
N PCNULEI E WY
i=1 i=1

AMy = Gy — B 1 Fn),

which means

AMy = N25n+1 ) = [(1 = 20) Za (i) + M), (7)
AM 4y =& = [(1=2X0)Za (i) + Ao, (8)

Using (6), (7) and (8) it leads to

1 1
Zn+1—2:<Zn 2) {1—27“ A =2rdha| + AMlH—H“A il (9)

Remark 4. The assumption Vi € {1,..N} Zy(i) = § leads to fix point in the equation
between expectations. Thus Vn € N, E(Z,,) = E(Z,(i)) = 5. Indeed,

E(Zn41(i)) = (1 = 2\ar), — 79) B(Zn (1)) + (1 = 2XA2)r§ B(Z,) + (A7), + Aard)
then, when Ay # 0, A2 # 0, the only unique point that causes E(Z,41(7)) = E(Z, (7))

is % Moreover when A\ = Ay = 0, E(Z,,41(i)) = E(Z,(i)) so due to Zy(i) and
consequently E(Zy(i)) = 1 yields by induction on n, E(Z,11(i)) = E(Z,(i)) =

N‘HN)\H
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So from (5)
Var(Zpy) = {1 _ 4(A1r; o — 22 Aark e A2(rh )2 Z A2(r9)2 4 %&2 (1- 2)\2))] Var(Z,,)
+ (TJZ@)Q [(1 - 2)\1)2(% - % 3 E(Zn(i))) + M — X | + (Tii)z. (10)
and from (4) -
Var(Zua (i) = |(1=2xrh, = r)? = ()21 = 20)%)| Var(Z, (i)
+ (rh)? B—Aﬁﬁ—(lfmg} + (r9)? B—)\g—k)\g—w
+ 201 =2\ 7, —r9)rd (1 — 2)9) Var(Z,,) (11)

Remark 5. When v = v =7,

E(Zpy1 ()| Fn) = (1 =2r,)Z,(i) + 10 E[£n+1(l)|}—n]
= (]. — (1 + 2)\1)7’n)Zn(’L) + (1 — 2)\2)rnZn —+ ()\1 + )\Q)Tn
because,
E(gn+1(z)|]:n) P(ffwl(i) = 1|]:n) X IP( g+1 = Olfn) + ]P( £z+1(i) = Olfn) X ]P( fL+1 = 1|]:n)
2P(&),.1 (1) = 1Fn) x P& 41 = 1| F)
(1 — 2/\1)Zn(l) + (1 — 2/\2)Zn + A+ Ao

=+

E(ZuaalFa) = (1=2r)Zu+ 5 3 BEun()IF2)
i=1

(1 — 2()\1 + )\Q)Tn) L + (/\1 + )\2)Tn

Var(Zn1 (i) Fn) = [(1 —2\)Zn (i) + /\1] - [(1 — 2A1)2 20 (1)2 + A2 + 200 (1 — 2/\1)Zn(z')}

+ [(1 —2X0)Z, + Az} - [(1 —2X0)2Z% + A5 4 2X0(1 — 2A2)Zn}

(L= (@A 1) Var(Za(@) + (1= 2X)? Var(Za) 4 (1= ra(20 + D) (1 = 2X2) Var(Z,)
VarZua@) = 72 (§aen - 220 Lo, g (o2

+ [(1 =722 +1))? =7, (1 —2)01)?] Var(Z,(4))
+ (1= 200) + (1 = (20 + 1)(1 = 2)0)] Var(Z,) (12)



Sync. & fluctuations for stoch. syst. ind./coll. reinf.

9
7“2 N ~ ) 1 N )
Var(Zn+1|]:n) = N7n2 Zvar(£n+l(z)|]_—n) = rn ﬁ ZV&T(&HJFI(Z)LF”) + Var(fiﬂ‘fn)
=1
Var(Zpi1) = (1= 4[(A1 + A2)rn — (A1 + X2)*r i] — (1 =2X)*r2) Var(Z,)
2
N
+ 22 (1 - 20)? ———ZE D+ -N+ | (13)
1 1 ~ .
Zn+1 — 5 = Zn — 5 []. — 27"n()\1 + )\2)] + TnAMn+1(’L)7 (14)

where AM,,11(i) = AML, (i) + AMY_,

Lemma 5.1. Depending on the vy;’s relationship,
1
i) there exists a constant 0 < C' < 1 such that,

C
a) when y1 < 72, it holds Var(Z,) < N
b) when v1 > 72, it holds Var(Z,) < C.

1
Moreover, in particular B(Z?2) < 5
1 C2+N
ii) When ~1 = 72 there exists a constant 0 < C' < 3 such that Var(Z,) < g

N
Proof. Using the fact

,,,l 2 79 2
Var(Z,4+1) = Var(Z,) + % + %

—~

39

rd)?

— 4()\17"£L + Aord — 2/\1/\27‘£Lr£ - /\f(rfl)2 - /\g(rfl)z + (1 —=2X\)) Var(Z,)

S

1

~ (rh)? ((1 -2y

HMZ

E(Zn(i)z) + A1 — A%) .

In particular,

Var(Zni1) < Var(Z,) + (r)® | (8)°

2N 4
i)(a) When v < 72 and according to that we must take r,, = n+3 due to Zp = % (we
start with 2 balls),
1 1

Var(Zoia) < VarlZn) + 55 o
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from which we obtain
1 < 1 1
Var(Z,) < — > —— < —
ar(Zn) < 2Nkz:;)k2w <IN

i)(b) When ~2 < 71, conclusion follows from

(r3)?
Var(Z,+1) < Var(Z,) + 1
Moreover,
1 1 1 1
E(Z?) =Var(Z,)+ - < =+ - = —.
(Z3) ar( )—|-4<4-&-4 >
(ii) Using
Var(Z,41) < Var(Z,) + 7“2(L + 1)
= TN Ty
then
2+ N
Var(Z,41) < Var(Z,) + ( e
4N
hence,

24N 1 (2+N)
Var(Z,) < .
ar(Zn) < 5 220 T8N

5.2. Proofs of L? and a.s. convergence results
Proof. (first th.)(i) First considering the equation (10) which behaves like

4 K, 1

Var(Zns1) = (1 ) Var(Zy) + —= + O(—),

nv

where)\:{ M }f71<72 .
Ao if 1 >

If v1 < 7y then Cn \ = K,,/4\1 where

Kn=—((1—-22) 1—1§:EZ %) | + A=A
"= N ( 1) B Ni:1 (Zn(i)7) 1 1

is bounded and not equal zero. Indeed, according to E(Z2) < %;
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so by Lemma A.1 Var(Z,) ~ Oy Also if 71 > 72 then Cy\ = K, /4\y where

nyr °

K, = % that is bounded clearly, so we obtain that Var(Z,) ~ O Yence in both

ny2 ?
cases lim,,_, o Var(Z,) = 0, which means Z,, converges to constant.

Var(Z,,1(i)) = [1 — Al =209 AN (Pl )2 ANl rd — ()2 (1 —2A1)2] Var(Z,(i))

1 1—2))? 1 1—2X,)2
+(r£1)2 |:2—)\1+)\%_(41):|+(T7gl)2 [2_/\2_’_)\3_(42)}

+ [(1 = 22979 — 201 (1 — 2X2)rhr9) (1 — 2X\2)rd] Var(Z,).  (15)

When v < v2 we have Var(Z,,) ~ n%l S0,
Var(Zn (i) = [1 A+ 0(7«;)} Var(Z, (i)
1 (1—2A)2 1
0 g aent - B s Lot + o)
then Cn » = K, /4 where K, = (% — A+ A - W) which implies Var(Z,,(i)) ~
K, /A
nyr °

When 7,2 < 1 we have Var(Z,,) ~ n% S0,
Var(Z,11(1)) = [1—2rf + O(rd)] Var(Z,(i))
1 (1—2Xy)?
2 2
1 1—2Xy)2
~ (1—2r9)Var(Z,(i)) + (r9)? {2 — Ao+ A2 — % +(1—2)y)

then Cn\ = K,,/2 where K,, = [% — Ao+ A3 — W + (1 — 2X\3)| which implies
Var(Z, (i) ~ S22

ny2

When 1 = 72, using (13) we have
Var(Z,11) = (1 =201 4+ A)rn — N(1 —2X\)%r2) Var(Z,) + r2 K,
~ {1 2\ + AQ)rn} Var(Z,) + r2K,,

where Cnv x; .0, = Kpn/2(A1 + A2) where

N
B O I e 2 e N
K, ._N<(1 2)1) (2 N;E(Zn(z) )>+)\1 PLEE 4>,

which implies Var(Z,) ~ X222 Moreover, using (12) and fact Var(Z,) ~ -+

Var(Zni(i)) = [(1 (@A 1) = (1 — 2/\1)2] Var(Zn (i)
+ T,QZKn
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then CN,>\1 A where

1 1-2))% 1 1—2X)°
K, = 5 AL+ A2 — % t5- Aa + A3 — % H[(1=2X2) 247 (1=, (201 1)) (1-2)1)]
which implies Var(Z,(i)) ~ L.

(ii) Consider the following recursive equation satisfied, for any ¢ € {1,..., N} by the
L? distance between one component and the mean field

zy, = E[(Z,(i) — Zn)Q] = Var(Z,(i) — Zn),

wer 2B Var | (1= = (0~ 20) + e - G|

+ Var {Zn(i) — 207 Z, (1) + 19(Zn (i) — (1 = 202) Zy) — Zn(1 — 207, — r;‘i)}

(r)? T | Var(€) (7) - *an )1Fn)] + Var (1= 2xr), = r8) (Za(i) - Z0)]

(1 =2 7l —r9)? War(Zn(z) —Zn)
wooh2 (- 57+ B B [Vare 0)17)]
(

1-— 2)\11" - 1"9)2

M %“92 H(l —20) E(Zu(0) + M| - [W E(Z,(i)%) + A2 + 201 (1 — 2\1) E(Zn))H
Tpi1 = (1 — A\l =209 AN ()2 + (r9)2 2)‘1ann>zn
g [ [ iy ]

/

Tnt1 = n

1-— 4)\17{1 —2rd 4+ 4)\%(7”51)2 + (7”7%)2 + 2)\17“517"2)30” + (rl )25n

where &, = =1 (% - [W E(Z,(i)?) + A\ — A%]) is bounded and not equal zero
for N > 1.

(a) For v; < 72 we have z,,1 = [1 — 4\ 7!, — O(rl)]z, + (})%e, can be written as
Tpp1 = (1 — %)xn + %% which implies z,, ~ 07??1 where Cn x, = &,,/4\1.
Also for v1 = 2 we have

Tny1 = [1—rp— 2)\17“n)2]xn + rien ~[1— (244X )ry])x, + rian

which implies z, ~ CZ'W“ where Cn 5, = €,/2 + 4.
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(b) When 2 < 71, Zpt1 = (1 — 225 + O(rd))x, + 52 where Cy \, = &,,/2 implies
c
nQ‘JZ‘—A}rQ .

Ty ~
Thus in all cases, v1 < Y2, Y2 < 1 and v1 = 72, lim,, oo E[(Z,, (i) — Z,,)?] = 0 which

means synchronization happens in L?, but with different speed according to relation
between v; and 5.

(iii) Now to prove that the convergence’s value is equal 5 a.s, using (9) and let

E[(Zn1 — *) [Pl

(-

NJM—!

) [14+4(rL)2A2 +4(r9)2 N2 — 4rl Ny — 419 g + drl I\ Ny

\/

E[(AM; 1)?|Fa] + (r8)? BI(AM;] )| Fo]

_< ;) 4l = 49 + O(h) + O]
042 (108020 = 57+ BUAML IR + 02?1082, - 57+ BAML P17

Thus, E[(Z,11 — 3)*[Fa] < (Zn — )%+ (rL)2 W) + (r9)*W9 where

W= (! )2 ) L B(AM,, 2|

( 1
W= 03" | 153 (2 —) E[(AMZ, )|,

By assumption s<m <1 and <y < 1,80 (Zpt1 — %)2 is a positive super-
martingale and almost sure convergence holds.
It is enough to consider L? convergence in order to identify the (deterministic) limit.

E (E <Zn+1 1)2 | Fo D

Let y, := E(Z, — %)2, S0

2
1
E <Zn - 2) (1= 4rh A — 4re + 4rhrdann,

b+ ()KL

n

Ynal = (1—41"51)\1—47"%)\2+)\%(r,ll)2—1—)\3(7'2)2—1—47'27“%)\1)\2)mn+(r ) KlH—i—(rg) KS

(16)
where 0 < KL, == {E[(AM, ]} < K, 0 < KZ,, == {E[(AMZ,, ]} < K, by
Ai < K and by lemma A.1 lim,, o z, = 0. So, limE(Z, — )2 0. Using the fact
that (Z,), converges almost surely, then Z,, = %
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The proof of the case when v; = 79 is essentially the same as above using (14).
Indeed,

]E[(Zn+1 - 1>2 |Fa] = (Zn - ;)2 [1— 2, (A1 + A2)]? + 72 E[AM,,11 ()% F)]

+

9 (zn _ ;) [1 = 2 (At + Aol E[AN 1 ()| ]

So E[(Zp41 — %)2\}}} <(Z, - %)2 + riWn, where

. 1 _ ]
W, =12 (4(>\1 +X2)?*(Zn — 5)2 + E[(AMn+1(Z))2|}'n]> .
To prove the a.s. synchronization, since L? synchronization is hold, it is enough to
show a.s convergence exists for Z,, (7). We can obtain that (Z,,(4)),, is quasi-martingale,

i.€.
+oo

Y EIE[Zn1 (i) Fa] = Zu(i)] < +o0

n=0

Indeed using the fact that
E(Zny1 (i) — Zy(i)|Fn) = Alr;(1 - 2Zn(i)> + )\gr-g(l - 2Zn> 18 (Zn - Zn(z')>.

and corresponding to each part, E|1 — 2Z,| = 2E|Z, — 1| and E[1 — 2Z,(i)| =

2
2E|Z, (i), Z,(3), Zn, L 1, we obtain the convergence of the series of E | E(Z,,41(i)—
Z,(1)|Fr)| using the following inequality and bounding the expectation with the second
moment,

> E|E(Znia(i) = Z (i) Fn)l < 207, B ‘Zn(i) - 1‘

1
5 +2/\2r§lIE‘Zn — 2‘ +rE|Z, — Z,(3)]

O

Proof. (Th2) We shall consider to two different regimes of +;. First consider to the
recursive equation of Var(Z,) when ~v; < 73,

4)\1 Kn
Var(Z,4+1) = (1 — ey + O(ri))Var(Zn) + n2n’
where N
_ 1 1 (1 — 2)\1)2 N2 2
=% (2 B T;E(Z”(l) T
where Cy.n, = Kn/4A; which implies Var(Z,) ~ C;gf, thus means Z,, converges

to constant. Using similar argument in proof of Theorem 1(ii), we can proof that
limy, o0 Zn = % a.s. To show it, using (9) and let A2 = 0, then the result is obtained.
To study the synchronization, consider to the L?-distance which behaves as follows

40

nt

En
nQ’Yl

+O(r},))an +

Tn41 = (]. -

b
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where ¢, = Y4 {1 — [% E(Z,(i)%) + A1 — A%]} and where Oy, = €,,/4\; then

can derive x,, ~ nﬁf which implies lim,,_,, x,, = 0 and using similar argument in

Theorem 1(iv), synchronization holds a.s.

Case 2 < 1. Let us consider the recursive equation (10),

4\ K,
Var(Zn+1) = (1 — W) Var(Zn) + %

)

where Cy x, = K,,/4\; which implies Var(Z,,) ~ nfg’j;l which implies Z,, converges
to constant then again by similar argument hence lim, .., Z, = % a.s. Moreover

considering the L2-distance’s behavior,

2 €
Tny1 = (1— o T O(r))an + nT:l’
where Cy \, = €,/2 which implies x,, ~ nﬁﬁé;,_, , synchronization holds a.s.
Case 1 = 72, S0
4\ K,

Var(Zn_H) = (1 — W + O(Tn)) War(Zn) + ﬁ’
where Cy \, = K,/4\; which implies Var(Z,,) ~ CZ;AI. Using (14) and let Ao = 0
then the conclusion of a.s. is obtained.

To study the L2-distance’s behavior,

(1=2\) En
Tn+1 = (1 - T + O(Tn))xn + ’rLT'77
where Cn x, = €, /(1 — 2A;) which implies z,, ~ Cz;“ , synchronization holds a.s.
when 71 < 72,
4 K,
Var(Zn_H) = (1 — E + (’)(Tfl))Var(Zn) + ﬂ’

where Cy », = K /42 and K, = {3 — % Zf\il E(Z,(i)%)} which implies Var(Z,,) ~
Tg;ji’jgz, thus means Z,, converges to constant. Using similar argument in proof of

Theorem 1(ii), we can prove that lim, ,o, Z, = 3 a.s. To show it, using (9) and

let Ay = 0, then the result is obtained. To study the synchronization, consider the
L2-distance which behaves as follows

En
—(1— g
Tn+1 (1 n2 + O(T‘n))lﬂn + n2n’
D c .
where Cy x, = €,/2 which implies x,, ~ —522;, synchronization holds a.s.

Case 72 < 1. Let us consider the recursive equation (10),

Var(Zusr) = (- 22 4+ 0(r9)) Var(Zy) + i,
n 2

n272
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where Cy , = K, /4A2 which implies Var(Z,,) ~ Cg;,j 2 which implies Z,, converges to

constant then again by similar argument Theorem 1(ii) hence lim,, o, Z, = % a.s. To

study the synchronization, consider the L2-distance which behaves as follows

2 En
Tn41 = (1 - m) nt nQ’Yl )
S c o
where Ciy x, = &,,/2 which implies 2, ~ —322- synchronization holds almost surely.

Case v1 = 72, S0

49 K,
Var(Z,41) = (1 - e O(ry)) Var(Z,) + e

where Cy \, = K,,/4\s which implies Var(Z,) ~ X232 Using (14) and let A; = 0
then the conclusion of a.s. is obtained.
To study the L2-distance’s behavior,

1 En
xn+1 = (]. — nfﬁy + O(Tn))xn + ﬁ’
S Cn o, ..
which implies z,, ~ , synchronization holds almost surely. O

Proof. (Th. 3)

(i)Using
E(Zpy1|Fn) = (1= 2X7h — 20019) Z, + 7L A 4+ 79 \g,

If A\ = A2 =0 then Z,, is a bounded martingale. Therefore, it converges a.s. to Z.
Let us consider

1 K,

VaI’(Zn+1) = (1 — m) Var(Zn) + m,

where

a) If 41 < 72 then Cy = 4NK, and K, = L [(% Ly E(Zn(i)Z))}. Using

lemma A.1, the solution of the recursive equation would be as follows Var(Z,) ~

Cn — oo 1
n=0 27
n271-1 +e nor2

b) Cy =4NK,, and K,, = i when o < 71, so Var(Z,,) ~ ngé",l +e Xn=o pear Also
when v, = 72,

Ky

1
) Var(Zn) + ﬁ’

Var(Zn+1) = (1 — ﬁ

where K,, = [(% - %Zfil E(Z,(i)%)) + %} which implies Var(Z,) ~ % +

_yee 1
e <n=07n27 where Cny = K,,.

Hence, independently of the +,’s relationship lim,,_, Var(Z,) # 0 which corresponds
to Z, converges to the random limit Z,, a.s. however convergence happens with
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different rate according to +y;’s relation.

(ii) To study the synchronization phenomenon, consider the L2-distance

2 En
Tnt+1 = [1 - 27"'% + (Tg)Q]xn =+ ( ! ) En = (1 - n2 )I" + Wa
where &, = ~=HE(Z,) — (£ E(Z,(i)%)]} and then Cy = €,/2. Thus, 2, ~ n%Clin
goes to 0 in L? when n — oco. Moreover when v; = 2, 7,11 = (1 — —) T+ 35 which

implies x,, ~ 7—N To show that synchronization holds a.s., we shall show that the a.s.
limit Z,,(¢) exists. we observe that Z, (i) is a quasi- martlngale i.e.

400
> B E[Zng1 (i) Fn] = Zn(i)] < +oc.

n=0

Indeed, E(Zns1 (i) — Zn(i)|Fn) = 19 (Zn - Zn(i)), we obtain

ZE|E(Zn+1<i)_Zn(i)|fn)| = ernglzn_Zn(i)‘
< ng (E|Z, = Za(i)]})'/? <

Indeed, a bounded quasi-martingale has an almost sure limit. O

5.3. Proofs of the CLTs

Proof. (Th. i)

(Th. 1 F)

(i)(a) Define X; = Z; — Zx(i). (NOTE : DEPENDENT ON i)
Set Lo = Xy. Let us define

n—1
Ln =X — Y (B[Xpp1|F] — Xg). (17)
k=0
Then it holds:
Xpg1 = [1—2\7h —79]1X,, + AL,y (18)
where AL,+1 = Lyy1 — L,. Note that L, is an F,-martingale by construction.

Iterating the above relation, we can write

n—1
Xn - Cl,nxl + Z Ck-l—l,nALk—i-l (19)
k=1
where ¢, , =1 and ¢, = Z;i[l —2\7l — r] for k < n. It is easy to check that

. i
lim, so0on2c1n = 0.

lim sup Chyn —1|=0. (20)

k=00 > | exp[ T2t 2>‘1 (nl M — k=)
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So it is enough to prove that n 2 Yok Chit1,nALpy1 — N(0,(1—1/N)/16\1). This can
be proved by following conditions for Uy, 41 = n% Chr1,nALpt1.

(a) maxy<g<n |Uni| — 0.
(b) E[max;<k<n Uy ;] is bounded in n.
(€) Spy U2, — (1—1/N)/16A; as.

To investigate these conditions, first consider to (a). Since AL, = X1 — X, +
2>\1Xn/7’l'yl, |ALn+1| ~ O(nf'“).

For (b), use (12) and (a) to obtain

< 2
Bl Uil < ER.U

= n’“ Z ck:-‘rl n ALn+1)

4;1

I I R
n%E T (T -k I)O(n—Q’Yl)

Q

A1 1-71 A pl-m

2 -2
— n’Ylel o Zk%l(ﬂ o O(kiz’h) + n 710(77/ 71)'

n

Thus, Emaxi<k<n Uik] is bounded in n. Let us now consider (c). We have

1—71
n k=271 T wlk

S Unk=n" D (DLt )’ R Y g (AL )R
k=1 k k=1 el-7
From (a) we obtain
(ALki1)? = (Xpp1 — Xi 4 20k X3)?
= (Zis1 = Zi) = (Zi1(0) = Zu(0)) + 27 (Zy, — Zi(0)))?
(Zis1 — Zk) — (Zi1 (i) — Zu(@))* + (rh)* (Zk — Z1(0))?

Q

+ () Ze = Zi(D)(Zkar — Zi) = (Zisr (i) — Zi(0))].

(r
Since Z,, ~ Z,(i) and X7 ~ O(k=*") so

S U2 =0 i nl(Zrrr—Z0) H(Ziga (6) = Zi(6))* =2 Zisr — Zi) (Zis1 (1) — Zi (0))].
k=1

Let Vi = K" [(Zry1 — Z1)% + (Ziy1 (i) — Zi(4))? — 2(Zk+1 Z)(Zi+1(i) — Zx(i))] and

1—7v1 k1=
. 4N 2 271 —4x B L
setting b,, = n—ileJr Y1=7 and ap = ’Z—e = 71

. Hence, by Lemma A.2 given in

1,n

b Z*%K

Appendix is satisfied
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Indeed,

11 R
§ — § 2y k

bf ; - T A 14, nl=7 k™ et

" k=1

k el- T

ax 1y [ wl=71
Tﬂlel e / u*2"/164>‘1 1 du
1

Q

—4X] 1y LYt Wl=71
= npleT-n" / A e T du
1

4\
—4X]  1—v u~n A\ W=7\ N " n 1 4x Wl=v1
= nNel- TR |:< e M = " ) 4+ = N1 T= dy
A 4)\1
1 n nt=n o1 1
= — 410 / 1 64’\1 = duy = ——.
4\ 4\ 1-— Y1 yltm 4\

This implies that Y ;' U7, converges to & a.s., where V is deterministic such that
E(Viy1|Fr) — V. Indeed,

B2 (Zeaa (i) = Z()?1F] =
B [0 B (6 (1) — Ze@)21F] + ()2 B (€8 — 2060217
+ 27k B (1 6) = Z0()(E 11 — Z(D)1F |
= k2 ()2 (Varlghps )1 + B2 () — Z6G)IF) ) | + (D2 (Varlel 1| B + B2 (€04 — Z6()1F))

B (Zuwr — Z0%R) = & | [ PIMOEFALLARNG )E[(fzﬂ—zk)ﬂfk]]
+ 27"5&“% { ka-i-l — Zy) §k+1 k)|-7:k}
B )2 (Varlge 30 6 ()1Fe] + B2 (b 0) — 20170

+ D2(Varlel, 1Rl + X €L, — ZulF) )|

E[k*"(Zi41 — Z1)(Zsr (i) — ('))|}-k] =

e [ E (6 - 20 (g k@) — 2015 + (D7 E (s - ) ebun — 2017
= K [(d)QE[@éH( ¥ Sl - 217

E(Ven| 7o) ~ 127 [<r§c>2(Var[sch<>|fk+Var PIEMGIEN

,QE{(&QH( < kaﬂ Zk> ’]'—kD] = 411(1*%)
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Thus, Vi, =5 1(1 - %).
The proof of next parts and the other theorems follows along the same lines as above.
We sketch the essential argument below.

Case 71 =72 = 7. Let Zp11 — Zp11(i) = (1 — (L4 2X1)rn) (2 — Zlc@) thus,
L,=X,+ Zz;é(l + 2X\1)rp, X, therefore, X, 11 = [1 — (1 4+ 2X\1)r,) X, + AL,41 and
Cin ~ exp[f(ll%i’\l)nlfv]. So

Ck,n
lim sup

_ 1‘ -0
k—o0 >k exp[(ll%i)‘l)(nl—y — k1)]

and that (a), (b) (as in proof of theorem) hold. So it is enough to prove that
2(1+2X0y) 11—~ 2y _20427) g1y
1=~

Yoo Up = (1=1/N)/4(1+2)\1). b, = Le 15 " and ai = f e

nY 1,n
1 n 1 1
thuS E Zk:l a — 72(1_"_2)\1).

Bk (Z (i) = Zu(0)*|Fe) = K277 Bl () = Zi(0)* Fi] =

U2 n - E2208 o)
+W+A2(1—A2)—W—Az(1—%)=f

Similary, E(k*(Ze1 — Z1)2|F) = k277 E[(% 3, Gk (i) — ( ))?|Fr] == 5%, and
E(kQ'y(ZkJrl(') Zk('))(ZkH Zi)|Fi) = k2 Bl(€pa (i) — (l))(% > e (i) —
Zk)‘fk] N 2N’ thus Vk (1 - N)

Casey1 =72 =1

i
L

Lo = Xo—> (1= 1 +27)r](Ze — Z(0)) — (Zi — Zu(i)))

37?
= O

= X,+ (14 2X)r, Xk

>
Il
o

Ln+1 — Ln = Xn+1 — [1 — (1 + 2)\1)Tn]Xn and
X1 =[1 = (1+2M)7,] X + ALp 1 (21)

cim o= [IML = (1 4 2M\)ra] ~ n~ 022 Then \/ney, ~ n~'72M%3 5 0. So it is
enough to prove that \/nY , cxy1,nALpy1 — N(0,(1 —1/N)/2(1 + 4X1)). This can
proved by following conditions for Uy, x41 = v/1 Y ) Ckt1,nALp1-

(a) maxi<g<n |Unx| — 0.

(b) E[max; <<, U7 ;] is bounded in n.
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(c) Yopo1 Up o = (1=1/N)/2(1+4X1). To investigate these conditions, first consider
to (a). Since AL,y1 = Xp1 — Xp + (1 +2X1) X/, [AL, 1| ~ O(n™1).

For (b), use (12) and (a) to obtain

) 1 & RO(K?)  n20(n~?)

E| max U <
[1§k§n nk] R opl+Haa et L—4M n

Thus, E[max;<j<n Uy ;] is bounded in 7. Let us now consider (c). We have

- 1 Kk (AL,i1)?
2 2 2 n+1

E :Un,k = ”E :Ck+1,n(ALn+1) ~ A Z k=4

k=1 k k=1

From (a) we obtain

(ALny1)* = [(Zky1 — Zk) — (Zisr (i) — Zi(0)]* + r2(Zk — Z1(3))?
+ 172 (Zk = Zi(0)[(Zrs1 — Zk) — (Ziya (i) — Zi(0)))]

Since Z,, =5 Z, (1) and X,% ~ O(k™2) so,

n

DU G o l(Zhi1—20) +(Za (D)= 2k () =2 Ziir = Zk) (Zi 11 (D)= Zi (1))
k=1 k=1

we use Lemma A.2 in Appendix with b,, = n'T**M and aj, = k=M.

Let Uy = k*((Zy41 — Z1)* + (Z+1(i) = Zi(1))? = 2(Zjt1 — Z3)(Zi+1 (i) — Zi(i))]. So
i Soney i — ﬁ. This implies that Y, UZ ; converges to Trox; @8, Where V is
deterministic such that E(Vj41|Fr) — V. Indeed, E(k?(Zy11 (i) — Z3,(i))%|Fr) —> 3.
Similarly, B(k*(Z41—Zk)?|Fx) > 5k, and B(k*(Zy41() = Zk (1)) (Zkpr— Ze) | Fi) =
- Thus, Vi, =% 1(1- %).

(i)(b) Case vo < 71. Let Xy = Zx — Zy(i). Denote by L,, the martingale

n—1
Lo=Xo, Ln = Xn—Y (B[Xgp1lFnl — Xx).
k=0
Then X, 11 = [1-r9+0(r?)] X,,+ AL, 11. We can write X,, = ¢1,, X1+ Cho1,nALnt1
Therefore ¢ 5, ~ exp[ﬁn“*ﬁ’]. Then n”fl*%cl?n — 0. Thus

lim sup Cn — 1‘ =0

k=00 p> ) exp[ﬁ(nlf“m — k1=72)]

and that (a), (b) (as in proof of theorem) hold. So it is enough to prove that
Yoo U2y — (1—1/N)/4. We have

(ALns1)® = [(Zryr — Zk) — (Zrsa (i) — Zi(@))* + (r])?* (21 — Zi(i))?
+  ("D*(Zk = Ze()[(Zrsr — Z1) — (Zrga (i) — Zi(0)))]
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Since Z,, = Z,(i) and X2 ~ O(k~27%72) 50

Z L5 0PN G (D = Z0)* H(Zia (0= Z30(0) = 2(Zier = Z0) (Zien (D) = Z(0))]
k=1

2 pl-72 271
n
eT—2 and a; = ’Zz

1,n

we use Lemma A.2 in Appendix with b, e T

thus =370 ) - — 4.

Let Vi = k¥ [(Zs1 — Z3)* + (Zys1 (1) — Z3(0))? = 2(Zisr — Zi)(Zyr1 (1) — Z3(0)))].
This implies that Y ;_; Uik converges to V' a.s., where V' is deterministic such that
E(Vit1|Fr) — V. Since we completed this computation in the proof of the previous
part of theorem, we know that in this case Vj, == (1 — %).

_ 1
T n2v1-72

1
(ii) When 71 < 72; Let X, = Zj, — = so,

2
n—1 1 1 n—1
Li=X,-Y (IE(Zk+1 — 51 — (2 - 5)) = X+ 2007+ 00r9) Y X
k=0 k=0
and X, 11 =~ [1 — 2\174] X, + AL, 41. So ¢, ~ exp[ 22t 2>‘1 n'=7]. Then
Ck,n
lim su — 1’ = 0.
k—o00 n>I])C exp[ 2A1 ( 1—vy1 kl—’)’l)]
2 _
Using Lemma A.2, b, = ﬁeﬁnl " and ap, = k2 et =T Therefore Zk

S Ao (ALwar)? = (Zist — Ze + 2007, (Ze - %))2 — (Zisr — Z4)%. Then
R E((Zk1 — Ze)*|Fi) = 3

When v9 < v1; Set Xi, = Z, — 5 then X,, + 2(A\i7l, + Aord) Z;(l) Xi. So Xpy41 =~
(1 —2Xord] X, + ALp 1. Thus, ¢, ~ exp[7=22 2)‘2 n'=72]. Then

lim sup Chin —1]=0.
e 2t | exp[22 (172 — k1)
Usmg Lemma A.2, b, = We%"kw and ay, = k; TR T . Therefore 7- Zk —
ﬁ' Also
(ALp1)? = (Xnp1Xn — 20019 X,,)?
= (Zyyr — Zp + 2009 (Zy, — %))2
= (Zis1 — Zn)*.

kK2 B((Zys1 — Z1)*|Fi) = &

When v = v9 =7, set Xx = Z — % then X, 41 = [1 = 2r,(A1 + A2)] X, + AL,y
and ¢ 4, ~ exp[M 1=7] Then

lim sup Cn -1 =0.
k=00 > | exp[= (/\1+>\2)( =7 — 1=7))
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. 2(A1+A2) 11— 2y —2(A1+A9) 11—~
Using Lemma A.2, b, = n%e iy " and a = E—e— 1 * . Therefore

cl,n

ko oy Also (ALyy1)? = (Ziga — Zi)? s0 KT EB((Zea — Zi)?|Fx) = §

(ii) When v = 72 = 1, c1n = [[;[1 — 2(M 4 A2)rn] ~ expllnn 2] ~
n=2422) o /ey, = nm 20 HA)TE 50 for (A + Ag) > L. Then

1 B ——T—
kLHQOSIi%'(E) s =0

Moreover Y-, U2 =n), (EYA+A2) (ALK 41)%k%k ™2 (ALpy1)? = (Zi1 — Zk)? then
K2 E((Zi1 — Zi)*Fr) = 1.
When (A+X2) = §, va(lnn)Fer, — 0. So e = (£)% and Up .y = 221 ALk

SO Zk Ulgn = lnn Zk( )(ALk+1) = lnln Zk %k‘Q(ALkJ'_l) = k’ (ALk+1)2 therefore
b, =Inn and a, =k, so -3, 1 = 1. O

Proof. (of Prop. 1)
1 - -
Define /n(Z, — 5) E[X2] < co. It is therefore enough to show that X, is a

quasimartingale. Indeed, we have

SE[ BlXin R - Xl =
k

(k+1)3 (1= (14 20)m) Xe - X

1+ %)%(1 2\ + Ao)r) X — XkH

)E(1 — 201 + Ao)re) — ”X’“H

|
[
i+
(200 + Ao [ E( )

O(E)Q(Al + Xo) B(|Xy|) < 400

e
>k
- ¥k
> |
>

So (X,,)n is an F-quasi-martingale. Moreover by theorem 3.2, E(X?2) < 400 and so it
converges a.s and in mean to some real random variable X.

In order to prove that P(X # 0) > 0, we will prove that (X2),, is bounded in L? for a
suitable p > 1. Indeed this fact implies that XEL converges in mean to X2 and so, by
Theorem 3.2, we obtain

E(X?) = limE(X2) = limnE(X?) > 0.

To this purpose, we set p = 1 + €/2, with ¢ > 0 and z, = E(]X,|*"¢). Using the
following recursive equation:

k
Tn ~ .
Xny1=(1-2r,)Z, + N Z;fkﬂ(@) -3
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Tn4+1 = E(‘Xn|2+6) -2+ 622, E(|Xn|1+6)

+2+er, E||X, |1+E sign(X, Z Ekra (1) R,

where R, = O(n~2). Now since E[+ 3=, &1 (1) Fn] = 2Z, — 2(M1 + X2)(Zn — 1), we
have

Tpyr = B(| X2 =224 €)rpn Z, B(| X, )
+ (24 ) B[ X[ € sign(X,) (27, — 2001 + A2)) X)) + R,
=E(|X,[*7) = (2 + €)rn2(A1 + Xo) B[| X, |*T sign(X,,) (X,)Xn] + R,
— B ) — (24 ra20u 4 20) B (1K, + R,

= (1 — 2\ +A2) (24 e)rn)xn +g(n)
with g(n) = O(n~2). Therefore, we have

Tl = (1 20 4 M) (2 + e)rn)xn + g(n).

n—1 n—1

I1 (1 200 4 Aa)(2 + e)rn) = expY In (1 20+ Aa)(2 4 e)rn)]

k=0 k=0

n—1

= exp[—2(A1 +X2)(2+¢€) T'n)

k=0
— n*2(}\1+)\2)(2+6)
So,
1
(2+e)7]
EllXI] = O smaers)
and so it implies that X2 is bounded in £17%. O
Proof. (Th.5)
(i) When 71 # 2. Define X, = Zy, — Z(i). Set
Ly = Xo,
n—1
Ln = Xn - (E[Xk+1|]:n] - )
k=0
n—1
= Xn— Y (1 =1{l(Zk = Zi(i) = (Zk — Zi(1)))
k=0
n—1
= X, + T%Xk
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Then X, 41 = [1-79]X,,+AL,+1. Note that L,, is an F,,-martingale by construction.
Iterating the above relation, we can write X,, = ¢ X1 + ZZ=1 Ch+1,n AL, 41 where

Cnp1n =land ¢, = [[h_p 1 —rd] for k <n. e, =[[_,[1 —7]] ~ exp[ljy2 nt=7z].

_n 7 11—
Then "~ ¢y ~ M2 exp[ﬁn1 2] = 0.

lim sup Chyn -1 =0.

k—00 5> eXp[ﬁ(nl—’Yz — k‘l_'V?)]

So it is enough to prove that 771~ % 3, cxi1mALny1 — N(0, (1 = 1/N)Zo — Z2/2).
This can proved by following conditions for Uy, 41 = nn-F Yok Cht1,nALp 1.

(a) maxi<g<n [Un k| = 0. (b) Elmaxick<, U2 ,] is bounded in n. (c) Yop_, U2, —
(1 —1/N)Zs — Z% /2. Tt is easy to check the conditions (a) and (b). Let us now
consider (c). We have

n N 27T kT

2 22 2 2w pn—2 21.2m1
E Ui =1 E Ch1n(BLngr)” = n ﬁ(ALn-‘rl) k
k=1 e k=1 €'

. From (a) we obtain

(ALns1)® = [(Zryr — Zk) — (Zrsa (i) — Zi(@))* + (r])?* (21 — Zi(i))?
+ (M Zk = Ze()[(Zrr — Z1) — (Zrga (i) — Zi(0)))]

Since Z, =% Z,(i) and X? ~ O(k~21772) so,

S UZE =02 R W (Zhir—Zk)* + (Ziesr (1) = 2k () —2(Ziegr — Zi) (Ziga () = 20 (D))
k=1 k=1

. . . 2 pl-72

where we use Lemma A.2 in Appendix with b, = eT=72" and ap =
2 __2 1-72

B2 -k

Cl.n

Let Vi = k" [(Zks1 — Zi)? + (Zis1 (1) — Zi(9))? — 2(Zir — Zi)(Zi1 (i) — Zi(3))]-

So b%, Sorey i — - This implies that Y7, _, U2, converges to V a.s., where V is

N S
n271-72

deterministic such that E(Vyy1|Fr) — V. Indeed,
B (Zrs1 (0) = Ze@)?1F%) = K (1) Bl(6aa (0) — Z6(0))?| 7]

= E(r)? Varlg ., (6)|Fi
= K2 - 2
Zoo — 72,

Similary, B(k** (Zx 11 — Zx)*|Fk) == Zoo — 22, and B(k*12(Zy41 (i) — Z1(i))(Zry1 —

a.s —z2 a.s 1
Zi)|F) &5 Z=Zo Thus, Uy 2% 2(Zo — Z2)(1 — )
When 71 =72 = ; L = Xy + Yo "n Xk Then Ly — Ly = X1 — [1 = 7,] X,
So X1 =[1—7r,)X,, +AL,41. Note that L, is an F,,-martingale by construction.
Iterating the above relation, we can write X,, = ¢1, X1 + > 5 Chy1,n ALy 41 where
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Cntin = land cppn = [[F_ [l —74) for k <n. e =1 [1—7a] ~ exp[ﬁnlf'y].

7 7 —1 1 1 1 1
Then n2cy, ~n? exply=n'""] = 0. Moreover ;-3 -- — 3,

E(k*(Zy1 (1) — Ze()?|Fe) = k00 Bl(€er (i) — Z(i))?| Fil
= kP Var[€y(3)| Fi
L5 A Zs — Z2).

Similary, E(k*Y(Zy11 — Zk)?|Fr) =5 2(Zoo — Z2,), and
(kY (Z11(1) = Z1(0)(Zs1 — Z3)|F) 225 2mglin)
Thus, Uy =% 4(Ze — Z2)(1 — 3).

When 71 = 72 = 1 Ly = Xo — Yp0(Zk — Zi(i))(—7n) = Xo + g rn X
Then L,y1 — Ly, = Xp1 — [1 — 7] X0 so, X1 = [1 — r,] X, + AL,41. Note that
L, is an F,-martingale by construction. Iterating the above relation, we can write
Xn=c1nX1+> pey Cht1,0ALypy1 where cpp1, = Land cgp =[] [1—73] for k& < n.
cin = [[h-1[1 —rn] ~ expllnn~'] = n=% Then /n ¢1,, ~ v/n =t — 0. Choosing
by =nand a = 1, 3= 3, & — L B (Zy11 (i) — Zi(0))?|Fr) = 2(Zoo — Z2,)
Similary, B(k*(Zk11 — Zx )2 Fr) == 2(Zoo — 22,), and BE(k* (Zi11(i) — Zx(0)) (Zk 41—

2
)| Fi) &2 2WeeZo) | Thus, Uy, 2% 4(Zo — Z2.)(1 — %),

(ii) Case 1 < 2. Zp is martingale. Indeed,
E(Zpi1|Fn) = (1= 207 — 20079) Z,, + A7l 4 Aord

when Ay, Ao = 0 then E(Z,11|F,) = Zn, so Z, is martingale and converges a.s.
To this purpose, satisfies the following two conditions:

1) E [supk k12| Zyyq — Zk|:| < 400

2) 2 Y (Zh — Zi)* Ny (Zoo — Z5)

Indeed, the first condition immediately follows from
| Zr1 — Z€k+1 = Zr) + 15l — Ze)| = O(k™)

Regarding the second condition, we observe that

21 Z Zisr — Zi)? = 2! Zk 2n (y Zk €k+1( ) Z4)2k2n
k>n k>n

2v1—1

and so the desired convergence follows by lemma with a, = k=2"%2, b, =n and

Uk = k2 ()2 (252 — 202, b, 30, b — —

27

E(W — Zi)*|F) = Var(%\fn) = %(Z - 2Z7).
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Case 72 < 1. To this purpose, satisfies the following two conditions:
1) E [supk k1272 | Zyyq — Zkﬂ < 400
2) n27271 Zan(Zk"rl - Zk)2 ié‘_) m(zﬁ - Zgo)
Indeed, the first condition immediatly follows from
| Zkv1 — Zk| = kaﬂ = Zi) + 3 (&lsr — Zi)| = O(k™7)

Regarding the second condition, we observe that

2'}/2 1 Z Zk+1 Zk _ n2'yg 1 Z 272 Zk ngrl( ) _ Zk)ZkZFyg

k>n k>n

and so the desired convergence follows by lemma with a; = k27212, b, = n?"~! and
U, = k¥2(r])? (ka — Zi)?, by Zan ﬁ — —1_1272 and E(fgﬂ(i) — Zp)?|F) =
Var(§,11F) = (Zoo — Z3,)

Third, when v; = v = 7. Z, is matringle and converges a.s.. Indeed,

E(Zpi1|Fp) = (1 — 2r) Zn + rnE(Zi 5]’?1( ) |F,) =

To this purpose, satisfies the following two conditions:
1) E [supk k'y_%\Zk_H — Zk|} < 400

2) 0 s (L — Z1)? W(Zoo - Z%)

Indeed, the first condition immediatly follows from
1 e . _
| Zist = Zu] = Ira(55 D2 Enea (i) = 220)) = O(™7)
Regarding the second condition, we observe that

n?~1 Z(Zk+1 — Zp)t=n2t Z 7”;%16727(721C 5;7“(2) — Zp)? k>

k>n k>n

and so the desired convergence follows by lemma with a;, = k~2%2, b, = n?>*~! and

U, = kmri(w —22,)2.bn Zkznﬁ N _171%, E(Z&;\Jfrl() —27,)2|F) =
2
N

(Zoo - Zgo)
Case 1 = 72 = 1. To this purpose, satisfies the following two conditions:
1) E [supk k2| Zyi1 — Zi|| < +oo;

2) nEk:Zn(Z'IH‘l Zk)? == 5 (Zoo — Z%).

as&
N
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1 -
Indeed, the first condition immediately follows from |Zy41 — Zx| = |rn(ﬁ > i g1 (i) —
27;))| = O(k™1). The second condition, we observe that nY s (Zes1 — Zp)? =
Zk §k+1 )

R e i — Zk)?k? and so the desired convergence follows by lemma

with ag = 1, b, = nand Uy = k2r3(Ze&n o742 3 Shenpr L E(Zg’;\f(’) -
2

2L IF) = (2~ 72). a

Appendix A. Appendix

Lemma A.1l. Let (x,) be a sequence of positive number satisfying the following equa-

tion: A %
n
navi ) Tn + nbvi

where n,a,b €N, 0 < v;,v;, <1, A>0 and 0 < K,, < K. Then

Tp+1 = (]. —

I,;"/é + e Znto W for a=1,;
Ty It o
Tf;j/ﬁ + e~ 2o wen for a>1.
Proof. Let
Tpy1 = (1 —ep)zn + 0y
where €, = a—% and 9y, . It holds
n—1
_le 1—&+Z§ H (1—¢p). (22)
=1+1

IfY, en =+00 implies = —Eu) — 0. But 3 &, < 400 follows that [['Z; (1—
£4) = € Zu= 17 Let yy, =y ', [Thz erl( —€), SO

= /z Sb—%exp(—/s e du)d
" K, A "
= | el g
" K, A 1 1
- /l WeXp[l—a%(s“%—l 7n‘”'i—1)]d5

- A Mm 1 A
= K, e oot [ i i g
1 sb7i

A
n _ ) pp
K, [/ s e s
nbvi

A
n—bvie—av)n®i=1
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Letting n — oo, using de L’Hopital rule,

A
K, n—bYie@—ay)m®vi~1
~ by; A
nbvi o e o —
[(_b'yj)n by; l4n b An, a’Yz]e(I*a’h‘)Sa% E
K, 1
T opby by A
nbvi fi
n + nevi
K, 1 1

- e ()
nA

O

Lemma A.2. Let G be an (increasing) filtration and (Yy) be an G-adapted sequence of
real random variables such that E[Yy|Gr—1] = Y a.s. for some real random variable Y.
Moreover, let (ax) and (b) be two sequences of strictly positive real numbers such that

(oo}
E[Y?]
by T 400, k1< .
k T o0 Z a%bi +00
k=1 K
Then we have:
a) If i Shey i — o for some constant o, then i Sory Z/—: —oY.

b) If b > ps ak% — o for some constant o, then b, Y, <, afﬁ —oY.
- k - k

Lemma A.3. (Theorem 3.2 in [9] )
Let { Sy i, Fng : 1 <k <k,,n>1} be a zero-mean, square-integrable martingale array
with diffrences Yy, i, and let n? be an a.s. finite random variable. Suppose that

P
1) maxi<ig<k, |Yn7]€| — O,‘
2) E[maxi<p<k, Ynzk] s bounded in n;

kn P
3) Dkt YnQ,k =’
and the o-fields are nested, i.e. Fnp C Fpi1p for 1 < k < k,, n > 1. Then

Sn ke, = le Y,k converges stably to a random variable with characteristic function
o(u) = Elexp(—n?u?/2)], i.e. to the Gaussian kernel N'(0,1?).
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