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Abstract

The design of new low-emission systems requires the development of models pro-

viding an accurate prediction of soot production for a small computational cost.

In this work, a three-equation model is developed based on mono-disperse clo-

sure of the source terms from a sectional method. In addition, a post-processing

technique to estimate the particles size distribution (PSD) from global quantities

is proposed by combining Pareto and log-normal distributions. After validation,

the developed strategy is used to perform a large eddy simulation of soot produc-

tion in a model combustor representative of gas turbine combustion chambers. It

is shown that the three-equation model is able to provide a good estimation of

soot volume fraction and information on PSD in complex geometries for a low

computational time.
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1. Introduction

Numerical simulations of soot production are essential to design low-emission

burners, but require the development of reliable models. This is a challenging task

because of the complexity of soot physics, which leads to a poly-disperse popula-

tion of particles with complex morphologies. Moreover, models should require a

minimal CPU cost to perform parametric studies of realistic configurations using

Large Eddy Simulation (LES).

Different methods have been applied to LES of sooting turbulent flames with

increasing accuracy and CPU cost. Semi-empirical models [1] transport two quan-

tities, generally soot mass fraction and total number density, whose source terms

are chosen ’ad hoc’ and fitted to experimental data, so that their validity is limited.

They rely on a spherical assumption for soot particles and they do not give access

to the number density function (NDF). However, their low CPU cost and ease of

implementation into CFD solvers have made them preferred candidates for the in-

vestigation of complex configurations [2, 3]. Alternatively, methods of moments

(MOM) solve the N first moments of the NDF, the main issue being to compute

their source terms, which requires untransported moments. In the Hybrid MOM

(HMOM) [4], this is done using an algebraic relationship between moments [5].

This method has been used to simulate turbulent complex configurations [6–8].

However, even if HMOM accounts for soot fractality, the NDF is not accessible.

Finally, the sectional method (SM) discretizes the NDF into a discrete number of

sections. The soot mass fraction of each section is transported. This method gives

access to the NDF and has already been used for LES of model combustors [9].

However, it is highly CPU-time demanding since at least 25 sections are required

for a reasonable accuracy. In addition, extension to fractality requires even more
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transport equations.

Here, the objective is to develop a three-equation (3-eq) model that accounts

for soot fractality and gives an accurate prediction of soot global quantities and

an estimation of the NDF for a small CPU cost. The governing equations are

presented in Sec. 2, accounting for soot fractality. A strategy to estimate the NDF

based on an analysis of NDF shapes obtained with SM simulations is proposed

in Sec. 3. In Sec. 4, the 3-eq model is validated in terms of global quantities

and NDF reconstruction. Finally, in Sec. 5, the 3-eq model is used in a LES of

the model combustor FIRST [10]. This configuration is considered today as a

reference for the investigation of soot production under conditions representative

of gas turbines. Results are validated against experiments and the convenience of

the NDF reconstruction method is discussed.

2. The three-equation model

The soot particle population is described by the NDF, f (t, x,3, s), giving the

particles number density at volume 3 and surface s.

Total number density Ns = 〈 f 〉, soot volume fraction f3 = 〈3 f 〉 and total soot

surface Ss = 〈s f 〉 are moments of the NDF, where 〈Φ〉 =
∫ ∫

Φd3ds. The mean

particle volume and surface are 3s = f3N−1
s and ss = Ss N−1

s , respectively.

Here, a model is developed to describe the global characteristics of soot popula-

tion, such as f3 and Ns, for a small CPU cost. This model is based on the transport

of three global variables: Ns, Ss and the soot mass fraction Ys = ρs ρ
−1 f3 (ρ and

ρs are the gas and soot density, respectively). Each of these three quantities is
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solved using the following equation:

∂Ψ

∂t
+ ∇ · (uΨ) = ∇ ·

(
Cthν

∇T
T
Ψ

)
+ ω̇Ψ (1)

where u, ν and T are the gas velocity, kinetimatic viscosity and temperature,ρs =

1800 kg m−3, and Cth = 0.55 in the limit of small particles with respect to the

mean free path of the gas phase [11]. The source terms ω̇Ψ are derived from

the sectional model in [12] by assuming a mono-disperse distribution f (3, s) =

Nsδ3sδss (δ is the Dirac’s delta function):

ω̇Ys

ρs
= 3dim β

fm
3dim

N2
dim︸          ︷︷          ︸

nucleation

+ 3dim β
fm
3dim,3s

NdimNs︸                 ︷︷                 ︸
condensation

(2)

+ 3C2λksgss Ns︸         ︷︷         ︸
surface growth

− 3C2λkoxss Ns︸         ︷︷         ︸
surface oxidation

ω̇Ns =
βfm
3dim

N2
dim

2︸     ︷︷     ︸
nucleation

− (1 −H [3s − 3C2])λkoxss Ns︸                              ︷︷                              ︸
surface oxidation

−
β3s N2

s

2︸ ︷︷ ︸
coagulation

ω̇Ss = (18π)1/3(3dim)2/3 βfm
3dim

N2
dim︸                             ︷︷                             ︸

nucleation

+ δsfrac
3dim

βfm
3dim,3s

NdimNs︸                   ︷︷                   ︸
condensation

+ δsfrac
3C2
λksgss Ns︸            ︷︷            ︸

surface growth

− δsspher
3C2

λkoxss Ns︸              ︷︷              ︸
surface oxidation

,

whereH [3] is the Heaviside function and 3C2 is the volume of two carbon atoms.

Spherical dimers are assumed for nucleation, whose number density Ndim is com-

puted using a quasi-steady state approximation from the collision of polycyclic

aromatic hydrocarbons (PAHs) [13]. For condensation and surface growth, a par-

ticle volume variation δ3 leads to a particle surface variation δsfrac
δ3 following a
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fractal behavior
δsfrac

δ3

ss
= 2

3
δ3
3s

n χp [4], where np = (36π)−13−2
s s3

s is the number of

primary particles and χ = −0.2043. As in [4], oxidation modifies the surface of a

factor δsspher
δ3 defined as

δsspher
δ3

ss
= 2

3
δ3
3s

. The surface reactions constants ksg and kox

are obtained from the HACA-RC mechanism as in [12]. λ = 1/sC2 is the number

of active sites per unit surface, where sC2 is the surface of two carbon atoms. The

collisional rates are modelled as:

βfm
3dim

= εnu

√
πkbT
2ρs

(
1
3dim

+
1
3dim

)1/2 (
ddim

p + ddim
p

)2

βfm
3dim,3s

= εcd

√
πkbT
2ρs

(
1
3dim

+
1
3s

)1/2 (
ddim

p + dc
)2

(3)

β3s = max

εcg

√
πkbT
2ρs

(
2
3s

)1/2

(2dc)2 ,
8kbT
3ρν

Cu


with εnu = 2.5 , εcd = 1.3, εcg = 2.2. dc = dpn1/D f

p is the collisional diameter,

dp = 63ss−1
s is the primary particle diameter, D f = 1.8 is the fractal dimension,

Cu = 1 + 2.154 λgd−1
c is the Cunningham corrective coefficient and λg is the

mean free path of the gas phase [12]. kb is the Boltzmann constant. Subscript or

superscript dim stand for dimer properties.

Ns, Ys and Ss correspond to the 0th- and 1st-order moments used in the bivari-

ate HMOM [4]. However, the source terms in Eqs. (2) are derived using a mono-

disperse NDF where HMOM uses assumptions on the moments themselves. This

simplifies its formulation, physical understanding and implementation into CFD

solvers. Compared to semi-empirical models, our method is a mono-disperse tran-

scription based on a sectional model. Therefore, the source terms do not follow an

’ad-hoc’ law fitted to experiments but they account for the physics included into
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the detailed SM.

3. Reconstruction of the number density function

The 3-eq model is expected to reproduce the global behavior of the soot pop-

ulation, but no information is available on the particles size distribution (PSD).

In order to characterize the PSD, a simple strategy is proposed to estimate the

marginal NDF, n(3) =
∫

f (3, s)ds, from the transported quantities. For simplic-

ity, in the following we will refer to the marginal-NDF as NDF.

On the one side, fine particles such as metal-oxides are known to be char-

acterized by a self-similar distribution [14, 15], approximately log-normal (LN),

significantly simplifying the prediction of the NDF. The same approach has been

used to investigate the soot particles distribution in fires [16]. On the other side,

as observed in laminar [12, 17] and, only recently, in turbulent flames with experi-

ments [18, 19] and numerical simulations [13], the PSD considerably varies along

the flame, starting in a one-peak shape and evolving into a two-peaks distribution

along the flame. To verify the validity of the self-similarities assumption for soot-

ing flames, results obtained with a SM [12] are presented in Fig. 1(a). They cor-

respond to the burner-stabilized stagnation laminar premixed C2H4/Ar/O2 flame

experimentally investigated in [17] for a distance between the burner and the stag-

nation surface equal to H = 10 mm. These numerical results were already proven

to be in good agreement with the experimental data [12]. The discussed transition

from one- to two-peaks shape is recognized.

In Fig. 1(b), following [16], the dimensionless NDF, ψ(η) = n f3/N2
s , is eval-

uated at different heights above the burner, where η = 3/3s is the dimensionless

volume. Figure 1 shows that a single shape cannot reproduce the NDF along
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Figure 1: NDF obtained with the SM [12] in a burner-stabilized stagnation laminar premixed
C2H4/Ar/O2 flame at three axial positions: x = 3 mm (black line), x = 6 mm (red dashed line)
and x = 9 mm (blue dot-dashed line).

the flame. However, we suggest that the PSD can be approximated as the sum

of two distributions n1(3) and n2(3) considering the following normalized NDF,

n̄(3) = n(3)/Ns:

n̄(3) ≈ n̄a (3) = αn̄1(3) + (1 − α)n̄2(3), (4)

where n̄a (3) is an approximation of n̄(3). By integrating Eq. (4) over the volume,

we get:

3s = α3mean
1 + (1 − α)3mean

2 , (5)

where 3mean
1 and 3mean

2 are the mean volumes over n̄1 and n̄2, respectively. This

implies α3mean
1 ≤ 3s and (1 − α)3mean

2 ≤ 3s. To reproduce the first peak which

is mainly due to the growth of the nuclei particles of volume 3nucl, we consider a

Pareto distribution for n̄1(3):

n̄1(3) = k
3k

nucl

3k+1 with 3 ≥ 3nucl, (6)

where k is the Pareto index. In this case, 3mean
1 is analytically given as 3mean

1 =
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Figure 2: Reconstruction (red continuous line) of the NDF as the sum of a Pareto (blue cross) and
a log-normal (green plus) distribution. Results correspond to two axial positions of Fig. 1: x = 3
mm (left), x = 9 mm (right). The reference NDF obtained from a SM is presented as black circles.

k
k−13nucl. Assuming that the contribution of n̄2 is negligible at 3nucl, Eq. (6) gives

the first-peak value as n̄0 = αn̄1(3nucl) = αk3−1
nucl. Then, given α and n̄0, the Pareto

index k can be obtained as k = max
[
n̄0α−13nucl, ε (1 − α3nucl/3s)−1

]
. This latter

criterion guarantees α3mean
1 ≤ 3s (here ε = 1.01).

To reproduce the second peak, which is usually observed downstream the flame,

due to condensation, coagulation and surface reactions on the biggest particles, an

LN function is used for n̄2 with parameters µ and σ:

n̄2(3) =
1

3σ
√

2π
exp

(
−

(ln(3) − µ)2

2σ2

)
. (7)

Once α and σ are provided, we get µ = ln(3mean
2 ) − 0.5σ2, where 3mean

2 = (1 −

α)−1(3s − α3
mean
1 ). An example of NDF reconstruction is shown in Fig. 2 for the

results corresponding to two axial positions of Fig. 1. As it is observed in Fig. 2,

to correctly reproduce the NDF, α, n̄0 and σ have to vary along the flame height.

Although NDF evolves as a function of f3, Ns and 3s, here we choose 3s as the best
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parameter to trace its shape along the flame and to derive empirical expressions:

α = max

0,1.0 − 0.18

(
3s

3nucl

)0.12
, (8)

n̄0 = 8(1 − α)2, σ = 1 + 0.65(1 − α).

Even if constants have been fitted, their evolution is physically justified. α repre-

sents the balance between the Pareto (α = 1) and the LN distributions (α = 0). As

observed experimentally and numerically [12, 14, 15], for small 3s (and small f3),

a one-peak shape is predominant whereas two peaks are retrieved for large mean

volumes (and big f3 values). The evolution of α captures this trend: the NDF

is Pareto-like at the beginning of the flame, evolving towards an LN distribution

downstream. The first-peak n̄0 governs the stiffness of the Pareto distribution. As

observed in Fig. 2, the role of the Pareto function is initially to reproduce almost

the whole soot population, which is the result of many simultaneous processes,

whereas downstream it mainly reproduces only the nuclei production. As a con-

sequence, n̄0, meaning n̄1 stiffness, increases with 3s. Similarly, the parameter σ

is proportional to 3s. When increasing the volume, the population gathers into the

n̄2(3) distribution, mainly governed by the coagulation process, leading to a larger

value of σ. The proposed reconstruction strategy has been developed by analyzing

NDF results from a laminar premixed flame but will be validated in the following

on different flame archetypes (laminar and turbulent, premixed and non-premixed

flames). Even if the empirical relationships of Eq. (8) may depend on the targeted

fuel and/or operating conditions. However, the decomposition into Pareto and LN

distributions seems a promising candidate to represent the general transition from

one- to two-peaks shapes observed in sooting flames.
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(a) Nucleation and surface growth only.
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(b) Nucleation, surface growth, oxidation and
coagulation.

Figure 3: Soot number density (left) and volume fraction (right) in a laminar freely-propagating
flame. Results with the 2- and 3-eq models are compared to MC solution (continous red line,
dashed blue line and symbols, respectively).

4. Validation cases

In this session, the 3-eq model is validated against detailed Monte-Carlo or

SM simulations. Comparisons with experiments are here avoided since any dis-

crepancy (or agreement) of the 3-eqn model with experiments may potentially

depend on the choice of more or less accurate physical and collisional description

(in particular to the modelâĂŹs constants), whose evaluation is out of the scope

of this work. However, the validation of the 3-eqn model on experimental laminar

premixed flames[17] is presented in the supplementary material for completeness.

4.1. Global quantities

The accuracy of the 3-eq model is assessed in a laminar freely-propagating

premixed C2H4/Ar/O2 flame, simulated with the REGATH solver [20] using the

KM2 detailed gas phase reaction mechanism [21] for equivalence ratio φ = 2.1,

initial temperature T = 300 K and atmospheric pressure. Soot production has

been calculated with the 3-eq model as well as a reference Monte-Carlo (MC)

approach using the Sweep2 solver [22]. In addition, a two-equation model (2-

eq) is also considered by solving Eqs. (1) for Ns and Ys and imposing s2eq
s =
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(36π)1/33
2/3
s . In order to guarantee consistency among MC, 3-eq and 2-eq models,

spherical particles are considered with MC and δsfrac = δsspher for 3-eq model.

First, f3 and Ns profiles are presented in Fig. 3(a) by taking into account only

nucleation and surface growth.

The 2-eq model overestimates f3, whereas the 3-eq model is able to correctly

reproduce the soot production, showing that the equation for Ss is essential to re-

produce the evolution of the particle surface and, consequently, of the growth and

destruction source terms, even for spherical particles. Then, results obtained while

considering also oxidation and coagulation are presented in Fig. 3(b). Discrepan-

cies with the MC profiles are observed since the mono-disperse closure assump-

tion is less valid since the resultant MC soot population is more poly-disperse in

this case (not shown). However, the quality of the 3-eq model is better than the

2-eq approach and is quite satisfactory with regards to its simplicity and low CPU

cost. This model is then a good candidate to estimate soot production using LES

of complex industrial applications and it can be used to perform parametric stud-

ies necessary for engineering design whose CPU cost is today prohibitive with

other models.

4.2. NDF reconstruction

4.2.1. Laminar flames

The NDF reconstruction is validated a priori on two laminar flame simula-

tions using the SM [12]: a premixed flame stabilized by a stagnation plate and a

counterflow diffusion flame. The spatial evolutions of f3 and Ns are presented in

Fig. 4. The two flame profiles greatly differ, leading to a large variability of the

NDF. f3 and Ns have been extracted at six different positions along both flames,

identified by the vertical lines in Fig. 4, to calculate 3s. The NDF is then re-
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constructed at six locations as Nsn̄a (3) and compared to the NDF provided by the

SM in Fig. 5. The reconstructed NDF (R-NDF) reproduces the expected behavior,

the Pareto and the LN functions mainly contributing to small and large particles,

respectively. The R-NDF also correctly guarantees the first two moments, i.e. Ns

and f3, with a maximum error of about 10%, and captures very well the transition

between one-peak to two-peak shapes for the two different flame structures.

4.2.2. Turbulent flames

As a final validation, the R-NDF is tested on a turbulent ethylene/air jet flame

(Fig. 6, [23]). The temporal and spatial evolutions of the NDF have been char-

acterized using SM [13]. Here, an instantaneous solution of the SM is used to
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Figure 4: Spatial evolution of f3 (black) and Ns (blue) obtained with the sectional method [12] for
a premixed (top) and a diffusion (bottom) flame. Vertical lines indicate the axial position of the
NDF represented in Fig. 5.
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Figure 5: Validation of the NDF reconstruction model on laminar flames: the reconstructed NDF
(lines) is compared to the sectional NDF (symbols) at 6 different positions indicated in Fig. 4.
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compare the R-NDF and sectional NDF on the central axis at three flame heights

H/D = 50,85 and 125, where D = 3.2 mm is the fuel injector diameter of the

main jet. The 3-eq model provides a good prediction of the spatial transition from

one-peak to two-peaks shapes of the NDF.

To conclude, it should be reminded that the reconstruction procedure depends

not only on the global transported quantities but also on some parameters (α,

σ and n̄0
1) fitted in Sec. 3 on a specific flame from the results obtained with a

specific SM. Even if this reconstruction has been validated a priori on different

flame archetypes, a different evolution of the NDF with 3s may be observed for

different soot modes, fuels or operating conditions. However, the decomposition

of the NDF into a Pareto and a LN distribution seems to be a general strategy

to represent the NDF without the transport of additional information, allowing

parametric studies on gas turbines at low CPU cost.

5. LES of the FIRST combustor

The 3-eq model is now used to perform an LES of soot production in the

model combustor FIRST, investigated experimentally at DLR [10]. Once the sim-

ulation is validated against the experimental data, results on the PSD validity are

discussed.
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5.1. Numerical setup

The FIRST configuration of DLR [10] is a classical benchmark for validation

of soot modelling [3, 7, 8, 24, 25]. The burner consists in a plenum, a swirler and a

combustion chamber. Ethylene and air are injected separately and mixed directly

in the chamber where a swirled flame is stabilized.

The case studied here corresponds to a pressure of 3 atm, an injection equiv-

alence ratio of φinj = 1.2 and a secondary air injection reducing the global equiv-

alence ratio down to φglobal = 0.86. Simulation is performed with the AVBP

solver [26]. The flow is simulated on the 40 million tetrahedra unstructured mesh

presented in [27]. Adiabatic no-slip walls are considered except for the chamber

walls, whose temperature is imposed based on experiments [28]. A look-up table

based on the RFPV model [29] is built from the KM2 [21] detailed mechanism,

to obtain information on gaseous species, as well as on precursors and on gaseous

quantities required for the solid phase. Turbulent subgrid stresses are modeled us-

ing the WALE approach [30], with constant turbulent Prandtl and Schmidt num-

bers (Prt = Sct,k = 0.6). The subgrid chemical source terms of gaseous species

are described using a β-pdf model [31]. The intermittency model for subgrid soot

source terms developed in [32] for HMOM is used here. An optically-thin model

is used for radiation. Time-averaged quantities have been obtained over 30 ms,

corresponding to approximately six convective times. The gas phase simulation

has already been validated in [33], showing a negligible impact of soot radiation

on the gas phase. Therefore, the validation of the gas phase is not presented here

and only results on soot are discussed.
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5.2. Analysis of results

Results on time-averaged f3 using the 3-eq and SM [33] models are shown

in Figs. 7(a)-7(b) and compared to the experimental data (Fig. 7(c)). To ease the

comparison, the experimental and numerical results have been normalized by their

respective maximum values ( f max,exp
3 = 30±9 ppb, f max,num

3 = 10 ppb). The qual-

ity of the prediction of the 3-eq model (Fig. 7(a)) is very satisfactory compared to

the SM (Fig. 7(b)), for a CPU cost reduced by a factor 3. It should be noticed that

in the SM an empirical relation was imposed to account for fractility [13], whereas

the total particle surface is transported in the 3-eq model. Thus, the surface reac-

tions may differ between the two calculations, modifying the production of f3, so

that any deeper comparison between the two models would not be pertinent.

Soot localization is correctly detected, but there is a factor 3 between experi-

ments and simulations. Experimentally, the soot yield assumes the same level all

along the flame and decreases for y > 60 mm. On the contrary, the numerical

results predict a high value only for y < 40 mm and rapidly decreases down-

stream. The quality of these results is overall satisfactory since the prediction of

fv is extremely challenging and the experimental data is characterized by an error

of 30%.

The temporal evolution of global values of Ns, f3 and 3s are represented in

Fig. 8(a) at the point of maximum f3 fluctuations (x = 12 mm, y = 24 mm) show-

ing that 3s highly fluctuates with time. In Fig. 8(b), the PSD obtained through the

reconstruction procedure is represented for the three times indicated in Fig. 8(a).

As expected, it can be observed that the PSD shape greatly varies in time. How-

ever, the time-averaged distribution has almost everywhere a one-peak shape (not

shown), as observed in the SM simulation [33]. This differentiates soot produc-
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(a) 3-eq. (b) Sectional
[33].

(c) Exp.[10].

Figure 7: Time-averaged f3 normalized by its maximum value: f̄3 = f3/ f max
3 . Results from the

3-eq (a) and the sectional (b, [33]) methods ( f max,num
3 = 10 ppb) are compared to experiments (c,

f max,exp
3 = 30 ± 9 ppb, [10]).
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x = 12 mm and y = 24 mm.
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tion in this configuration from what has been observed in the turbulent jet flames

[13, 18, 19] and can be explained by the strong correlation evidenced between

small (high) soot levels and one- (two)-peak distributions [13]. By looking at ex-

perimental results, a one-peak PSD is expected in this configuration since soot

yield is of the order of a particle per billion, compared to ppm observed in jet

flames.

Concerning alternative reconstruction techniques to obtain time-averaged PSD,

Rittler et al. [34] suggested to use temporal fluctuations of 3s from a mono-

disperse model. This strategy was applied to the investigation of the titanium

oxide population in a turbulent flame. However, there is no proof that the tempo-

ral evolution of 3s is representative of the time-averaged PSD. To evidence it, the

time-averaged PSD for the data presented in Fig. 8 is shown in Fig. 9 (solid line),

along with the temporal fluctuations of 3s (histogram). It shows that the number

of particles is underestimated for the biggest particles because the mean volume

3s will obviously never be able to reach the volumes encountered in the tail of the

PSD. Therefore, tracing the temporal evolution of 3s (or other moments) is not a

pertinent representation of time-averaged PSD: a R-NDF or transported NDF are

necessary. Another strategy may be to recalculate the PSD from the time-averaged

3s instead of simply reporting 3s fluctuations. This is represented in Fig. 9 (dashed

line), showing that it is not identical to the time-averaged PSD. This is again not

surprising because of the high non-linearity of the reconstruction with respect to

moments. It can therefore be conclude that the only way to get the time-averaged

PSD is to store the temporal evolution of the PSD (reconstructed or transported).

In conclusion, the 3-eq model provides good prediction of soot global quanti-

ties with no fitting procedure for parameters governing soot production processes.
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Figure 9: Time-averaged R-PSD with the 3-eq model (continuous black line) is compared to
temporal fluctuations of the mean particle volume (histogram, [34]) for the data presented in Fig. 8.
The PSD reconstructed from the time-averaged mean particle volume is also represented in dashed
blue line.

Concerning the PSD reconstruction, it should be noticed here that no validation

has been provided on turbulent flames by comparison with experimental data,

since they are today not available for this configuration. However, it represents a

low-cost procedure to get information on the NDF, which cannot be represented

only by looking to the fluctuations of 3s.

6. Conclusion

A simple 3-eq model for the description of soot production has been proposed

based on a mono-disperse closure of the source terms of a sectional method. It

presents the following advantages: the addition of a transport equation for the total

soot surface guarantees a better description of surface reactions compared to the

semi-empirical method; its theoretical development guarantees a larger validity of

the model; it can easily be implemented into CFD solvers and provides a reason-

able estimation of the PSD for a low CPU cost (the cost of a LES of a turbulent

sooting flame is approximately reduced by a factor 3 compared to the sectional

method using 25 sections when using a tabulation technique for gas description).

However, the NDF reconstruction still requires more validation and the accu-
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racy of the 3-eq model is expected to be reduced when the NDF is highly poly-

disperse. Nevertheless, since a correlation seems to exist between small values of

f3 (less than ppm) and one-peak NDF, the mono-disperse model proposed here

is a good candidate for LES of sooting turbulent flames of gas turbines and aero-

nautical burners, where the produced instantaneous f3 is expected to be small (i.e.

less than ppm).
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