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INTERACTION OF SOLITONS FROM THE PDE POINT OF VIEW

YVAN MARTEL

Abstract. We review recent results concerning the interactions of solitary waves for several
universal nonlinear dispersive or wave equations. Though using quite different techniques,
these results are partly inspired by classical papers based on the inverse scattering theory
for integrable models.

1. Introduction

Pioneering numerical experiments of Fermi, Pasta, Ulam [49] in 1955, and of Zabusky,
Kruskal [149] in 1965, revealed unexpected phenomena related to the interactions of nonlin-
ear waves1. Shortly thereafter, the inverse scattering theory and its generalizations, developed
by many influential mathematicians [1, 50, 51, 92, 114, 115, 151], provided a rigorous ground
and a unified approach to these observations. It led very rapidly to an accurate and deep
understanding of remarkable properties of several universal nonlinear models, referred to as
completely integrable, such as for example, the Korteweg-de Vries equation, the one dimen-
sional cubic Schrödinger equation and the sine-Gordon equation. It has created a very active
and inspiring field of research since then2. Among the most notable achievements of this
theory, we mention

(i) the existence of infinitely many conservation laws;
(ii) the purely elastic nature of the collision of any number of solitary waves, which means

that the interacting solitary waves recover their exact shape and velocity after a
collision. Solitary waves enjoying such remarkable property were called solitons3;

(iii) the decomposition into solitons, saying that from any solution should emerge in large
time a sum of nonlinear states, such as solitons, plus a dispersive part.

These rigorous mathematical facts are known to be physically relevant in numerous contexts,
though sometimes under less extreme forms. For example, in several practical applications
or for more elaborate nonlinear models, the collision of nonlinear waves is not purely elastic
and some loss of energy takes place during collisions4. This reveals that the inverse scattering
theory is restricted to models with specific algebraic structure and despite many extensions
to nearly integrable systems (see e.g. [79]), it cannot be applied to general nonlinear models.

2010 Mathematics Subject Classification. Primary: 35B40; Secondary: 37K40,35Q51,35Q53,35Q55,35L71.
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1We refer to Chapter 8 of [34] for details on this discovery and on the relation between the model considered

in [49] and the KdV equation. It is quite rightly suggested in [34] to recognize the work of M. Tsingou,
contributor to the numerical computations of [49].

2See for example [91] and Chapter 7 of [34] for synthetic presentations of the inverse scattering transform.
3This term is now commonly used for solitary waves even in the non-integrable context.
4We refer to [29] for a discussion on this topic.
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In view of the beautiful achievements of the integrability theory but also of its inevitable
limitations, it appeared necessary to investigate similar questions for general nonlinear models
with solitary waves using tools from the theory of partial differential equations. In these notes,
we review some results on interactions of solitary waves obtained for models that are not close
to any known integrable equation, such as the generalized Korteweg-de Vries equation, the
nonlinear Schrödinger equation in any space dimension, the φ4 equation and the nonlinear
wave equation.

Mainly in the 80s, the solitary wave theory, proving existence, uniqueness, symmetry and
stability properties of nonlinear waves, was successfully developed using the elliptic theory,
ODE analysis and general variational arguments, at least for ground states (see Section 3).
More recently, asymptotic stability results appeared (see Section 4). Then, energy type argu-
ments extending the elliptic theory have allowed to consider several solitary waves in weak in-
teractions, i.e. cases where the soliton dynamics is only slightly perturbed by the interactions.
Pushing the perturbative analysis one step forward, some examples of strong interactions have
also been exhibited; the solitons are still distant, but their dynamics is substantially modified
by the interactions (see Section 5). Next, we review the few recent cases where a version
of the soliton resolution conjecture was proved for non-integrable wave models in Section 6.
Finally, we discuss in Section 7 some situations where collisions were proved to be inelastic.

This review points out that despite some impressive and surprizing recent progress, notably
on the soliton resolution conjecture, most of the questions raised above on the interaction of
solitary waves remain open for general nonlinear models.

2. Integrable equations

In this section, we briefly highlight some results from the inverse scattering theory that
inspired mathematical research much beyond their range of applicability.

2.1. KdV solitons and multi-solitons. For the Korteweg-de Vries equation5

∂tu+ ∂x(∂
2
xu+ u2) = 0, (t, x) ∈ R× R, (1)

the inverse scattering transform led to a very striking property which is the existence of exact
multi-soliton solutions (see e.g. [63, 114, 147]).

Let Q(x) = 3
2 cosh

−2(x2 ) be the unique positive even solution of Q′′ + Q2 = Q, and for
c > 0, let Qc(x) = cQ(

√
cx). Then, for any c > 0, σ ∈ R, the function defined by u(t, x) =

Qc(x− ct− σ) is a solution of (1), called soliton, traveling with speed c.
Solutions containing an arbitrary number of such solitons (called multi-solitons) have been

obtained by the inverse scattering theory.

Theorem 1 (Multi-solitons for KdV, [63, 114]). Let K ∈ N, K ≥ 2. Let 0 < cK < · · · < c1
and σ−1 , . . . , σ

−
K ∈ R. There exist σ+1 , . . . , σ

+
K ∈ R and an explicit solution u of (1) such that

lim
t→±∞

∥

∥

∥

∥

∥

u(t)−
K
∑

k=1

Qck

(

· − ckt− σ±k
)

∥

∥

∥

∥

∥

H1

= 0.

The most remarkable fact is that all the solitons recover exactly the same sizes and speeds
after the collision. Moreover, the values of σ+k are explicit. It it interesting to recall that the
multi-soliton behavior, even in the simple case of two solitons, differs qualitatively according
to the relative sizes of the solitons. We refer to Lemma 2.3 in [92] for a definition of the three

5We refer to Chapter 1 of [34] for historical facts on this equation and its applications to Physics.



INTERACTION OF SOLITONS FROM THE PDE POINT OF VIEW 3

Lax categories of two-solitons and to [149] for a previous formal discussion. In particular, if
their sizes are close (i.e. c1 ∼ c2), the two solitons never cross, but rather repulse each other
at a large distance (this is category (c) in [92]). See §7.1–7.3.

2.2. Decomposition into solitons for KdV. The multi-soliton behavior is fundamental
for general solutions of the KdV equation as shown by the following decomposition result.

Theorem 2 (Decomposition into solitons, [46, 134]). Let u0 be a C4 function such that for
any j ∈ {0, ..., 4}, for all x ∈ R,

∣

∣(∂ju0/∂x
j)(x)

∣

∣ . 〈x〉−10. Let u be the solution of (1)
corresponding to u0. Then, there exist K ∈ N, σ1, . . . , σK ∈ R and c1 > · · · > cK > 0 such
that, for all x > 0,

lim
t→+∞

{

u(t, x)−
K
∑

k=1

Qck(x− ckt− σk)

}

= 0.

This result has a rich history, see [1, 17, 34, 39, 46, 88, 92, 134, 149] and the references
therein. Note that if some space decay is necessary to apply the inverse scattering transform,
the decay assumption on the initial data in the above result is not optimal. Note also that
the asymptotic behavior of the solution is described for x > 0 (see results in [134] for slight
improvement). For the region x < 0, see [36, 46, 134] and references therein.

Last, we mention that the modified KdV equation (i.e. the KdV equation with a cubic
nonlinearity) is also an integrable model that enjoys most of the properties of the KdV
equation, like the infinitely many conservation laws and the existence of pure multi-soliton
solutions (see e.g. [114]). Actually, it even has a richer family of exceptional solutions:
breather solutions (see [3, 91, 142]) and dipole solitons, i.e. special multi-solitons where
solitons are distant like C log t (see [56, 72, 143]). This complicates any possible soliton
resolution conjecture on this equation (see [134]).

2.3. One dimensional cubic NLS. The 1D cubic nonlinear Schrödinger equation

i∂tu+ ∂2xu+ |u|2u = 0, (t, x) ∈ R× R, (2)

is also an integrable equation, widely studied for its numerous physical applications and
remarkable mathematical properties. See e.g. [34, 35, 37, 39, 48, 121, 124, 148, 149, 150, 151].

Here, we denote Q(x) =
√
2 cosh−1(x) the unique positive even solution of Q′′ +Q3 = Q,

and for any c > 0, Qλ(x) =
√
cQ(

√
cx). Then, for any c > 0, β ∈ R, σ ∈ R and γ ∈ R,

u(t, x) = Qc(x− βt− σ)eiΓ(t,x), Γ(t, x) =
1

2
(β · x)− 1

4
|β|2t+ ct+ γ,

is a solitary wave of (2), moving on the line x = σ + βt and also called soliton.
As the KdV equation, the 1D cubic NLS admits explicit multi-solitons. However, the

possible behaviors of multi-solitons is richer for NLS. In addition to multi-solitons distant like
Ct, which is the generic situation, the equation also admits multi-solitons where the distance
between some solitons is C log t (see [124, 151]; this requires solitons of exactly the same
size, like for mKdV) and solutions where some solitons are staying at a finite distance from
each other for all time (see [148, 151]). As for mKdV, the presence of such multi-solitons
complicates any general decomposition result but does not prevent it. For such questions, we
refer to the recent work [11] and its references.
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2.4. The sine-Gordon equation. The sine-Gordon equation

∂2t u− ∂2xu+ sinu = 0, (t, x) ∈ R× R,

was also widely studied as a physically relevant and completely integrable model (see e.g. [34,
39, 91]). This equation has an explicit kink solution S(x) = 4 arctan(ex). It also has other
exceptional solutions, like time-periodic wobbling kinks (see [33, 135]), and breathers (see [91]).

2.5. Other integrable models and nearly integrable models. For the derivative NLS
equation, we refer to [71] and its references. For the KP-I equation, see Lamb [91]. For
integrable models set on the torus, see [89] and references therein.

Several nearly integrable equations have also been studied in the context of the theory of
inverse scattering. We refer to [34, 38, 79, 148] and to the references therein.

2.6. Formal works and numerical simulations. Note that shortly after the development
of the inverse scattering and the discovery of explicit multi-solitons, other approaches ap-
peared, like in [47, 56, 72], to investigate possible multi-soliton behaviors for integrable or
non-integrable models. Such papers focus on the modulation equations of the parameters of
the solitons and lack the analysis of the error terms, but they aim at justifying formally multi-
solitons behaviors beyond any integrability property or proximity to integrable equations. In
particular, as for the rigorous results presented in Section 5 below, they are asymptotic results,
restricted to cases where the distances between the various solitons are large enough.

Theoretical and numerical works have been developed in parallel. As mentioned in the
Introduction, the subject started with two fundamental numerical experiments presented in
[49, 149]. Since then, there has been an intense activity on studying solitary waves interactions
from the numerical point of view. We refer to [29] which compares KdV multi-solitons,
the water wave problem from the numerical point of view and real experiments on waves
generated in water tanks. For Klein-Gordon equations, we refer to [2]. We also refer to
[9, 34, 59, 94, 136, 148] and references therein. One of the main questions studied by numerical
experiments is the elastic versus inelastic character of the collisions of nonlinear waves.

3. Nonlinear models with solitary waves

In these notes, we consider four typical nonlinear models and work with the notion of
solution in the energy space.

3.1. The generalized Korteweg-de Vries equation. Consider the following 1D model,
for any integer p ≥ 2,

∂tu+ ∂x(∂
2
xu+ up) = 0, (t, x) ∈ R× R. (3)

As seen before, the case p = 2 corresponds to the KdV equation and p = 3 to the mKdV
equation, which are both completely integrable.

The mass and energy
∫

u2(t),

∫
(

1

2
u2x(t)−

1

p+ 1
up+1(t)

)

are formally conserved for solutions of (3). We refer to [78] for the local well-posedness of the
Cauchy problem in the energy space H1 (see also [73]). For 1 < p < 5, all solutions in H1 are
global and bounded, and the problem is called sub-critical. For p = 5, the problem is mass
critical (blow up solution do exist, see [107] and references therein) and p > 5 correspond
to the super-critical case. The notion of criticality corresponds to the scaling invariance of
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equation (3): indeed, if u(t, x) is solution then for any c > 0, uc(t, x) = c
1

p−1u(c
3

2 t, c
1

2x) is

also solution and ‖uc(t)‖L2 = c
1

p−1
− 1

4‖u(t)‖L2 .
Let Q be the unique (up to sign change if p is odd) non-trivial even solution of Q′′+Qp = Q

on R, explicitely given by

Q(x) =

(

p+ 1

2

) 1

p−1

cosh−
2

p−1

(

p− 1

2
x

)

.

For c > 0, let Qc(x) = c
1

p−1Q(c
1

2x). Note that these formulas for Q and Qc generalize the
previous ones given for p = 2 and p = 3. As before, solitary waves (also called solitons by
abuse of terminology) are solutions of (3) of the form u(t, x) = Qc(x− ct− σ), for any c > 0
and σ ∈ R.

The orbital stability of solitons with respect to small perturbations in the energy space H1

is known in the sub-critical case.

Theorem 3 (Stability of the soliton for sub-critical gKdV [6, 8, 16, 145, 146]). Let 1 < p < 5.
For all ǫ > 0, there exists δ > 0, such that if ‖u0 −Q‖H1 ≤ δ, then the solution u of (3) with
initial data u0 satisfies, for all t ∈ R, ‖u(t, . + σ(t)) −Q‖H1 ≤ ǫ, for some function σ.

In contrast, solitons are unstable in the critical and super-critical case p ≥ 5. Note that
the instability phenomenon is quite different in the critical case (linear stability holds and the
nonlinear instability is related to the scaling parameter) and in the super-critical case (linear
exponential instability). See [10, 15, 58, 97, 125].

3.2. The nonlinear Schrödinger equation. Recall the nonlinear NLS equation

i∂tu−∆u− |u|p−1u = 0, (t, x) ∈ R× R
d. (4)

We consider the case p > 1 for d = 1, 2, and 1 < p < d+2
d−2 for d ≥ 3. For d = 1 and p = 3, the

model is completely integrable, as seen before. Note that, similarly as for the gKdV equation,
p = 1+ 4

d corresponds to L2 criticality, while for d ≥ 3, p = d+2
d−2 corresponds to Ḣ1 criticality.

The mass, energy and momentum
∫

|u(t)|2,
∫ (

1

2
|∇u(t)|2 − 1

p+ 1
|u(t)|p+1

)

, ℑ
(∫

∇u(t)ū(t)
)

are formally conserved for solutions of (4). We refer to [15, 55, 139] for the local well-posedness
of the Cauchy problem in the energy space H1.

We denote by Q the unique positive radially symmetric H1 solution of ∆Q+ |Q|p−1Q = Q
on R

d (the function Q is called the ground state; see existence and uniqueness results in

[7, 15, 90, 139]). For c > 0, let Qc(x) = c
1

p−1Q(c
1

2x). Note that this is a further generalization
of the notation for gKdV, for any space dimension d ≥ 1. For d ≥ 2, ground states are no
longer explicit, but their properties are well-understood (see references above). Then, for any
c > 0, β ∈ R

d, σ ∈ R
d and γ ∈ R, the function u defined by

u(t, x) = Qc(x− βt− σ)eiΓ(t,x) where Γ(t, x) =
1

2
(β · x)− 1

4
|β|2t+ ct+ γ,

is a traveling wave of (4), with speed β.
The stability and instability properties of solitary waves of NLS are similar: stability in

the L2 sub-critical case, and instability in the critical and super-critical cases. We refer
to [15, 16, 57, 58, 145] for details.
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3.3. The φ4 equation. We consider the φ4 model (see e.g. [34, 95])

∂2t φ− ∂2xφ− φ+ φ3 = 0, (t, x) ∈ R× R. (5)

Recall that the energy

E(φ, ∂tφ) =

∫

1

2
|∂tφ|2 +

1

2
|∂xφ|2 +

1

4

(

1− |φ|2
)2

is formally conserved along the flow. The kink, defined by H(x) = tanh
(

x/
√
2
)

is the unique

(up to sign change), bounded, odd solution of the equation −H ′′ = H −H3 on R. We recall
that the orbital stability of the kink with respect to small perturbations in the energy space
has been proved in [62] using mainly the energy conservation. This model is analogue to the
sine-Gordon equation, but it is not completely integrable and breathers solutions or woobling
kinks are not expected to exist.

3.4. The energy critical nonlinear wave equation. For space dimensions d ≥ 3, we
consider the following nonlinear wave equation,

∂2t u = ∆u+ |u|
4

d−2u, (t, x) ∈ R× R
d. (6)

We denote

E(u, v) =

∫ (

1

2
|∇u|2 + 1

2
v2 − 1

6
|u|6
)

so that the energy of a solution (u, ∂tu) of (6), defined by E(u, ∂tu), is formally conserved by

the flow. Concerning the Cauchy problem in Ḣ1 × L2 for the energy critical wave equation,
we refer to [77] and the references given therein. As before, the notion of criticality is related
to the scaling invariance: if u(t, x) is a solution, then for any λ > 0,

uλ(t, x) =
1

λ
d−2

2

u

(

t

λ
,
x

λ

)

is also solution and ‖∇uλ‖L2 = ‖∇u‖L2 .

Here, solitary waves are stationary solutions W ∈ Ḣ1 satisfying ∆W + |W |
4

d−2W = 0, and
traveling waves obtained as Lorentz transforms of such solutions. For ℓ ∈ R

d, |ℓ| < 1, we
denote

Wℓ(x) =W

((

1
√

1− |ℓ|2
− 1

)

ℓ(ℓ · x)
|ℓ|2 + x

)

,

so that u(t, x) = Wℓ(x − ℓt) is solution of (6). As for the NLS equation, we consider only
ground states solitary waves, i.e. solutions of the above elliptic equation explicitely given by

W (x) =

(

1 +
|x|2

d(d− 2)

)− d−2

2

.

As solutions of the evolution equation (6), they are unstable with respect to perturbation of
the initial data with one direction of exponential instability (see [40, 57]).

4. Asymptotic stability

We recall briefly some results of asymptotic stability of solitons.
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4.1. Asymptotic stability for gKdV solitons.

Theorem 4 (Asymptotic stability of the gKdV soliton in H1, [98]). Let p = 2, 3, 4. For
any β > 0, there exists δ = δ(β) > 0 such that the following is true. Let u0 ∈ H1 be such that
‖u0 −Q‖H1 ≤ δ. Then, the global solution u of (3) with initial data u0 satisfies

lim
t→+∞

‖u(t)−Qc+(· − σ(t))‖H1(x>βt) = 0,

for some c+ > 0 with |c+ − 1| . δ and some C1 function σ such that lim+∞ σ′ = c+.

We refer to [126] for the first result of asymptotic stability of gKdV solitons. Theorem 1
claims strong convergence in H1 in the region x > βt. Strong convergence in H1(R) is
never true since it would imply by stability that u is exactly a soliton. The region where
convergence is obtained in Theorem 1 is sharp since one can construct a solution which
behaves asymptotically as t → +∞ as the sum Q(x − t) + Qc(x − ct), where 0 < c 6= 1 is
arbitrary (see [96, 114, 144]). In particular, choosing c ≪ 1, the H1 norm of Qc(x − ct) is
small, and this soliton travels on the line x = ct. This explains the necessity of a positive β
in the convergence result. We also refer to the survey [141]. For p = 4, the result has been
completed in [76, 140] showing that the residue scatters in a Besov space close to the critical

Sobolev space Ḣ−1/6. For p = 3, we refer to [54] for a full asymptotic stability statement.

4.2. Asymptotic stability for NLS equations. In the context of the nonlinear Schrödinger
equation, pioneering results on asymptotic stability of traveling waves are [12, 13, 137, 138].
These papers initiated the method of separating modes and using dispersive estimates with
potential, under assumptions on the spectrum of the linearized operator.

This question has then been extensively studied, for the NLS equation with or without
potential and for various nonlinearities, see e.g. [14, 31, 53, 120, 129, 130, 131, 132, 133] as
typical papers, and their references. Most of these works require specific assumptions, like
spectral assumptions or suitable dispersive estimates for equations with unknown potential,
a suitable Fermi Golden Rule or flatness conditions on the nonlinearities at 0. It follows that
no result of asymptotic stability is fully proved for any pure power NLS equation without
potential with stable solitons, except for the integrable cubic 1D NLS treated in [32].

In larger dimensions, or higher order nonlinearities, the solitons are unstable. The notion of
conditional asymptotic stability and the construction of center stable manifolds then become

relevant. For the focusing 3D cubic NLS equation (which is an Ḣ
1

2 critical equation with
exponentially unstable solitons) the theory has been especially well-developed, at least in the
radial case, in [4, 5, 22, 120, 131, 133]. In particular, spectral assumptions implying the desired
dispersive estimates for the linearized equation around the soliton have been checked, first
numerically and then rigorously by computer assisted proof (see [22] and references therein).

4.3. Asymptotic stability of the φ4 kink. The asymptotic stability of the kink H by the
φ4 flow (5) is known in the case of odd perturbations in the energy space. Note that for odd
initial data, the corresponding solution of (5) is odd. Rewrite φ = H + u. Then, one has

∂2t u− ∂2xu− u+ 3H2u+ 3Hu2 + u3 = 0, (t, x) ∈ R× R. (7)

Theorem 5 (Asymptotic stability of the kink by odd perturbations, [82]). There exists δ > 0
such that for any odd (u0, u1) ∈ H1 × L2 with ‖(u0, u1)‖H1×L2 ≤ δ, the solution (u, ∂tu) of
(7) with initial data (u0, u1) satisfies, for any bounded interval I ⊂ R,

lim
t→±∞

‖(u, ∂tu)(t)‖H1(I)×L2(I) = 0.
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As for gKdV, if a solution u of (7) satisfies limt→+∞ ‖(u, ∂tu)(t)‖H1×L2 = 0, then by orbital
stability [62], u(t) ≡ 0, for all t ∈ R. Thus the local result is in some sense optimal.

For previous related results, we refer to [80, 81] where the asymptotic stability of the kink
is studied for the 1D equation ∂2t u − ∂2xu + F (u) = 0, under specific assumptions on F (not
including the φ4 model) and to [30], where the stability and asymptotic stability of the one
dimensional kink for the φ4 model, subject to localized three dimensional perturbations is
studied. We also refer the references in [30, 80, 81, 82] for related works on scattering of small
solutions to Klein-Gordon equations. See also the review [83] and references therein.

4.4. Blow up profile for the critical wave equation. Recall that [77] provides a clas-
sification of all possible behaviors (blow up or scattering) of solutions of (6) whose initial
data (u0, u1) satisfies E(u0, u1) < E(W, 0). Next, [40] studies the threshold case E(u0, u1) =
E(W, 0) and constructs the stable manifold around W . Then, [41, 42] proved the following
result for solutions slightly above the threshold.

Theorem 6 (Blow up profile for 3D critical NLW, [41, 42]). Let d = 3. There exists δ > 0
such that if u is a solution of (6) blowing up in finite time T > 0 and satisfying the bound

sup
[0,T )

(

‖∇u(t)‖L2 +
1

2
‖∂tu(t)‖L2

)

≤ ‖∇W‖L2 + δ,

then

lim
t↑T

∥

∥

∥

∥

∥

(u(t), ∂tu(t))− (v0, v1)∓
(

1

λ
1

2 (t)
Wℓ

( ·−σ(t)
λ(t)

)

,− 1

λ
3

2 (t)
(ℓ · ∇Wℓ)

( ·−σ(t)
λ(t)

)

)∥

∥

∥

∥

∥

L2

= 0

for some σ, λ and ℓ ∈ R
3, |ℓ| < 1 and (v0, v1) ∈ Ḣ1 × L2.

We see that the family {±Wℓ} is the universal blow up profile. We refer to the original
papers for more results and details.

We refer to [85, 86] for classification results of solutions with energy at most slightly above
the one of the ground state, and to [87, 68] for contructions of solutions with prescribed blow
up rates (type II blow up). We also refer to [99, 107, 111, 112] and references therein for
previous results of blow up profile in the case of mass critical gKdV and NLS equations.
Concerning blow up, see also the review [128] and the references therein.

5. Asymptotic multi-solitons

In this section, we discuss results of existence of asymptotic multi-solitons for non-integrable
models, inspired by Theorem 1 and other explicit constructions of multi-solitons for integrable
models, but limited to one direction of time. In particular, these results are valid in asymptotic
situations where the distances between all the solitary waves are large enough.

5.1. Multi-solitons with weak interactions. As a rough idea, weak interaction means
that the trajectories of the solitary waves are not affected asymptotically.

Theorem 7 (Existence and uniqueness of gKdV multi-solitons, [96]). Let p = 2, 3, 4 or 5.

Let K ≥ 2, 0 < cK < · · · < c1, and σ1, . . . , σK ∈ R. Let R =
∑K

k=1Rk where

Rk(t, x) = Qck(x− σk − ckt).

There exists a unique H1 solution of (3) such that limt→−∞ ‖u(t) −R(t)‖H1 = 0. Moreover,
there exists κ > 0 such that, for all t ≤ 0, ‖u(t)−R(t)‖H1 . e−κ|t|.
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Such result shows that the multi-soliton behavior is universal, at least in one direction
of time. Observe that it says nothing about the behavior the solution as t → +∞. The
uniqueness statement in the energy space is relevant even in the integrable case since the
inverse scattering theory requires a priori more space decay. The stability of the multi-soliton
structure was studied in the sub-critical case in [108].

We observe that a similar existence result also holds for the gKdV super-critical equation
(p > 5), with a specific classification related to the exponential instability, see [18, 27].

For the NLS equation, we recall the following existence result.

Theorem 8 (Existence of NLS multi-solitary waves, [27, 101, 110]). Let d ≥ 1. Let p > 1
for d = 1, 2 and 1 < p < d+2

d−2 for d ≥ 3. Let K ≥ 2 and for any k ∈ {1, . . . ,K}, let ck > 0,

βk ∈ R
d, σk ∈ R

d and γk ∈ R. Assume that, for any k 6= k′, βk 6= βk′ . Let R =
∑K

k=1Rk

where

Rk(t, x) = Qck(x− σk − βkt)e
iΓk(t,x) and Γk(t, x) =

1

2
(βk · x)−

1

4
|βk|2t+ ckt+ γk.

Then, there exist T0 ∈ R, κ > 0 and an H1 solution u of (4) such that, for all t ≤ T0,

‖u(t)−R(t)‖H1 . e−κ|t|.

Uniqueness (for critical and sub-critical nonlinearities) or classification (for super-critical
nonlinearity) is an open problem. See [19] for multi-existence in the 1D super-critical case.

Note that the construction of multi-solitons and the study of the stability of the sums of
multi-soliton has been extended to several other models, see e.g. [26, 28] for the case of the
nonlinear Klein-Gordon equation, and [113] for the water wave model.

For the 5D energy critical wave equation, the following existence result is proved in [105].

Theorem 9 (Existence of NLW multi-solitary waves, [105]). Let d = 5. Let K ≥ 2, and for
any k ∈ {1, . . . ,K}, let λk > 0, σk ∈ R

5, ιk ∈ {−1,+1} and ℓk ∈ R
5 with |ℓk| < 1. Assume

that, for any k′ 6= k, ℓk 6= ℓk′. Let R =
∑K

k=1Rk where

Rk(t, x) =
ιk

λ
3

2

k

Wℓk

(

x− ℓkt− σk

λk

)

.

Assume that one of the following assumptions holds

(1) Two-solitons: K = 2
(2) Collinear speeds: For all k ∈ {1, . . . ,K}, ℓk = ℓke1 where ℓk ∈ (−1, 1).

Then, there exist T0 ∈ R and a solution u of (6) on (−∞, T0] in the energy space such that
limt→−∞ ‖∇x,t(u(t)−R(t))‖L2 = 0.

5.2. Multi-solitons with strong interactions. We state a typical result where the strong
interactions between the traveling waves indeed affect their trajectories.

Theorem 10 (Two-solitary waves with logarithmic distance, [122]). Let d ≥ 1. Let

1 < p <
d+ 2

d− 2
(p > 1 for d = 1, 2) and p 6= 1 +

4

d
.

There exists a solution u of (4) such that |z1(t)− z2(t)| ∼ 2 log t as t→ −∞ and

lim
t→−∞

∥

∥

∥

∥

∥

∥

u(t)− e−iγ(t)
∑

k=1,2

Q(· − zk(t))

∥

∥

∥

∥

∥

∥

H1

= 0.
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As discussed in §2.3, such solutions were already known in the integrable case by the
inverse scattering theory. The above result means that this behavior is universal for general
NLS equations, under the same restriction that the traveling waves have equal scaling. The
mass critical case p = 1 + 4

d is excluded since it displays a special behavior related to blow
up and where the above behavior is visible only in rescaled variables, as previously described
in [109]. For the gKdV equation, a result similar to Theorem 10 is given in [123].

We mention a few other previous results of strong interactions: for the Hartree equation
[84], for the energy critical wave equation [69, 70], for the mass critical gKdV equation [20, 21],
and for the half-wave equation [52].

5.3. Soliton interaction with the background. Several papers deal with the question of
the interaction of a soliton with a changing background or an impurity. See [64, 65, 66, 67]
for the interaction of a soliton of NLS with a Dirac mass or a slowly varying potential, and
[118, 119] for the interaction of a gKdV soliton with a slowing variable bottom.

6. Decomposition into solitons for the energy critical wave equation

Here, we recall the few existing results of decomposition in solitons in non-integrable cases.
First, a complete result of decomposition into solitons for equation (6) was proved in [43] for
the radial 3D case.

Theorem 11 (Soliton resolution for the 3D radial critical wave equation, [43]). Let d = 3.
Let u be a global radial solution of (6). Then, there exist a solution vL of the linear wave
equation, K ∈ N, ιk ∈ {−1, 1}, λk > 0, such that

lim
t→+∞

∥

∥

∥

∥

∥

∥

(u(t), ∂tu(t))−



vL(t) +

K
∑

k=1

ιk

λ
1

2

k (t)
W

( ·
λk(t)

)

, ∂tvL(t)





∥

∥

∥

∥

∥

∥

Ḣ1×L2

= 0,

and λ1(t) ≪ λ2(t) ≪ · · · ≪ λK(t) ≪ t, as t→ +∞.

Note that the above result is in some sense more complete than for gKdV (§2.1), since
the residue is proved to scatter. A similar result holds for blow up solutions, provided they
exhibit type II blow up. The soliton resolution conjecture was later proved in the non-radial
case for a subsequence of time for the 3, 4 and 5D energy critical wave equation in [44, 45].
Note that a fundamental idea in the approach of [43] is the introduction of the method of
channels of energy for the linear wave equation (see Theorem 16 for a typical result in 5D).

See similar results for the wave map problem in [23, 24, 25].

7. Collision problem

Concerning the collision problem, we recall the discussion in [29] on inelastic collisions. To
study the collision problem, it is natural to study the behavior as t → +∞ of the solutions
constructed in Theorems 7, 8, 9. See [29], page 057106-4 for suggesting this approach which
seems more canonical than to study initial data with the sum of two solitons initially distant.

7.1. Collision for the quartic gKdV equation I. We consider the quartic gKdV equation

∂tu+ ∂x(∂
2
xu+ u4) = 0 (t, x) ∈ R× R. (8)

The article [102] (see also [117] for generalization to any gKdV equation) gives the first rigorous
results concerning collision of solitons for a non-integrable equation, and in particular the first
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proof of non-existence of pure two-soliton solutions, in the case where one soliton is much
smaller than the other one.

Theorem 12 (Collision of solitons with very different size, [102]). Assume 0 < c≪ 1. Let u
be the solution of (8) such that

lim
t→−∞

∥

∥u(t)−Q(· − t)−Qc(· − ct)
∥

∥

H1 → 0.

(i) Global stability of the 2-soliton behavior. There exist c+1 ∼
c→0

1, c+2 ∼
c→0

c, ρ1, ρ2 such

that the function w+ defined by

w+(t, x) = u(t, x)−Qc+
1

(x− ρ1(t)) −Qc+
2

(x− ρ2(t))

satisfies

lim
t→+∞

‖w+(t)‖H1(x≥ c
10

t) = 0 and sup
t∈R

‖w+(t)‖H1 . c
1

3 .

(ii) Inelasticity of the collision. Moreover, for t≫ 1,

c+1 − 1 & c
17

6 , 1− c+2
c

& c
8

3 , c
17

12 . ‖w+
x (t)‖L2 + c

1

2 ‖w+(t)‖L2 . c
11

12 .

The first part of the theorem means that the two solitons are preserved through the collision,

even the smaller one. Indeed, for c small, supt ‖w+(t)‖H1 . c
1

3 ≪ ‖Qc‖H1 ∼ c
1

12 .
The second part of the theorem says that the sizes of the final solitons as t → +∞ are

slightly changed with respect to their original sizes as t→ −∞, and that the residue does not
converge to zero. In particular, the solution is not a pure 2-soliton as t→ +∞ in this regime.
Thus, the collision is not elastic.

7.2. Collision for the quartic gKdV equation II. A first intuition on the general problem
of two solitons with almost same sizes comes from the explicit multi-solitons of the integrable
case. From [93], we have a sharp description of the behavior of the multi-soliton of (1)
satisfying

lim
t→±∞

∥

∥u(t)−Qc1(· − c1t− σ±1 )−Qc2(· − c2t− σ±2 )
∥

∥

H1 = 0,

in the special asymptotics where 0 < µ0 = c2−c1
c1+c2

≪ 1, i.e. for nearly equal solitons. Indeed,

the following global in time estimate is proved for some explicit functions ck(t), σk(t):

sup
t,x∈R

∣

∣u(t, x)−Qc1(t)(x− σ1(t))−Qc2(t)(x− σ2(t))
∣

∣ . µ20.

Moreover, it is proved that mint∈R(σ1(t)− σ2(t)) ∼ 2| lnµ0|. This means that the minimum
separation between the two solitons is large when µ0 ≪ 1. In particular, the two solitons never
cross and the solution has two maximum points for all time. The interaction is repulsive, the
solitons exchange their sizes and speeds at large distance and consequently avoid the collision.

We now recall results from [116] for the quartic gKdV equation. Let u be a solution of (8)
for which the initial data is close to the sum Q(x) + Qc(x + Y0), where Y0 > 0 is large and
0 ≤ c − 1 ≤ exp(−1

2Y0), so that the quicker soliton can be initially on the left of the other
soliton. It follows from [116] that the interaction of the two solitons is repulsive: the two
solitons remain separated for all positive time and eventually u(t) behaves as

u(t, x) = Qc+
1

(x− c+1 t− σ+1 ) +Qc+
2

(x− c+2 t− σ+2 ) + w(t, x),
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for large time, for some c+1 > c+2 close to 1 and w small in some sense. The situation for almost
equal solitons of the quartic (gKdV) is thus at the main order similar to the one described in
the integrable case in [93]. The analysis part in [116] relies on techniques from [60, 61] and
on the use of spaces introduced in this context in [125].

Before presenting the main result from [103], for simplicity, we change variables. For
c2 − c1 > 0 small, and any σ1, σ2, let u(t) be the unique solution of (8) such that

lim
t→−∞

‖u(t)−Qc1(· − c1t− σ1)−Qc2(· − c2t− σ2)‖H1 = 0.

Let

c0 =
c1 + c2

2
, µ0 =

c2 − c1
c1 + c2

, y1 = σ1
√
c0, y2 = σ2

√
c0.

Then the function U(t, x) = c
−1/3
0 u(c

−3/2
0 t, c

−1/2
0 (x+ t)) solves

∂tU + ∂x(∂
2
xU − U + U4) = 0, (t, x) ∈ R× R, (9)

and is the unique solution of (9) satisfying

lim
t→−∞

‖U(t)−Q1−µ0
(·+ µ0t− y1)−Q1+µ0

(· − µ0t− y2)‖H1 = 0.

The next result concerns the asymptotics µ0 > 0 small.

Theorem 13 (Inelastic interaction of two nearly equal solitons, [103]). Assume 0 < µ0 ≪ 1.
Let U be the unique solution of (9) such that

lim
t→−∞

‖U(t)−Q1−µ0
(·+ µ0t+ Y0 + ln 2)−Q1+µ0

(· − µ0t− Y0 − ln 2)‖H1 = 0,

where Y0 =
1
2 | ln(µ20/α)| and α = 12(10)2/3(

∫

Q2)−1. Then the following holds.

(i) Global stability of the 2-soliton behavior. There exist µ1, µ2, y1, y2 such that

w(t, x) = U(t)−Q1+µ1(t)(x− y1(t))−Q1+µ2(t)(x− y2(t))

satisfies |mint∈R(y1(t)− y2(t))− 2Y0| . µ0 and

lim
t→+∞

‖w(t)‖H1(x>− 9

10
t) = 0, sup

t∈R
|w(t)‖H1 . µ

3

2

0 .

(ii) Inelasticity of the interaction.

lim
+∞

µ1 − µ0 & µ50, µ0 − lim
+∞

µ2 & µ50, lim inf
t→+∞

‖w(t)‖H1 & µ30.

It follows that no pure 2-soliton exists also in this regime. The proofs of Theorems 12
and 13 are based on the construction of a refined approximate solution of the two-soliton
problem for all t and x.

7.3. Collision for the quartic gKdV equation III. Still concerning the collision of two
solitons for the quartic gKdV equation, we recall from [104] the following negative result.

Theorem 14 (Inelasticity of collision for gKdV, [104]). Let K ≥ 2, 0 < cK < · · · < c1 = 1
and σ1, . . . , σK ∈ R. Let u be the solution of (8) satisfying

lim
t→−∞

∥

∥

∥

∥

∥

u(t)−
K
∑

k=1

Qck(· − ckt− σk)

∥

∥

∥

∥

∥

H1

= 0.

Assume that
∑K

k=2 (1− ck)
2 < 1

16 . Then, u(t) is not an asymptotic multi-soliton as t→ +∞.
In particular, there exists no pure multi-soliton of (1) with the speeds c1, c2, . . . , cK .
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In the case of two solitons, the condition on the speeds reduces to 3
4c1 < c2 < c1. In

contrast with Theorems 12 and 13, the result in Theorem 14 is not perturbative and the
explicit condition on the speeds seems technical. The strategy of the proof of Theorem 14
is to study the asymptotic behavior of u(t, x) for any t and for any large x (i.e. far from
the collision region, which seems impossible to describe in the general case) and to find a
contradiction with the fact that u is an asymptotic two-soliton in the two directions of time.
Being a proof by contradiction, it does not give further information on the collision.

7.4. Collision for the perturbed integrable NLS equation. Let β > 0 and 0 < c ≪ 1.
Under the following assumptions for the perturbation |f(u)| .0 u

2, f(u) . |u|q (q < 2), it is
proved in [127], that there exists a solution u of

i∂tu+ ∂2xu+ |u|2u+ f(|u|2)u = 0, (t, x) ∈ R× R,

satisfying limt→−∞

∥

∥u(t)− eitQ− eiΓβ(t,·)Qc(· − βt)
∥

∥

H1 → 0, and for which the small soliton
splits in two after the collision, in the following sense

u(t, x) ∼ eiΓ(t,x)Q(x− σ(t)) + ψ+(t, x) + ψ−(t, x),

where ψ± are solutions of (2) corresponding to the transmitted part and the reflected part
of the small soliton. The above estimate holds on large time intervals after the collision
depending on 1/c. The splitting means some strong form of inelasticity.

7.5. Collision for the 5D energy critical wave equation. In view of the results described
so far, it was natural to search a situation where a non-perturbative approach would allow
to treat all two-soliton collisions. In the case of the 5D energy critical wave equation, we
now recall from [106] a result showing the inelastic nature of the collision of any two solitons,
except the special case of same scaling and opposite signs.

Theorem 15 (Inelasticity of soliton collisions for NLW, [106]). Let d = 5. For k ∈ {1, 2}, let
λ∞k > 0, y∞

k ∈ R
5, ǫk ∈ {±1}, ℓk ∈ R

5 with |ℓk| < 1, and

W∞
k (t, x) =

ǫk

(λ∞k )
3

2

Wℓk

(

x− ℓkt− y∞
k

λ∞k

)

.

Assume that ℓ1 6= ℓ2 and ǫ1λ
∞
1 + ǫ2λ

∞
2 6= 0. Then, there exists a solution u of (6) in the

energy space such that

(i) Two-soliton as t→ −∞
lim

t→−∞
‖∇t,xu(t)−∇t,x (W

∞
1 (t) +W∞

2 (t))‖L2 = 0.

(ii) Dispersion as t→ +∞. For all A > 0 large enough,

lim inf
t→+∞

‖∇u(t)‖L2(|x|>t+A) & A− 5

2 . (10)

Note first that the solution constructed in Theorem 15 is a two-soliton asymptotically as
t → −∞ and that it does not necessarily exist for all t ∈ R. However, by finite speed of
propagation and small data Cauchy theory, it is straightforward to justify that it can be
extended uniquely as a solution of (6) for all t ∈ R in the region |x| > |t|+A, provided that
A is large enough. Thus, the limit in (10) makes sense. Since the estimate (10) gives an
explicit lower bound on the loss of energy as dispersion as t → +∞, the solution u is not a
two-soliton asymptotically as t→ +∞ and the collision is inelastic. Note that the two-soliton
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could have any global behavior, like dislocation of the solitons and dispersion, blow-up or a
different multi-soliton plus radiation, but the property obtained is universal.

The only case left open by Theorem 15 corresponds to the dipole case. It is the first result
proving inelasticity rigorously without restriction on the relative sizes or speeds of the solitons
except an exceptional case.

The strategy of the proof is to construct a refined approximate solution of the two-soliton
problem for large negative times that displays an explicit dispersive radial part at the leading
order and then to propagate the dispersion for any positive time at the exterior of large cones
by finite speed of propagation and the method of channels of energy from [43, 75]. To finish,
we recall such a typical result of channel of energy for the radial linear wave equation in 5D
from [75], Proposition 4.1 (see also [42, 43, 74]).

Theorem 16 (Exterior energy estimates for the 5D linear wave equation, [75]). Any radial
energy solution UL of the 5D linear wave equation

{

∂2tUL −∆UL = 0, (t, x) ∈ R×R
5,

UL|t=0 = U0 ∈ Ḣ1, ∂tUL|t=0 = U1 ∈ L2,

satisfies, for any R > 0,

∑

±

{

lim sup
t→±∞

∫

|x|>|t|+R

(

|∂tUL(t, x)|2 + |∇UL(t, x)|2
)

dx

}

& ‖π⊥R(U0, U1)‖2(Ḣ1×L2)(|x|>R)

where π⊥R(U0, U1) denotes the orthogonal projection of (U0, U1) onto the complement of the

plane span{(|x|−3, 0), (0, |x|−3)} in (Ḣ1 × L2)(|x| > R).
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[82] M. Kowalczyk, Y. Martel and C. Muñoz, Kink dynamics in the φ4 model: asymptotic stability for odd
perturbations in the energy space. J. Amer. Math. Soc. 30 (2017), 769–798.
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[107] Y. Martel, F. Merle and P. Raphaël, Blow up for the critical generalized Korteweg de Vries equation. I:
Dynamics near the soliton. Acta Math. 212 (2014), no. 1, 59–140.

[108] Y. Martel, F. Merle and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of
N solitons for subcritical gKdV equations. Commun. Math. Phys. 231, (2002) 347–373.
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