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Sorbonne Paris Cité, LAGA, CNRS (UMR 7539),
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F-93430 Villetaneuse

Abstract
We present in this report various results obtained during the last years

by several authors about the problem of long time existence of solutions
of water waves and related equations with initial data that are small,
smooth, and decaying at infinity. After recalling some facts about local
existence theory, we focus mainly on global existence theorems for gravity
waves equations proved by Ionescu-Pusateri [35], Alazard-Delort [6, 7] and
Ifrim-Tataru [32]. We describe some of the ideas of the proofs of these
theorems, and conclude the paper mentioning related results.

1 The water waves equations
Consider an incompressible and irrotational fluid, of constant density equal to
one, in a vertical gravity field of intensity g. Assume that at time t, the domain
occupied by the fluid is

Ωt = {(x, z) ∈ Rd × R;−H0 < z < η(t, x)},

where η(t, ·) : Rd → R is such that infx∈Rd η(t, x) > −H0, and either H0 ∈
]0,+∞[ (for a fluid of finite depth) or H0 = +∞ (for an infinite depth fluid).

The velocity U in the fluid solves in Ω = {(t, x);x ∈ Ωt} the incompressible
Euler equations

∂tU + U · ∇x,zU = −∇x,zp− gez
divU = 0

(1)

∗From joint work with Thomas Alazard. MR Subjects Classification: 76B15, 35Q35,
35B40, 35S50. Partially supported by the ANR project 13-BS01-0010-02 “Analyse asympto-
tique des équations aux dérivées partielles d’évolution”.
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where ez is the vertical unit vector and p the pressure inside the fluid. Moreover,
the normal velocity at the bottom satisfies U · ez|z=−H0 = 0 (when H0 < +∞)
or U → 0 when z goes to −∞ (if H0 = −∞). Finally, the free surface is driven
by the velocity of the fluid at each point of the interface z = η(t, x), which is
translated by

(2) ∂tη(t, x) =
√

1 + |∇xη(t, x)|2U(t, x, z) · n|z=η(t,x),

where n is the unit outward normal vector to Ωt at (x, η(t, x)). Moreover, the
pressure above the fluid is equal to the constant atmospheric pressure, that we
may take equal to zero. At the interface z = η(t, x), the pressure of the fluid
will be given by

(3) p|z=η(t,x) = −κdiv
(

∇xη√
1 + |∇xη|2

)
,

where the constant κ ≥ 0 is the surface tension. Since, as the fluid is also
assumed to be irrotational, curlU = 0, one may express the velocity U from a
potential Φ by U = ∇(x,z)Φ. The incompressibility implies ∆(x,z)Φ = 0 and the
Euler equation (1) allows one to write an equation for Φ:

(4) ∂tΦ + 1
2 |∇(x,z)Φ|2 + gz = −p.

Moreover, one has the boundary condition at the bottom

∂zΦ|z=−H0 = 0 (for finite depth)
∇(x,z)Φ→ 0 if z → −∞ (for infinite depth)

(5)

and, expressing U = ∇(x,z)Φ in (2), one gets

(6) ∂tη(t, x) =
√

1 + |∇xη(t, x)|2∂nΦ(t, x, z) on z = η(t, x),

denoting by ∂n the outwards normal unit derivative at the free interface. The
Craig-Sulem-Zakharov formulation of the water waves system, given in [59] and
[20] (see also the book of Lannes [39]) is obtained expressing in (4), (6), the
potential Φ from its boundary data. More precisely, denote by ψ the restriction
of Φ to the interface z = η(t, x). Then Φ solves the elliptic boundary values
problem

∆(x,z)Φ = 0
Φ|z=η(t,x) = ψ

∂zΦ|z=−H0 = 0
(7)

(or, for the last condition, ∇(x,z)Φ → 0 when z → −∞ in the case of infinite
depth). One denotes by G(η)ψ the Dirichlet-Neuman operator defined by

(8) G(η)ψ =
√

1 + |∇xη|2∂nΦ|z=η(t,x),
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where Φ solves (7). Plugging this information in (4) restricted to z = η(t, x),
(6), and using (3), one obtains for (η, ψ) the system

∂tη = G(η)ψ

∂tψ = −gη − 1
2 |∇xψ|2 +

(
G(η)ψ +∇xη · ∇xψ

)2

2(1 + |∇xη|2)
+ κ div

(
∇xη√

1 + |∇xη|2

)
.

(9)

This is the system we intend to study below, in the case of pure gravity water
waves, i.e. when g > 0 and κ = 0.

2 The question of local existence
The question of existence of local in time solutions for system (9) (when κ = 0
and the fluid depth is infinite) with data in Sobolev spaces remained open for a
long time, and was fully answered in 1997 by Sijue Wu in the seminal paper [54]
when x belongs to R and in [55] when x is in R2. As in the subsequent sections
we shall be interested mainly in the one dimensional problem, we assume for
the rest of this section that the space variable x belongs to R. The difficulty in
order to prove local existence may be seen in the following way: if one writes
(9) under the form

(10) ∂t

[
η
ψ

]
= A(η, ψ)

[
η
ψ

]
,

where A is a pseudo-differential operator with coefficients with limited smooth-
ness, defined by

(11) A(η, ψ)
[
η̇

ψ̇

]
= 1

2π

∫
eixξM(x, ξ)

[ ˆ̇η(t,ξ)
ˆ̇ψ(t,ξ)

]
dξ,

then the matrix symbol M(x, ξ) (that depends on (η, ψ)) has eigenvalues whose
real part may go to infinity with |ξ|. This instability prevents one from getting
energy inequalities.

A way to overcome this difficulty, and to prove local existence for a re-
stricted class of energy data, has been introduced by Nalimov [41] (for infinite
depth fluids) and Yosihara [58] for finite depth ones. See also the work of
Craig [19]. The local existence of solutions for arbitrary Sobolev initial data
has been established for infinite depth fluids by Sijue Wu [54, 55]. Actually,
her work is not limited to an interface given by a graph z = η(t, x), but allows
upper boundaries for Ωt given by any non self-intersecting smooth curve. The
method used by the above authors was relying on the Lagrangian formulation of
the water waves system, and has been at the origin of a lot of works concerning
related models (like for instance the capillary-gravity wave equations, where κ
in (9) is non zero) with finite or infinite depth, both for localized or unlocalized
initial data. We cite in particular results of local existence of Ambrose [11],
Ambrose-Masmoudi [12], Coutand-Shkoller [18]. At the same time, a more geo-
metric approach to study free boundary value problems has been developed by
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Christodoulo-Lindblad [17], Lindblad [40] and in a series of papers of Shatah
and Zhang [45, 46, 47].

On the other hand, Lannes [37] introduced an Eulerian approach to local
existence, expressing the problem in terms of a “good unknown” ω instead of ψ.
Such a “good unknown” had been introduced in the framework of free boundary
problems by Alinhac in [9, 10]. For water waves equations (in any dimension,
and with eventually a bottom), Lannes showed that the system, written in
terms of (η, ω), is a quasi-linear hyperbolic equation, for which Sobolev energy
estimates are available and provide local existence of solutions.

This new unknown was later implemented by Alazard and Métivier [8] in a
paradifferential framework. Let us describe how it may be defined for problem
(9) in one space dimension. Recall that the paraproduct Tab [16] of a bounded
function a and a tempered distribution b may be defined by

T̂ab(ξ) =
∫
ξ1+ξ2=ξ

χ(ξ1, ξ2)â(ξ1)b̂(ξ2) dξ1dξ2,

where χ is a smooth function satisfying

|∂α1
ξ1
∂α2
ξ2
χ(ξ1, ξ2)| ≤ C(1 + |ξ1|+ |ξ2|)−α1−α2 ,

supported for |ξ1| ≤ (1 + |ξ2|)/10, equal to one for |ξ1| ≤ (1 + |ξ2|)/100 for
instance. Then if a is in L∞ and b is in a Sobolev space Hs, the paraproduct
Tab belongs to Hs, whatever the value of s. Let us introduce:

Definition 1 For η in Hs(R), ψ such that |Dx|
1
2ψ ∈ Hs(R), with s large

enough, set

(12) B(η)ψ def= G(η)ψ + (∂xη)(∂xψ)
1 + (∂xη)2 .

One defines the good unknown ω by

(13) ω = ψ − TB(η)ψη.

Using this good unknown, and a paralinearization of the Dirichlet-Neuman
operator due to Alazard and Métivier [8], Alazard, Burq and Zuily [4, 5, 2, 3]
proved local existence theorems for (9) (with or without surface tension) under
weaker regularity assumptions on the Cauchy data than in previous works.

Finally, let us mention a last approach to local existence theory, encompass-
ing in some way the Lagrangian formulation and the use of a good unknown,
proposed by Hunter, Ifrim and Tataru [28], that relies on the introduction of
new quantities defined as boundary values of holomorphic functions.

3 Global existence with small decaying data
Once local existence of solutions to system (9) is established, it is natural to
ask the question of long time existence for small smooth enough initial data

4



that have some decay at infinity. Up to the last but one section, we discuss this
problem for (9) in infinite depth, when the surface tension κ is equal to zero,
and space dimension d is equal to one or two, postponing to the last section
references to other models (finite depth, presence of surface tension terms, etc).

One checks easily that the solution of (9) with κ = 0 linearized on the
zero solution, with decaying initial data, has L∞ norm that is O(t− d2 ) when
t goes to infinity, in d space dimension, because of the dispersive effect. The
first breakthrough concerning long time existence of solutions is due to Sijue
Wu [56] who proved that, in one space dimension, for smooth decaying Cauchy
data of small size ε, the solution exists over a time interval of length ec/ε for
some positive constant c. For two space dimensions, the stronger decay rate
of solutions of the linearized equation makes expect better results. Actually
Wu [57] and Germain, Masmoudi and Shatah [26] proved that then solutions
are global if the data are smooth, small, and decaying enough. Moreover, there
is scattering [26], i.e. the solutions of the nonlinear problem have the same
asymptotics as solutions of the linearized equation on the zero state when time
goes to infinity.

The main result we report on here concerns, in one space dimension, global
existence of solutions for small, smooth, decaying Cauchy data, and modified
scattering. This result has been obtained independently by Ionescu-Pusateri [35],
using a combination of the Lagrangian and the Eulerian formulations of the
equations, and by Alazard-Delort [6, 7], through the Eulerian formulation and
the good unknown introduced above. An alternative approach, based on the
“holomorphic coordinates” of Hunter, Ifrim and Tataru, has also been proposed
by Ifrim and Tataru [32].

We state below the result of [6]. We compare it next with the statements of
[35] and [32].

Theorem 2 Fix γ ∈ R − 1
2N a large enough number, s, s1 in N such that

s1 ≥ s
2 + γ and s − s1 is large enough. There is ε0 > 0 and for any ε ∈]0, ε0[,

any couple (η0, ψ0) of functions satisfying for any integer 0 ≤ p ≤ s1,

(x∂x)pη0 ∈ Hs−p(R), |Dx|
1
2 (x∂x)pψ0 ∈ Hs−p− 1

2 (R)

|Dx|
1
2 (x∂x)p

[
ψ0 − TB(η0)ψ0η0

]
∈ Hs−p(R),

(14)

with the norms in the above spaces smaller or equal to one, the evolution problem
(9) (in one space dimension, with κ = 0 and infinite depth) with initial data
ψ|t=1 = εψ0, η|t=1 = εη0, has a unique solution, continuous with values in the
set of functions satisfying (14), defined on the whole interval [1,+∞[. Moreover,
if we define u = |Dx|

1
2ψ + iη, we have the following asymptotics when t goes to

infinity:

(15) u(t, x) = ε√
t
αε

(x
t

)
exp
[

it

4|x/t| + iε2

64
|αε(x/t)|2

|x/t|5
log t

]
+ εt−

1
2−θρ(t, x),

where (αε)ε∈]0,1] is a bounded family of functions of C(R)∩L∞(R), θ is positive
and ‖ρ(t, ·)‖L∞ is bounded for t ≥ 1.
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Remark: The asymptotics (15) show that the global solution displays a modi-
fied scattering, where the phase of oscillation of linear solutions is modulated by
an extra logarithmic term. This term, that becomes significant for times t such
that log t� ε−2, is responsible of the new difficulties arising in one dimensional
problems versus two dimensional ones.

Let us compare the above result with the ones of Ionescu-Pusateri [35] and
Ifrim-Tataru [32].

In the first of these references, a similar result of global existence is obtained
under a weaker decay condition on the initial data, namely conditions of the
form (14) have to be imposed only for 0 ≤ p ≤ 1. Moreover, one assumes the
smallness of a “Z-norm”, that controls ‖|ξ|β û0(ξ)1|ξ|≤1‖L∞ , for some β > 0,
where u0 = |Dx|

1
2ψ0 + iη0. This norm plays a key role in the proof of the

optimal decay of the solution and of the modified scattering.
The result of Ifrim and Tataru is expressed from slightly different unknowns

than (η, ψ) above. Actually, these authors introduce Z, a parameterization
of the boundary, chosen in such a way that it is the boundary value of some
holomorphic function in the fluid domain, and Q, the boundary value of another
holomorphic function in the fluid, whose real part coincides with the velocity
potential at the boundary. They assume that a Sobolev norm of

(
Z(t, α)−α

)
|t=0

and Q(t, α)|t=0, involving essentially at most six derivatives, is small and that
anH1 norm of the action of x∂x on an expression of these quantities is also small
at the initial time. They obtain then global existence and modified scattering.

The proofs of the results of global existence of [6, 32, 35] might differ in their
technical details, but the difficulties that have to be overcome are essentially
the same. In the rest of that report, we shall try to describe them in a non
technical way, using most of the time some simplified toy models instead of the
full equation (9). We shall use the formulation of the equation in terms of η and
the good unknown ω, following [6, 7], but will make also frequent references to
the works [35, 32].

4 Quadratic terms. Normal forms
Consider first a model equation of the form(

Dt − p(Dx)
)
u = N(u)

u|t=1 = εu0
(16)

where Dt = 1
i
∂
∂t , Dx = 1

i
∂
∂x , p(ξ) is a real valued elliptic Fourier multiplier

and N(u) is a nonlinearity vanishing at least at order two at zero. The water
wave system, linearized at the zero state, may be expressed in terms of u =
|Dx|

1
2ψ + iη, as (Dt − |Dx|

1
2 )u = 0, so that (16) is a model for that system if

we take p(ξ) = |ξ|
1
2 .

Assume first that N is semi-linear and at least cubic at zero, in that sense
that it satisfies an estimate
(17) ‖N(u)‖Hs ≤ C‖u‖2L∞‖u‖Hs
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for any s > 0 for instance. Then the Sobolev energy inequality associated to
(16) writes

(18) ‖u(t, ·)‖Hs ≤ ‖u(1, ·)‖Hs + C

∫ t

1
‖u(τ, ·)‖2L∞‖u(τ, ·)‖Hs dτ.

If one assumes that, in addition, one has some a priori estimate for ‖u(t, ·)‖L∞ ≤
Bεt−

1
2 (as the one we expect according to (15)), we deduce by Gronwall inequal-

ity a bound

(19) ‖u(t, ·)‖Hs ≤ C‖u(0, ·)‖HstCB
2ε2
,

i.e. a control of the Sobolev norm that is not uniform, but given in terms of an
arbitrary small power of t (if ε is small). As we shall see, a bound of this type
will be sufficient for our goals.

On the other hand, in the system (9) we are really interested in, the non-
linearity is quadratic, and not cubic. For the toy model (16), this would mean
assuming, instead of (17), ‖N(u)‖Hs ≤ C‖u‖L∞‖u‖Hs , so that (19) would be
replaced by

‖u(t, ·)‖Hs ≤ C‖u(0, ·)‖Hs exp[CBε
√
t]

which is useless if one wants to study solutions on time intervals of length larger
than ε−2. The way to actually obtain estimates of the form (19), including for a
quadratic nonlinearity, is well known in the semi-linear case: this is the normal
forms method of Shatah [44], that allows to reduce a quadratic nonlinearity to
a cubic one. (We refer also to the more recent developments of that method
introduced in the work of Germain, Masmoudi and Shatah [25]. See also the
Bourbaki seminar of Lannes [38] and references therein.) For quadratic nonlin-
earities, N(u) = u2 for instance, the idea of the method is to look for a new
unknown φ = u+ E(u, u), where E(u, u) is a quadratic expression of the form

(20) E(u, u) = 1
2π

∫
eix(ξ1+ξ2)m(ξ1, ξ2)û(ξ1)û(ξ2) dξ1dξ2,

chosen in such a way that

(21) (Dt − p(Dx))φ = Ñ(φ)

for a new nonlinearity Ñ vanishing at third order at zero. A direct computation
using (16) shows that one has to take

(22) m(ξ1, ξ2) =
(
p(ξ1) + p(ξ2)− p(ξ1 + ξ2)

)−1

in order to achieve that. The transformation u → φ will then be bounded on
Hs spaces if, for large frequencies ξ1, ξ2, one has a bound of the form

(23) |m(ξ1, ξ2)| ≤ C min(|ξ1|, |ξ2|)N0

for some fixedN0. In that way, if s is large enough relatively toN0, ‖E(u, u)‖Hs ≤
C‖u‖2Hs , which shows that u → φ is a diffeomorphism from a neighborhood of
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zero to its image. For the toy model (16) with p(ξ) = |ξ|
1
2 , it is easy to see

that an estimate of the form (23) holds for large frequencies. For small ones,
a degeneracy happens, but, in the case of the water waves system (9), it will
be compensated by the fact that in the nonlinearity, operators whose symbols
vanish at ξ = 0 act on u.

In the case of the water waves system (9), one would like to perform as
well a similar normal forms method in order to eliminate quadratic terms. The
difficulty is that, (9) being quasi-linear, (16) is not a convincing model for it,
as the nonlinearity there depends only on u, and not on first order derivatives
of u. On the other hand, if one replaces N(u) by a quadratic term of the form
uDxu, and tries to eliminate it looking for a new unknown φ = u+E(u, u), one
would have to express E by (20), but with a symbol m(ξ1, ξ2) given by

m(ξ1, ξ2) =
(
p(ξ1) + p(ξ2)− p(ξ1 + ξ2)

)−1
ξ2

which loses one derivative, so that ‖φ‖Hs is only estimated from ‖u‖Hs+1 . A
way to circumvent that difficulty, that appears already in the work of Ozawa,
Tsutaya and Tsutsumi [42], is to try to combine the normal forms construction
with the idea used to get quasi-linear energy inequalities. In order to explain
that, we have to make appeal to a more accurate model than (16). We have
seen in section 2 that, in order to avoid losses of derivatives in energy estimates,
it is convenient to write the water waves equation in terms of the unknowns
(η, ω = ψ − TB(η)ψη). More precisely, if one introduces U =

[
η+Tαη
|Dx|

1
2 ω

]
, where α

is some explicit function of u = |Dx|
1
2ψ+ iη, vanishing at u = 0, one may write

system (9) under the form

(24) ∂tU +
[

0 −|Dx|
1
2

|Dx|
1
2 0

]
U +Q(u)U + S(u)U + C(u)U = G

where we used the following notation:
• The right hand side G is a semi-linear cubic term. This means that it will

satisfy for s� ρ� 1 estimates of the following form:

(25) ‖G‖Hs ≤ C(‖u‖Cρ)‖u‖2Cρ‖U‖Hs .

Such a term satisfies thus bounds of the form (17) (with the L∞ norm replaced
by a Hölder norm). If we write the Sobolev energy inequality associated to (24),
and forget the contributions of Q,S,C, we would thus get

(26) ‖U(t, ·)‖Hs ≤ ‖U(t, ·)‖Hs + C

∫ t

1
‖u(τ, ·)‖2Cρ‖U(τ, ·)‖Hs dτ.

Combined with an a priori bound ‖u(τ, ·)‖Cρ = O(εt− 1
2 ), this would give for

‖U(t, ·)‖Hs an estimate of the form (19).
• The term C(u)U is a cubic contribution given in terms of a paradifferential

operator of order one C(u): this means that

(27) C(u)v = 1
2π

∫
eixξc(u;x, ξ)v̂(ξ) dξ

8



where u → c(u;x, ξ) is a quadratic map with values in the set of functions of
(x, ξ) satisfying bounds of the form

(28) |∂βξ c(u;x, ξ)| ≤ C(‖u‖Cρ)‖u‖2Cρ〈ξ〉
1−β

for some fixed ρ > 0 independent of β, and that moreover the Fourier transform
with respect to x of x → c(u;x, ξ), that we denote by ĉ(u; η, ξ), is supported
for |η| � |ξ|. The paraproduct recalled in section 3 is a special case of the
above definition, corresponding to the case when c(u;x, ξ) does not depend on
ξ. When one computes the time derivative

(29) ∂t‖U(t, ·)‖2L2 = 2Re 〈∂tU,U〉,

the contribution to the right hand side coming from the C(u)U term in (24)
may be written as

(30) 〈
(
C(u) + C(u)∗

)
U,U〉.

Because of the explicit form of the operator C(u), one may check that C(u) +
C(u)∗ is of order zero. (This reflects the fact that the equation (24) one reduced
to using the good unknown is hyperbolic). Taking into account that operators of
order zero are bounded on L2, and that u→ C(u) vanishes at order two at zero,
one gets for (30) an upper bound in ‖u‖2Cρ‖U‖L2 . Since the same reasoning may
be done replacing in (29) L2 norms by Sobolev ones, we see that the term C(u)U
in (24) would also generate in an energy inequality a contribution bounded from
above by the right hand side of (26).
• The terms Q(u)U and S(u)U are quadratic contributions, with Q(u) a

paradifferential operator of order one, linear in u, and S(u) a smoothing opera-
tor. These contributions have to be eliminated by normal forms. As S(u)U is a
semi-linear term, it may be eliminated essentially using a quadratic correction
of the form (20), up to some technical issues that we do not discuss here. On the
other hand, Q(u)U is a quasi-linear contribution, and as we have seen above,
a brutal elimination could give rise to an unbounded normal forms transfor-
mation. But again, as in (30), only the operator Q(u) + Q(u)∗ plays a role in
an energy inequality, and by the hyperbolic structure of equation (24), such an
operator is of order zero instead of one. Consequently, trying to eliminate only
this term from the right hand side of (24), one may construct, including in this
quasi-linear framework, a change of unknown U → φ = U +E(u)U , where E is
bounded on Hs, and such that φ, and thus U , will obey an estimate of the form
(26). One has thus reduced morally to a cubic nonlinearity.

We may summarize this in the following statement:

Proposition 3 There is a bounded linear map U → φ = U + E(u)U , going
from a neighborhood of zero in Hs to a neighborhood of zero in Hs, when u is
in a ball of Cρ and 1� ρ� s, that transforms equation (24) for U into

(31) ∂tφ+
[

0 −|Dx|
1
2

|Dx|
1
2 0

]
φ+ L(u)φ+ C(u)φ = Γ,

9



where C(u) is as in (24), Γ is a cubic semi-linear term, and L(u) is linear in u
and satisfies Re 〈L(u)φ, φ〉Hs = 0.

The normal forms method outlined above does not eliminate the whole quadratic
part of the nonlinearity, but only those terms in it that give nonzero contribu-
tions to the energy. Because of that, one might think that it should be possible
to perform the normal form procedure on the Sobolev energy itself instead of the
equation. Such an approach has been performed by Hunter, Ifrim, Tataru and
Wong [29] and used by Hunter-Ifrim-Tataru [28] in order to give another proof of
the almost global existence result of Sijue Wu [56]. They applied next the same
method, that does not require the paralinearization of the equation, in their
proof of the global existence result [32]. Notice that similar ideas, (combined
with an a priori paralinearization) are used in [21, 22, 23] for quasi-linear Klein-
Gordon equations on some compact manifolds. Such an approach is particularly
convenient when one studies a Hamiltonian system and wants to keep track of
the Hamiltonian structure all along a normal forms reduction procedure.

On the other hand, the elimination of the contributions of the quadratic
part of the nonlinearity to the energy, as a first step towards the proof of a
global existence result, is performed by Ionescu and Pusateri [35] using the
transformation in Lagrangian coordinates of Wu [56], Totz and Wu [49].

5 Global existence: bootstrap procedure
We shall discuss from now on the proof of the global existence result of Theo-
rem 2 on a model equation. If p(ξ) is some elliptic Fourier multiplier, consider

(32) (Dt − p(Dx))u = N(u)

with N(u) a cubic nonlinearity of the form

(33) N(u) = α3u
3 + α1|u|2u+ α−1|u|2ū+ α−3ū

3,

where αj are complex numbers, with α1 real. Of course, equation (32) is a sim-
plification of the real system we are studying, but it is a convincing prototype of
the problem after the normal forms procedure of the preceding section has been
performed in order to reduce to a cubic nonlinearity. The fact that it is semi-
linear instead of quasilinear just brings some inessential technical simplifications
at this level. Let us introduce the Klainerman vector field

(34) Z = tDt + 2xDx

that satisfies when p(ξ) = |ξ|
1
2

[Dt − p(Dx), Z] = Dt − p(Dx)

so that Zu solves

(35) (Dt − p(Dx))(Zu) = N(u) + ZN(u).

10



The key of global existence (and modified scattering) is the proof of the following
bootstrap assertion:

Proposition 4 There are positive constants A,B,K, s0 and ε0 ∈]0, 1] such that,
for any s ≥ s0, any ε ∈]0, ε0[, any u0 in Hs(R) satisfying

‖u0‖Hs + ‖x∂xu0‖L2 ≤ ε,

for any solution u of (32) with initial u0 that exists over some interval I = [1, T ],
and satisfies for any t in I,

(A) ‖u(t, ·)‖Hs + ‖Zu(t, ·)‖L2 ≤ AεtKε
2

(B) ‖u(t, ·)‖L∞ ≤ Bε√
t
,

(36)

then, for t in the same interval I, one has actually

(A′) ‖u(t, ·)‖Hs + ‖Zu(t, ·)‖L2 ≤ A

2 εt
Kε2

(B′) ‖u(t, ·)‖L∞ ≤ Bε

2
√
t
.

(37)

Remarks: • In the water waves system we are interested in, the quasi-linear
nature of the problem makes that one has to control some derivatives of Zu
in L2 and of u in L∞, i.e. one has to replace in (A), (A′), ‖Zu(t, ·)‖L2 by
‖Zu(t, ·)‖Hσ for some σ satisfying 1� σ � s, and in (B), (B′), ‖u(t, ·)‖L∞ by
‖u(t, ·)‖Cρ for some ρ with 1 � ρ � s. This does not bring any essential new
difficulty.
• In the statement of Theorem 2, we were assuming that the initial data ad-

mitted the action of a large number of iterates of (x∂x), which would correspond
in the model (32) above to make act a large number of vector fields Z. This was
due to the fact that in [6] some non optimal choice was made in the proof of
L∞ estimates. On the other hand, in the work of Ionescu and Pusateri [35] and
of Ifrim and Tataru [32], only one vector field has to be used. Below, inspired
by [32, 30], we shall adopt an optimal point of view that allows one to use only
one vector field in the analysis of model (32), following the method of [6].

Proposition 4 implies immediately the global existence result in Theorem 2
when combined with local existence theory.

The fact that (A) and (B) imply (A′) is essentially trivial for the model
equation (32). Actually, writing the energy inequality for (32) and (35), one
gets

(38) ‖u(t, ·)‖Hs + ‖Zu(t, ·)‖L2 ≤ C
[
‖u(1, ·)‖Hs + ‖Zu(1, ·)‖L2

+
∫ t

1

[
‖N(u(τ, ·))‖Hs + ‖ZN(u(τ, ·))‖L2

]
dτ
]
.

11



As N is cubic in (u, ū), the right hand side of (38) is bounded from above by
(39)

C
[
‖u(1, ·)‖Hs + ‖Zu(1, ·)‖L2 +

∫ t

1
‖u(τ, ·)‖2L∞

[
‖u(τ, ·)‖Hs + ‖Zu(τ, ·)‖L2

]
dτ
]
.

Plugging (36) into (39), choosing A large enough and then ε0 small enough in
function of A,B, one deduces estimate (A′).

Of course, in the case of system (9) (with d = 1, infinite depth and κ = 0),
the proof of the corresponding inequality is much more technical, as one has to
cope with the difficulties explained in sections 2 and 4 in the case of Sobolev
energy inequalities. Estimates in L2 for Zu instead of u are performed in a
similar way, using the new unknown ω and a normal form in order to get rid of
the quadratic part of the nonlinearity.

The remaining step, in order to complete the proof of Theorem 2, is to show
that (B′) holds for solutions of the equation under assumptions (A) and (B).

6 Optimal decay estimates
The key point in order to prove the enhanced decay estimate (B′) from (A) and
(B), both in the case of the simplified model (32) or for the true water waves
equation, is to derive from the PDE an ODE whose analysis will provide the
wanted L∞ bounds, as well as the asymptotics of the solution.

Several approaches have been used by different authors in order to do so.
Ionescu and Pusateri [35] work in Fourier space in order to get an ODE for
the Fourier transform of the solution. Ifrim and Tataru [32] use a wave packets
description of the solution, for which they obtain an ODE, working thus in
phase-space variables. The approach in Alazard-Delort [6] relies on the rewriting
of the PDE under study in a semi-classical framework, with a Planck constant
h = 1

t , so that the ODE one looks for is obtained as the semi-classical limit
of the quantum problem provided by the PDE. This is the method we present
below, blending the approach of [6] (which was not optimal regarding to phase-
space decomposition) with some of the ideas of Ifrim and Tataru [32, 30]. Let
us introduce:
Definition 5 Let δ ∈ [0, 1

2 ], m ∈ R. We denote by Smδ (R × R) the space of
smooth functions (h, x, ξ) → ah(x, ξ), defined for h in ]0, 1], (x, ξ) in R × R,
satisfying estimates

(40) |(h∂h)γ∂αx ∂
β
ξ ah(x, ξ)| ≤ Ch−δ(α+β)〈ξ〉m.

If a is in Smδ (R× R), we define its Weyl-quantization by the formula

(41) OpW
h (a)v = 1

2πh

∫
ei(x−y) ξh a

(x+ y

2 , ξ
)
v(y) dydξ

for v in S(R). We denote by Hs
sc(R) the space of families of functions v =

(vh)h∈]0,1] such that, if we define

(42) ‖vh‖Hs
h

= ‖OpW
h (〈ξ〉s)vh‖L2 = ‖〈hDx〉svh‖L2 ,

12



one has
‖v‖Hssc

def= sup
h∈]0,1]

‖vh‖Hs
h
< +∞.

Then OpW
h (a) acts from Hs

sc to Hs−m
sc . Consider now a solution u to equation

(32) and define a new function v(t, x), related to u through

(43) u(t, x) = 1√
t
v
(
t,
x

t

)
.

Set h = 1
t . Then v solves the equation

(44)
(
Dt −OpW

h (xξ + p(ξ))
)
v = h[α3v

3 + α1|v|2v + α−1|v|2v̄ + α−3v̄
3].

Let us introduce the set

(45) Λ = {(x, ξ) ∈ R2;x+ p′(ξ) = 0}.

The basic idea is that this set carries the most important part of the solution, so
that one may deduce an ODE from (44) restricting the symbol xξ + p(ξ) to Λ,
and showing that the error one generates in that way decays like an integrable
power of t when t goes to infinity.

A key point is that, in the case p(ξ) = |ξ|
1
2 corresponding to the linearized

water waves in our model (32), Λ is a graph: there is a smooth function ϕ :
R∗ → R, given by ϕ(x) = − 1

4|x| such that

(46) Λ = {(x, ξ) ∈ R2; ξ = dϕ(x)}.

We shall ignore in the rest of this discussion the technicalities related to the
behaviour of ϕ at zero or infinity and shall do like if v where spectrally supported
on a compact subset of R − {0}, i.e. we shall assume (abusively) that v =
OpW

h (χ(ξ))v for some χ in C∞0 (R − {0}). We take next γ in C∞0 (R), equal to
one close to zero, and define, inspired by Ifrim and Tataru [30],

(47) vΛ = OpW
h

(
γ
(x+ p′(ξ)√

h

))
v, vΛc = v − vΛ

where the choice of the width
√
h in the cut-off function is the optimal one.

Then our aim is to get for vΛ an ordinary differential equation.

Proposition 6 Let v be a solution of (44). Assume that for t in some interval
[1, T ] the a priori estimates (36) hold true. Then, if we define ω(x) = xdϕ(x) +
p(dϕ(x)), vΛ solves

(48) (Dt − ω(x))vΛ = h
[
α3vΛ

3 + α1|vΛ|2vΛ + α−1|vΛ|2v̄Λ + α−3v̄
3
Λ
]

+OL∞(εh1+δ),

where δ is a small positive number.
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Idea of proof: The proof of the proposition relies on the following facts. First,
the contribution vΛc defined in (47) will have better estimates than v: this
follows from the fact that by definition

(49) vΛc = OpW
h

(
γ1

(x+ p′(ξ)√
h

)x+ p′(ξ)√
h

)
v ' OpW

h

(
γ1

(x+ p′(ξ)√
h

))
(
√
hLv)

where γ1(z) = (1−γ(z))
z and L = 1

hOpW
h (x+ p′(ξ)). It turns out that L may be

expressed from the Klainerman vector field Z and the equation, so that an a
priori bound of the form (A) in (36) implies that

(50) ‖Lv‖L2 = O(h−Kε
2
)

and thus ‖vΛc‖L2 = O(h 1
2−Kε

2). As the cut-off γ1 in (49) localizes essentially
in a strip of frequencies of size h 1

2 , a semiclassical Sobolev inequality provides
estimates of the form ‖vΛc‖L∞ = O(εh 1

4−Kε
2). This allows to replace in the

right hand side of (44) v by vΛ, up to contributions to the remainder. One may
also perform such a replacement in the left hand side using some commutation
arguments, ending up with an equation of the form

(51)
(
Dt −OpW

h (xξ + p(ξ)
)
vΛ

= h
[
α3vΛ

3 + α1|vΛ|2vΛ + α−1|vΛ|2v̄Λ + α−3v̄
3
Λ
]

+O(εh 5
4−δ).

Finally, as d
dξ (xξ + p(ξ)) = x + p′(ξ) vanishes on Λ, and as this set may be

represented using (46), one may write through a Taylor expansion at ξ = dϕ(x),

(52) xξ + p(ξ) = xdϕ(x) + p(dϕ(x)) +O((ξ − dϕ(x))2).

Since we have restricted our considerations to the case of ξ staying in a compact
subset of R∗ (which is equivalent to x staying in a compact subset of R∗ when
(x, ξ) is close to Λ), one may rewrite this as

xξ + p(ξ) = ω(x) +O((x+ p′(ξ))2).

Recalling the definition (47) of vΛ, we deduce from that

(53) OpW
h (xξ + p(ξ))vΛ = ω(x)vΛ

+ term in OpW
h

(
(x+ p′(ξ))2)OpW

h

(
γ
(x+ p′(ξ)√

h

))
v.

The last term above may be written, up to remainders, as

(54)
√
hOpW

h

(
x+ p′(ξ)√

h
γ
(x+ p′(ξ)√

h

))
OpW

h (x+ p′(ξ))v︸ ︷︷ ︸
=hLv

.

Combining with (50), and the fact that the localization of vΛ allows one to
estimate L∞ norms from h−

1
4 times Sobolev ones, we obtain that the L∞ norm
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of (54) is O(εh 5
4−δ) for some small δ > 0, so that the last term in (53) may be

incorporated in the remainder (48). Plugging (53) in (51), one gets (48). 2

End of proof of Theorem 2: As explained at the end of section 5, to conclude
the proof of the theorem, one has to show that, for a solution u of (33), the a
priori bounds (36) imply (37). We have already seen that that (A′) holds and
we are left with showing the L∞ estimate (B′). As we have seen that vΛc enjoys
good a priori bounds, one has to obtain a uniform bound for the solution vΛ of
the ODE (48). Performing a normal form, one may reduce (48) to an equation

(55) (Dt − ω(x))f = hα1|f |2f +OL∞(εh1+δ), h = 1
t
,

where f is a new unknown related to vΛ in such a way that a uniform control of
f is equivalent to a uniform control of vΛ. As we assumed that α1 in (33) is real,
if there were no remainder in εt−1−δ in (55), one would get immediately that
∂t|f |2 = 0, whence the uniform control of f . Since the O(εt−1−δ) remainder in
(55) is integrable, one may show that such a uniform control still holds for the
solution of (55). If one makes this reasoning keeping track of the dependence of
the constants on A,B, one may prove that (B′) follows from (A), (B). Moreover,
the analysis of the ODE provides as well the asymptotics of the solution when
t goes to +∞.

This outline of proof concerns the simplified model (32). In the case of the
water waves system, the general strategy of the last part of the proof is similar.
The fact that the coefficient α1 in (33) is real (that plays a crucial role above)
is a “null condition” in the sense of Christodoulou-Klainerman, that holds true
because of the structure of the water waves system. 2

7 Further results
Our goal in this section is to discuss further results of long time existence,
concerning equation (9) under different assumptions.

We consider first the case of initial data that decay in space. We have
discussed up to now, for such data, equation (9) when g > 0, κ = 0 and the
depth of the fluid is infinite. We give here references to other global existence
results, under other assumptions.

Water waves in infinite depth. We consider gravity waves (g > 0, κ = 0)
in infinte depth, as in Theorem 2. In that statement, and in the results of
Ionescu-Pusateri [35] and Ifrim and Tataru [32], the assumptions of smallness
of the initial data involve norms that control the energy. It turns out that one
may weaken these conditions: Wang proved in [50] a global existence result for
the gravity water waves equation in one space dimension, and for infinite depth
fluids, when the initial data (η, |Dx|

1
2ψ) belongs to some homogeneous Sobolev

space, that contains functions with infinite energy.
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Capillary and capillary-gravity waves in infinite depth. Consider first equa-
tion (9) with g = 0 and κ > 0, still for a two dimensional fluid of infinite depth,
(i.e. x in (9) varies in R). For small, smooth and decaying initial data, global ex-
istence has been proved independently by Ifrim and Tataru [33] and by Ionescu
and Pusateri [34]. As far as we know, no (almost) global existence result is
known for solutions of the full capillary-gravity problem ((9) with g > 0, κ > 0)
in infinite depth, when the space dimension is equal to one. On the other hand,
the similar problem in two space dimensions (i.e. for three dimensional fluids)
has been solved by Deng, Ionescu, Pausader and Pusateri. They proved global
existence for small smooth decaying data in [24].

Water waves in finite depth. Much less results are known concerning global
existence of solutions when one works with a fluid of finite depth. The only
results we are aware of concern the case of two space dimensions (three dimen-
sional fluids) with g > 0, κ = 0 or g = 0, κ > 0 in (9). Wang studied [53, 51, 52]
the existence of global solutions for small, smooth, decaying initial data.

To finish this section, let us also discuss related results of long time existence,
when one considers small but not necessarily decaying initial data. In this case,
one cannot expect to use dispersion in order to get a longer existence time than
the one that holds in general for a quadratic non linear hyperbolic equation with
small data of size ε, namely Tε ∼ ε−1. Nevertheless, we have seen in section 4
that a normal forms procedure may allow one to reduce essentially the equation
to a cubic one, and so allows to expect an existence time Tε bounded from below
by cε−2.

For fluids of infinite depth, such a property has been proved in the case
of gravity waves (g > 0, κ = 0) by Totz and Wu [49] in one space dimension
and by Totz [48] in two space dimensions. In the case of capilarity waves (g =
0, κ > 0) in one space dimension, a similar result has been obtained by Ifrim and
Tataru [33] and by Ionescu and Pusateri [34]. When one considers a constant
non zero vorticity, a lower bound in cε−2 for the time of existence of solutions
has been shown by Ifrim and Tataru [31], still in one space dimension.

Regarding finite depth fluids, Harrop-Griffith, Ifrim and Tataru [27] have
proved a cε−2 lower bound for the existence time, in the gravity waves case
(g > 0, κ = 0) in one space dimension.

The above results apply in particular when one considers initial data that are
periodic in space, i.e. defined on the circle. In such a case, better results may be
obtained under stronger assumptions. First, it is possible to construct special
classes of global solutions. Actually, Plotnikov and Toland [43] (resp. Iooss,
Plotnikov and Toland [36]) constructed, for the gravity waves system in finite
(resp. infinite) depth, standing waves solutions. For the full gravity-capilarity
system in infinite depth, Alazard and Baldi [1] did the same. Later, Berti and
Montalto [15] built up time quasi-periodic solutions of system (9) in infinite
depth, and more recently Baldi, Berti, Haus and Montalto [13] treated the same
problem in finite depth.

The preceding results do not concern the Cauchy problem, as one constructs
special solutions. But combining some of the ideas of [1] and normal forms
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methods, Berti and Delort [14] proved that system (9), with even periodic initial
data of size ε, has solutions defined up to time cN ε−N for any N , when the
parameters (g, κ) avoid an exceptional subset of zero measure.
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