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Gaël Varoquauxa,b,∗, Russell A. Poldrackc

aParietal project-team, INRIA Saclay-̂ıle de France, France
bCEA/Neurospin bât 145, 91191 Gif-Sur-Yvette, France

cDepartment of Psychology, Stanford University, Stanford, California, USA

Abstract

Understanding the organization of complex behavior as it relates to the brain requires modeling the behavior, the
relevant mental processes, and the corresponding neural activity. Experiments in cognitive neuroscience typically study
a psychological process via controlled manipulations, reducing behavior to one of its component. Such reductionism
can easily lead to paradigm-bound theories. Predictive models can generalize brain-mind associations to arbitrary new
tasks and stimuli. We argue that they are needed to broaden theories beyond specific paradigms. Predicting behavior
from neural activity can support robust reverse inference, isolating brain structures that govern mental processes. The
converse prediction enables modeling brain responses as a function of a complete description of the task, rather than
building on oppositions.
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Perception and action build upon an array of mental
processes, which have been characterized in detail by the
psychological sciences. However, unifying these psycho-
logical processes to model the relation between brain and
behavior in any given situation remains a great challenge
(Newell, 1973). The principal challenge lies in finding the
appropriate representation of the components of behav-
ior or cognition. Cognitive neuroscience builds upon con-
trolled experiments to isolate these components and link
them to brain activity. But quantifying the effects of any
manipulation requires that the psychological or behavioral
components of interest be clearly specified (Poldrack and
Yarkoni, 2016; Krakauer et al., 2017). Isolating compo-
nents of mental processing leads to studying them only
via oppositions, and this reductionism prevents the build-
ing of broad theories of the mind.

We believe that predictive modeling provides new tools
to tackle this formidable task. The accumulation of a
broad range of shared data in cognitive neuroimaging pro-
vides a widely varied set of observations of brain and be-
havior. Using these data, models can be built that ac-
curately describe multiple experiments, going beyond the
surface description of tasks to identify associations be-
tween brain systems and underlying mental processes that
span across tasks. Whereas cognitive neuroscience has typ-
ically focused on particular theoretical oppositions, this
approach instead builds models that generalize beyond
specific tasks, based on the methodology of machine learn-
ing with a focus on out-of-sample prediction rather than
the detection of specific experimental effects (Yarkoni and
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Westfall, 2016).
Data-driven approaches are often distinguished from

hypothesis-driven research, with the implication that data-
driven work is necessarily theory-free. However, we argue
that data-intensive methods can actually provide the basis
for building broader theories, which abstract away from
the specifics of any particular experimental approach and
thus have the potential to generalize to a much larger range
of phenomena.

1. Prediction allows generalization to arbitrary new
tasks and situations

Predictive models give a specific prediction, forecasting
a target quantity numerical or categorical on new data. In
the framework of statistical machine learning, they contain
tunable parameters that are adjusted to learn the associ-
ation between data and target (James et al., 2013). Per-
formance can then be tested on unseen data. Predictive
models provide powerful tools to learn brain-mind associ-
ations from recordings of neural activity (Varoquaux and
Thirion, 2014; Pereira et al., 2009; Lebedev and Nicolelis,
2006). Compared to traditional computational neuro-
science models, they allow generalization to new tasks and
situations. Hence, they can provide conclusions that are
not paradigm-bound, as cognitive neuroscience largely has
been.

Broad generalizations can bridge very different situa-
tions. For instance Knops et al. (2009) showed that learn-
ing brain-activity patterns that discriminate right from
left saccades would classify mental additions as rightward
saccades and subtractions as leftward. Whether or not
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Figure 1: Brain decoding finds patterns in brain-activity data that
discriminate given conditions on unseen data. The corresponding
brain-mind association can then be generalized to a new paradigm,
or new stimuli, by applying the decoder.

brain-mind associations generalize can be tested across
paradigms, and such tests highlight universal components
of psychological processes. Studying memory encoding,
Polyn et al. (2005) used a classifier to generalize from
perception to memory retrieval to show that both pro-
cesses share a common neural substrate. In research on
pain, neural evidence supports separating physical and
emotional pain, as brain activity can robustly discriminate
them across studies (Wager et al., 2013).

2. Generalization to arbitrary tasks supports re-
verse inference

Associating neural activity in a brain structure or net-
work to a predicted behavior that generalizes to arbitrary
tasks fully characterizes the function of this structure.
Bound to a given paradigm, such characterization would
be an invalid reverse inference, as the experiment only
shows that the observed neural activity is a consequence
of a psychological manipulation, rather than the converse
(Poldrack, 2006). Decoding studies, which predict behav-
ior from observed activity, provide evidence for reverse in-
ferences. However, to characterize function beyond sim-
ple oppositions, decoding must be applied across a very
broad sampling of behavior and cognition. Analyzing
many different studies jointly provides a practical solution
to sample such a variety of mental states (Poldrack, 2011).
Generalization across experimental paradigms shows that
identified brain structures are not a mere consequence of
experimental details of the task (Schwartz et al., 2013).

Causal questions are central to interpreting results of a
neuroimaging experiment: when is the activity of a struc-
ture a cause of the observed behavior, and when is it a

consequence? Comparing which brain structures are acti-
vated in a standard analysis to which ones support decod-
ing can rule out structures that mediate a function but do
not cause it (Weichwald et al., 2015). In stimuli-driven ex-
periments, detecting a structure in both models suggests
that it is a direct consequence of the stimulus, for instance
activity in the fusiform face area for face-recognition tasks,
rather than a non-specific side effect, such as activity in
primary visual areas.

3. Formal representations of tasks and behavior are
important

Modeling brain activity beyond a specific paradigm
needs robust and general descriptions of stimuli, tasks, and
behavior (Turner and Laird, 2012; Poldrack et al., 2011b).
Building such descriptions faces two challenges: capturing
all the relevant mental processes in a task, and formaliz-
ing their relationships. The psychological manipulations
of a task inform on the main mental processes it recruits.
Yet, it is necessary to go beyond the primary effect of in-
terest: a visual n-back experiment is not only a memory
experiment, but also a visual one (Schwartz et al., 2013).
Relating mental processes across studies raises many sub-
tle questions, for instance whether to distinguish between
autobiographical and episodic memory. Taxonomies or on-
tologies give a formal framework to capture this knowledge
(Poldrack and Yarkoni, 2016).

However, using cognitive ontologies in brain mapping
is a chicken-and-egg problem, given that neuroimaging
should also inform these ontologies, via the links between
mental processes that it reveals. Data-driven semantic
techniques hold promise to build representations of cog-
nitive neuroscience concepts informed by brain data (Pol-
drack et al., 2012; Yeo et al., 2015; Bolt et al., 2017).
Used across the literature, they can overcome variations
in terminology and link mental processes that elicit simi-
lar activity or build more open-ended encoding or decoding
models (Yarkoni et al., 2011; Rubin et al., 2017; Dockès
et al., 2018).

4. Encoding models extract better representations
of tasks

Encoding models, which predict brain data from the
task (Naselaris et al., 2011), can go beyond describing a
task with a small set of labels and capture details and
interplay in its components. Because they allow for the
use of much richer and less constrained descriptions of
tasks, they can ground a model of brain function be-
yond specific experimental paradigms. To model psycho-
logical manipulations, encoding studies rely on machine-
learning techniques that are well suited to complex and
high-dimensional representations. Their testing procedure
measures how well a representation of the stimuli or task
can predict brain activity on unseen data, unlike standard
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Modeling new stimuli
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Figure 2: Encoding models capture the full details of brain responses
given a rich description of the stimuli or tasks. This behavior-to-
brain association can then be generalized to new stimuli or tasks, to
characterize mental processes.

analyses in brain imaging which use general linear models
to detect significant effects of oppositions in brain activity
(Poldrack et al., 2011a).

4.1. Encoding models replace crafting stimuli

Progress in visual neuroscience provides a striking ex-
ample of the success of encoding models. Historically, our
understanding of the human visual system has been driven
by experiments crafting stimuli to reveal the selectivity of
a hierarchy of brain modules (Grill-Spector and Malach,
2004), from spots and slab that revealed edge detectors in
the visual area V1 (Hubel and Wiesel, 1959) to more com-
plex shapes mapping mid-level regions (Logothetis et al.,
1995), to semantic regions, studied via stimuli such as faces
or scenes (Haxby et al., 2001; Kanwisher et al., 1997).
These experiments have been very successful in provid-
ing a conceptual model of the human visual system. Yet,
no one single experiment could ground this model of visual
processing. Rather, it relied on combining interpretations
across studies of disparate and non-ecological stimuli.

On more ecological stimuli, rich encoding models can
reveal the properties of the primary visual cortex (Kay
et al., 2008; Miyawaki et al., 2008), transforming them into
a representation that maps wells to brain responses (Nase-
laris et al., 2011). To go beyond primary areas, rich statis-
tical models of natural images are needed. Artificial neural
networks developed for computer vision build representa-

tions of the images used as stimuli that predict well brain
responses. They outperform computational-neuroscience
models of vision to explain the workings of mid-level ar-
eas (Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,
2014). They build a hierarchy of intermediate representa-
tions, from low-level edge detectors to more semantic in-
formation, that maps well to the full hierarchy of human
visual processing (Güçlü and van Gerven, 2015; Eicken-
berg et al., 2017). These results extend to high-level areas
the hypothesis that V1 is tuned to Gabor filters because
these form good statistical representations of natural im-
ages (Olshausen et al., 1996).

The latest studies do not require hand crafting stim-
uli to elicit controlled responses in a given region. They
provide a full mapping of the computational steps of hu-
man vision from natural stimuli, and they jointly model all
stimulus features important to brain responses, such that
their model of brain response is more general than the
paradigm used in a given experiment. Eickenberg et al.
(2017) showed that a model learned from subjects watch-
ing natural images could generate both retinotopic maps,
or face versus scene contrasts.

The study of other sensory systems has followed sim-
ilar trends with similar successes. Encoding models have
mapped the functional modules of the auditory cortex
from spectrograms (Santoro et al., 2017), or with hierar-
chy of representations isolated by artificial neural networks
used to process sounds on computers (Kell et al., 2018).
Perceptual sciences lend themselves well to rich encoding
models: as neuroimaging experiments can use rapid suc-
cessions of trials with stimuli that are easily characterized
across a broad set of features, providing large data accu-
mulation.

4.2. Precise models of responses to stimuli capture
high-level processes

Data-intensive encoding models can also map more
complex psychological functions. In particular, encoding
models can accurately capture semantic representations of
language in the brain at the level of words (Mitchell et al.,
2008), short texts (Wehbe et al., 2014), and stories (Huth
et al., 2016). Finely-tuned models of stimuli responses pro-
vide excellent windows to attentional (Çukur et al., 2013;
Hausfeld et al., 2018) or perceptual decision (Gwilliams
and King, 2017) mechanisms. They relate better to experi-
mental data than more conceptual models such as drift dif-
fusion models (Gwilliams and King, 2017). Finally, using
complex stimuli, such as a full movie, enables an ecological
study of processes such as episodic memory (Baldassano
et al., 2017).

In all these settings, encoding using predictive models
enable the study of sensory and cognitive processes with-
out reducing the experiment to one simple opposition or
variation. As a result, predictions hold across paradigms
(Eickenberg et al., 2017).
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5. Prediction is a guiding principle to modeling
stimuli

A key challenge for modeling in cognitive neuroscience
is to generate rich representations of stimuli. Given data
and a task to perform on it, artificial intelligence models
extract representations that are optimal for information
processing. These representations provide a good basis to
study brain responses because they give a complete view
of the task, but also because both artificial intelligence
and human cognition capture the statistical regularities of
our world. To model stimuli, minimizing prediction error
is a guiding principle to extract relevant representations.
Both the ventral stream in the visual cortex and artificial
neural networks in computer vision strive to maximize ob-
ject recognition (Yamins and DiCarlo, 2016). Prediction of
neighboring words is central to both cognitive and compu-
tational linguistic (Willems et al., 2016). Predictive cod-
ing forms a full conceptual framework in cognitive science
(Rao and Ballard, 1999).

6. Generalization will ground broader theories

Scientific endeavors strive for conclusions that general-
ize, predicting features of new situations. While cognitive
neuroscience has often focused on informal generalizations,
machine-learning techniques will bring more precise pre-
dictions and more general models. Generalization across
paradigms is key to achieving broader theories, in decod-
ing to isolate the neural supports of mental states or in
encoding to build complete descriptions of behavior.
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