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Understanding the organization of complex behavior as it relates to the brain requires modeling the behavior, the relevant
mental processes, and the corresponding neural activity. Experiments in cognitive neuroscience typically study a psychological
process via controlled manipulations, reducing behavior to one of its component. Such reductionism can easily lead to
paradigm-bound theories. Predictive models can generalize brain-mind associations to arbitrary new tasks and stimuli. We
argue that they are needed to broaden theories beyond specific paradigms. Predicting behavior from neural activity can support
robust reverse inference, isolating brain structures that support particular mental processes. The converse prediction enables
modeling brain responses as a function of a complete description of the task, rather than building on oppositions.
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Perception and action build upon an array of men-
tal processes, which have been characterized in detail by
the psychological sciences. However, unifying these psy-
chological processes to model the relation between brain
and mind in any given situation remains a great challenge
(Newell, 1973•). The principal challenge lies in finding the
appropriate representation of the components of cognition
and behavior. Cognitive neuroscience builds upon con-
trolled experiments to isolate these components and link
them to brain activity. But quantifying the effects of any
manipulation requires that the psychological or behavioral
components of interest be clearly specified (Poldrack and
Yarkoni, 2016; Krakauer et al., 2017•). Isolating compo-
nents of mental processing leads to studying them only via
oppositions, and this reductionism prevents the building of
broad theories of the mind.

We believe that predictive modeling provides new tools
to tackle this formidable task. The accumulation of a
broad range of shared data in cognitive neuroimaging pro-
vides a widely varied set of observations of brain and be-
havior. Using these data, models can be built that ac-
curately describe multiple experiments, going beyond the
surface description of tasks to identify associations be-
tween brain systems and underlying mental processes that
span across tasks. Whereas cognitive neuroscience has typ-
ically focused on particular theoretical oppositions, this
approach instead builds models that generalize beyond
specific tasks, based on the methodology of machine learn-
ing with a focus on out-of-sample prediction rather than
the detection of specific experimental effects (Yarkoni and
Westfall, 2017).

Data-driven approaches are often distinguished from
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hypothesis-driven research, with the implication that data-
driven work is necessarily theory-free. However, we argue
that data-intensive methods can actually provide the basis
for building broader theories, which abstract away from
the specifics of any particular experimental approach and
thus have the potential to generalize to a much larger range
of phenomena.

Prediction allows generalization to arbitrary new
tasks and situations

Predictive models give a specific prediction, forecast-
ing a target quantity numerical or categorical based on
new data. In the framework of statistical machine learn-
ing, they contain tunable parameters that are adjusted
to learn the association between data and target, usually
with some penalty for model complexity (James et al.,
2013). Performance can then be tested on unseen data.
Predictive models provide powerful tools to learn brain-
mind associations from recordings of neural activity (Varo-
quaux and Thirion, 2014; Pereira et al., 2009; Lebedev
and Nicolelis, 2006). Compared to traditional computa-
tional neuroscience models, they allow generalization to
new tasks and situations. Hence, they can provide con-
clusions that are not paradigm-bound, as cognitive neuro-
science largely has been.

Broad generalizations can bridge very different situa-
tions. For instance Knops et al. (2009) showed that learn-
ing brain-activity patterns that discriminate right from
left saccades would classify mental additions as rightward
saccades and subtractions as leftward. Whether or not
brain-mind associations generalize can be tested across
paradigms, and such tests highlight universal components
of psychological processes. Studying memory encoding,
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Predictive models versus classic neuroimaging analyses
By predictive models we refer to mathematical models of
the data that explicitly minimize prediction error, typically
relying on methods from machine learning. They differ from
standard neuroimaging statistical methods in several way.
First, their validity is established by successful predictions
from new data, and not by isolating significant differences
across observations. This test is sound without the need for
modeling assumption, such as Gaussian noise. As a con-
sequence, predictive models often are more complex, de-
parting from maximum-likelihood estimates and fitting more
unknowns variables than available observations (Wu et al.,
2006; James et al., 2013).
For neuroimaging, this additional complexity opens the door
to modeling more effects jointly, and therefore building mod-
els that describe more than an isolated dimension of cogni-
tion. Also, given that a model is validated by its predictions,
rather than by its goodness of fit on the data used to fit the
model, validation can be done using different constructs than
those used to build the model, for instance using high-level
descriptions of cognition instead of features of the experi-
ments or brain signals. Testing for out-of-sample properties,
as when measuring prediction, helps avoiding some pitfalls
of in-sample model testing using p-values, such as circularity
or trivial effects (Wasserstein et al., 2016).

Polyn et al. (2005) used a classifier to generalize from
perception to memory retrieval to show that both pro-
cesses share a common neural substrate. In research on
pain, neural evidence supports separating physical and
emotional pain, as brain activity can robustly discriminate
them across studies (Wager et al., 2013••).

Generalization to arbitrary tasks supports reverse
inference

Associating neural activity in a brain structure or net-
work to a predicted behavior that generalizes to arbitrary
tasks provides a deeper understanding of the computations
supported by the structure. Bound to a given paradigm,
such characterization would be an invalid reverse inference,
as in an experiment only neural activity is observed as a
consequence of a psychological manipulation, rather than
causing a mental state (Poldrack, 2006). Decoding stud-
ies, which predict behavior from observed activity, pro-
vide evidence for reverse inference. However, to charac-
terize function beyond simple oppositions, decoding must
be applied across a very broad sampling of behavior and
cognition. Analyzing many different studies jointly pro-
vides a practical solution to sample such a variety of men-
tal states (Poldrack, 2011•). Generalization across exper-
imental paradigms shows that identified brain structures
are not a mere consequence of experimental details of the
task (Varoquaux et al., 2018).

Causal questions are central to interpreting results of
a neuroimaging experiment: what in the observed brain
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Extracting brain

activity patterns that 
discriminate conditions 
and predict them from 
unseen neural activity.

Generalization
In a new paradigm, the 
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features of the behavior.

Figure 1: An example of brain decoding and generalization: Brain
decoding finds patterns in brain-activity data that discriminate given
conditions on unseen data, here identifying perceptual stimuli. The
corresponding brain-mind association can then be generalized to a new
paradigm, or new stimuli, eg by applying the decoder in a visual memory
task.

activity is a consequence of the task, versus a cause of
the behavior or the mental state? Comparing which brain
structures are activated in a standard analysis to which
ones support decoding can rule out structures that me-
diate a function but do not cause it. In stimuli-driven
experiments, detecting a structure in both models sug-
gests that it is a direct consequence of the stimulus, for
instance activity in the fusiform face area for face recogni-
tion, rather than a non-specific side effect, such as activity
in primary visual areas. Such side effect cannot support
decoding (Weichwald et al., 2015).

Formal representations of tasks and behavior are
important

Modeling brain activity beyond a specific paradigm
needs robust and general descriptions of stimuli, tasks, and
behavior (Turner and Laird, 2012; Poldrack et al., 2011b).
Building such descriptions faces two challenges: capturing
all the relevant mental processes in a task, and formaliz-
ing their relationships. The psychological manipulations
of a task provide information regarding the main mental
processes it recruits. Yet, it is necessary to go beyond the
primary effect of interest: a visual n-back experiment is not
only a memory experiment, but also involves visual pro-
cessing ,decision making, and many other functions (Varo-
quaux et al., 2018). Relating mental processes across stud-
ies raises many subtle questions, for instance whether to
distinguish between autobiographical and episodic mem-
ory. Taxonomies or ontologies give a formal framework to
capture this knowledge (Poldrack and Yarkoni, 2016).
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However, using cognitive ontologies in brain mapping
is a chicken-and-egg problem, given that neuroimaging
should also inform these ontologies, via the links between
mental processes that it reveals. Data-driven semantic
techniques hold promise to build representations of cog-
nitive neuroscience concepts informed by brain data (Pol-
drack et al., 2012•;Yeo et al., 2015; Bolt et al., 2017).
Used across the literature, they can overcome variations
in terminology and link mental processes that elicit simi-
lar activity or build more open-ended encoding or decoding
models (Yarkoni et al., 2011; Rubin et al., 2017; Dockès
et al., 2018).

Encoding models extract better representations of
tasks

Encoding models, which predict brain data from the
task (Naselaris et al., 2011•), can go beyond describing a
task with a small set of labels and capture details and in-
terplay in its components. Because they allow for the use
of much richer and less constrained descriptions of tasks
(Wu et al., 2006), they can ground a model of brain func-
tion beyond specific experimental paradigms. To model
psychological manipulations, encoding studies usually rely
on machine-learning techniques that are well suited to
complex and high-dimensional representations. Their test-
ing procedure measures how well a representation of the
stimuli or task can predict brain activity on unseen data,
unlike standard analyses in brain imaging which use gen-
eral linear models to detect significant effects of opposi-
tions in brain activity (Poldrack et al., 2011a).

Encoding models replace crafting stimuli

Progress in visual neuroscience provides a striking ex-
ample of the success of encoding models. Historically, our
understanding of the human visual system has been driven
by experiments crafting stimuli to reveal the selectivity of
a hierarchy of brain modules (Grill-Spector and Malach,
2004), from spots and slab that revealed edge detectors in
the visual area V1 (Hubel and Wiesel, 1959) to more com-
plex shapes mapping mid-level regions (Logothetis et al.,
1995), to semantic regions, studied via stimuli such as faces
or scenes (Haxby et al., 2001; Kanwisher et al., 1997).
These experiments have been very successful in provid-
ing a conceptual model of the human visual system, but
no one single experiment could ground this model of visual
processing. Rather, it relied on combining interpretations
across studies of disparate and non-ecological stimuli.

On more ecological stimuli, rich encoding models can
reveal the properties of the primary visual cortex (Kay
et al., 2008; Miyawaki et al., 2008), transforming them
into a representation that provides the ability to accu-
rately predict brain responses to complex stimuli (Nase-
laris et al., 2011•). To go beyond primary areas, rich statis-
tical models of natural images are needed. Deep artificial

Fitting an encoding model
Given a model that builds 
complete representations 
of stimuli, rich tasks 
provide the information
to predict brain
responses as a 
function of stimuli.

 

  

Modeling new stimuli
The encoding model can be applied to stimuli with different properties. 
It yields brain responses that characterizes corresponding mental 
processes.

Figure 2: Encoding methodology and generalization: Encoding models
capture the full details of brain responses given a rich description of
the stimuli or tasks. This behavior-to-brain association can then be
generalized to new stimuli or tasks, to characterize mental processes.

neural networks developed for computer vision build rep-
resentations of the images used as stimuli that accurately
predict brain responses, outperforming computational-
neuroscience models of vision to explain the workings of
mid-level areas (Khaligh-Razavi and Kriegeskorte, 2014;
Yamins et al., 2014••). They build a hierarchy of inter-
mediate representations, from low-level edge detectors to
more semantic information, that maps well to the full hier-
archy of human visual processing (Güçlü and van Gerven,
2015; Eickenberg et al., 2017••). These results extend to
high-level areas the hypothesis that V1 is tuned to Gabor
filters because these form good statistical representations
of natural images (Olshausen et al., 1996).

The latest studies do not require hand crafting stim-
uli to elicit controlled responses in a given region. They
provide a full mapping of the computational steps of hu-
man vision from natural stimuli, and they jointly model
all stimulus features important to brain responses, such
that their model of brain response can generalize beyond
the paradigm used in any given experiment. For example,
Eickenberg et al. (2017)•• showed that a model learned
from subjects watching natural images could generate both
retinotopic maps and face versus scene contrasts.

The study of other sensory systems has demonstrated
similar success. Encoding models have mapped the func-
tional modules of the auditory cortex from spectrograms
(Santoro et al., 2017), or using a hierarchy of represen-
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tations isolated by deep neural networks used to process
sounds on computers (Kell et al., 2018). Perceptual sci-
ences lend themselves well to rich encoding models: as neu-
roimaging experiments can use rapid successions of trials
with stimuli that are easily characterized across a broad
set of features, providing large data accumulation.

Precise models of responses to stimuli capture high-level
processes

Data-intensive encoding models can also map more
complex psychological functions. In particular, encoding
models can accurately capture semantic representations of
language in the brain at the level of words (Mitchell et al.,
2008), short texts (Wehbe et al., 2014), and stories (Huth
et al., 2016). Finely-tuned models of stimuli responses pro-
vide excellent windows to attentional (Çukur et al., 2013;
Hausfeld et al., 2018) or perceptual decision (Gwilliams
and King, 2017) mechanisms. They relate better to experi-
mental data than more conceptual models such as drift dif-
fusion models (Gwilliams and King, 2017). Finally, using
complex stimuli, such as a full movie, enables an ecological
study of processes such as episodic memory (Baldassano
et al., 2017•).

In all these settings, predictive modeling using encod-
ing models enables the study of sensory and cognitive pro-
cesses without reducing the experiment to one simple op-
position or variation. As a result, predictions hold across
paradigms and generalize to novel paradigms (Eickenberg
et al., 2017••).

Prediction is a guiding principle to modeling stimuli

A key challenge for modeling in cognitive neuroscience
is to generate rich representations of stimuli. Given data
and a task to perform on it, artificial intelligence models
extract representations that are optimal for information
processing. These representations provide a good basis to
study brain responses because they give a complete view
of the task, but also because both artificial intelligence
and human cognition capture the statistical regularities of
our world. To model stimuli, minimizing prediction error
is a guiding principle to extract relevant representations.
For example, prediction of neighboring words is central
to both cognitive and computational linguistic (Willems
et al., 2016). Artificial neural networks optimized for ob-
ject recognition form good representations to study object
recognition in the ventral stream (Yamins and DiCarlo,
2016••). Extending beyond prediction or recognition, re-
cent progress in machine learning synthesizes rich data
such as images guided by models that discriminate real
from fake images (Goodfellow et al., 2014).

Generalization will ground broader theories

Scientific endeavors strive for conclusions that general-
ize, predicting features of new situations. While cognitive

neuroscience has often focused on informal generalizations,
machine-learning techniques will bring more precise pre-
dictions and more general models. Generalization across
paradigms is key to achieving broader theories, in decod-
ing to isolate the neural supports of mental states or in
encoding to build complete descriptions of behavior.
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