
HAL Id: hal-01856374
https://hal.science/hal-01856374

Submitted on 13 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Work Stealing for Time-constrained Octree Exploration:
Application to Real-time 3D Modeling

Luciano P. Soares, Clément Ménier, Bruno Raffin, Jean-Louis Roch

To cite this version:
Luciano P. Soares, Clément Ménier, Bruno Raffin, Jean-Louis Roch. Work Stealing for Time-
constrained Octree Exploration: Application to Real-time 3D Modeling. Eurographics 2008 Sym-
posium on Parallel Graphics and Visualization (EGPGV’08), 2007, Lugano, Switzerland. pp.61–68.
�hal-01856374�

https://hal.science/hal-01856374
https://hal.archives-ouvertes.fr

Work Stealing for Time-constrained Octree Exploration:
Application to Real-time 3D Modeling

Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis Roch.

INRIA, Laboratoire d’Informatique de Grenoble - LIG, Grenoble, France

Abstract

This paper introduces a dynamic work balancing algorithm, based on work stealing, for time-constrained parallel
octree carving. The performance of the algorithm is proved and confirmed by experimental results where the
algorithm is applied to a real-time 3D modeling from multiple video streams. Compared to classical work stealing,
the proposed algorithm enforces a relaxed width first octree carving that enables to stop computations at anytime
while ensuring a balanced carving.

Categories and Subject Descriptors (according to ACM CCS): C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) I.4.5 [Image Processing and Computer Vision]: Reconstruction

1. Introduction

Mastering parallelism is a major challenge when developing
computationally intensive interactive applications, but it can
enable to reach the targeted low latencies and high refresh
rates.

This article presents a dynamic load balancing algorithm,
based on work stealing, that enables to stop computations
at any time. This algorithm is applied to 3D modeling. 3D
Modeling consists in building a 3D model of people or ob-
jects being filmed by a set of calibrated cameras. This 3D
model must be computed in real time from the different
video streams before it is injected into the virtual world to
enable interactions [MP04, GWN∗03]. Many different al-
gorithms exist for 3D modeling. A classical approach, the
one our experimental results rely on, is to "carve" an oc-
tree [Sze93]. 3D modeling has been selected as it is an in-
teresting case study where interactivity is critical and the
amount of computations to perform can be significant.

Parallelizing such octree carving algorithm raises two
main isssues:

• load-balancing: the shape of the octree is irregular and
depends on the input data. Thus a static load balancing
scheme fails to guarantee an efficient use of the available
computing resources. An efficient dynamic load balanc-
ing is required.

• time-constraint: when the timeout occurs we expect the
octree to be balanced, i.e. that computing resources co-
ordinate their efforts to avoid having a branch deeply ex-
plored while an other is seldom tested. It requires extra
synchronizations between processors to enforce a relaxed
width first octree carving.

To achieve this goal we propose a modified work-stealing
technique. The efficiency of this approach is validated for-
mally and experimentally.

Our parallel algorithm dynamically balances the proces-
sor work load and ensures it can be stopped at anytime while
guaranteeing a balanced space carving. The implementation
on a 16 cores architecture (8 dual-core processors) speeds
up the computations up to 14.4 times in comparison to the
sequential execution. We also present early experiences us-
ing one GPU as a co-processor. The performance increases
by 30% compared to using only one CPU, and fades as the
number CPUs involved increases.

The paper is organized as follow. Section 2 presents the
octree based algorithm for 3D Modeling. Work stealing and
the associated theoretical results are detailed in Section 3.
The parallel octree algorithm is presented in Section 4, its
proof in Section 5, its implementation in Section 6 and the
experimental results in Section 7. Section 8 discusses the
GPU based tests before conclusions are draw in Section 9.

2. Octree Based Voxel Carving

We present in the following the sequential octree based
voxel carving algorithm. The algorithm takes as input data
video streams from a network of cameras (Fig. 1). To en-
sure a high quality modeling, cameras must be properly cal-
ibrated (brightness, color and position) and synchronized.
From each image a 2D silhouette is extracted by back-
ground substraction. Various methods exist [HHD99]. we
rely on [KGYS05]. Pixels outside the silhouettes are set to
white, while the others are set to black (Fig. 2). The octree
algorithm is executed on each set of silhouette images taken
at the same time. Starting from one initial voxel correspond-
ing to the acquisition space, the algorithm probes each voxel
to compute if it lies outside or inside the visual hull, i.e. if
the voxel projects at least outside one silhouette or inside all
silhouettes. Uncertain voxels (intersecting a silhouette con-
tour) are split in 8 smaller voxels. A stopping condition can
be set to bound the execution time, based on a timer or a
maximum depth level for instance.

Figure 1: 6 Cameras filming a user.

Figure 2: Silhouettes from 3 cameras.

There are several approaches to test if a voxel is full
(inside the visual hull) or not. We are using an exhaustive
method where a voxel is subdivided into a regular 3D grid.
The algorithm iterates on each grid vertex, projecting it into
the silhouette. Computations for this voxel are stopped as
soon as the voxel is known to be full, empty or uncertain.
The number of grid vertices contained in a voxel is propor-
tional to its size.

This algorithm is interesting on different aspects. First, as
all octree based approaches, it enables to reduce the amount

of computations, compared to a space partitioning with a
fixed voxel size. Second, it provides a volumetric model in
the form of a list of cubes, making it easy for computing col-
lisions with other objects. Finally, it easily enables to control
the amount of time allotted to carving by having the stop
condition waiting for a timeout or an external event. In this
case it is important to underline that the tree carving should
be performed width first rather than depth first. If performed
depth first, the octree will be very detailed in some areas,
while seldom tested in others (Fig. 3). For a sequential ex-
ecution, the only consequence of a width first carving is an
extra memory consumption.

Figure 3: A depth first(left) and width first(right) octree
carving with the same elapsed time. The former leads to an
unbalanced space carving, the latter to a balanced one.

3. Work Stealing

We recall the principle of work stealing, the main associated
results and analyze why work stealing is well adapted for
octree carving.

Work stealing is a classical approach for dynamic load
balancing. It has been used for various computations, includ-
ing parallel graphics [HA98, CD99]. It extends the Graham
list scheduling principle [Gra66] for programs that create
tasks recursively. The principle is simple. When starting the
execution, a first processor is assigned all source tasks (the
initial ready tasks). At runtime, each processor maintains a
local list where it stores the ready tasks it has locally created.
A task becomes ready when all its predecessor tasks, i.e. the
tasks it depends on, have been executed. The tasks are or-
ganized in the list according to a total sequential depth first
order. When a processor P completes a task, it pops the first
one t (according to depth first order) in its local ready list if
non empty. Else, P is idle and becomes a thief: it randomly
selects another processor until finding one victim processor
V that owns ready tasks. Then it picks-up the oldest ready
task t in the ready list of V . In both cases, P starts the execu-
tion of t.

Work stealing achieves a provable performance with re-
spect to the work and depth of the parallel algorithm. The
work W1 is the total number of elementary operations per-
formed during the execution of the algorithm. An instruction

may be a standard operation or a task creation. The depth W∞

is the critical path in number of operations for an execution
on an unbounded number of processors, i.e. the number of
instructions along the longest dependency path. Let Tp be
the execution time on p identical processors with execution
speed Π (in number of instructions per time unit). An ex-
ecution takes a time T1 = W1

pΠ
on a single processor and a

time T∞ = W∞

Π
on an unbounded number of processors. On p

processors, work stealing ensures that with a high probabil-
ity [ABP01]:

Tp ≤
W1

pΠ
+O

(
W∞

Π

)
(1)

and the number of steals is small, O(W∞) per processor.

Thus, if the depth W∞ is small compared to the total
amount of work W1 the parallel execution time is close to
the lower bound W1

pΠ
. This motivates the use of work stealing

to schedule parallel programs having a small depth W∞.

The octree shows properties making it very well adapted
to work stealing. We consider a task the computation asso-
ciated with one voxel. The dependency graph corresponds
to the octree graph, as a given voxel can be computed as
soon as its parent has been treated. In the worst case where
no pruning occurs, a tree of depth n leads to W1 = 8n+1−1

7
tasks, while the critical path is W∞ = O(n). Thus, having
W1�W∞, work stealing should lead to optimal parallel exe-
cutions. Even when pruning occurs, the ratio is usually very
favorable to work stealing. For instance, our test data set,
consisting of a full human body (Fig. 4), has W1 = 162799
voxels when going up to depth level W∞ = 8. The follow-
ing properties also contribute to keep the overhead of work
stealing small:

• All tasks perform the same computation. The only dif-
ference between two tasks is the coordinates and size of
the considered voxel. Thus stealing work only consists in
stealing a list of a voxel coordinates and size. It leads to
light memory transfers.

• Task dependencies are simple: a task only depends on its
parent. When a processor splits a voxel, it can directly
add its 8 children voxels to its ready list. There is no other
dependency to be solved that could require to wait for an-
other processor.

Close to the octree root, the amount of parallelism is re-
duced (1 voxel at the root, 8 at depth 1, 64 at depth 2), and
the cost of projecting a voxel into the silhouettes is higher
(proportional to the voxel size). This can impair the perfor-
mance of work stealing. To soften this effect, usually octree
carving starts at a higher depth level (level 2 for our tests).

4. Adaptive Octree Algorithm

The goal of this work stealing algorithm is to dynamically

schedule the work load to better use the processors available.
We assume the target parallel machine supports a global ad-
dress space with a shared (or virtually shared) memory ac-
cess and manages data locality.

Each voxel is represented as a quadruple of its coordinates
and level (i, j,k,d). To manage the workload the voxels are
organized in ready lists. Each ready list consists of a vector
of voxels and pointers to the first, last and current voxel. We
call a task, the computations required to test a voxel status.

4.1. Initialization

The algorithm starts at depth level n with 8n initial voxels.
The number n is usually the smallest number to have more
initial voxels than processors. These voxels are split into p
ready lists, where p is the number of processors. The goal is
to avoid the performance bottleneck of the first depth levels
that do not provide enough parallelism.

The ready lists are organized in a singly-circularly-linked
list. There is one list of ready lists per depth level, called a
level list. All level lists, except the ones from the starting
depth level, are initially empty. Each processor is assigned a
first ready list from the starting level.

One processor has a manager role. It takes care of ini-
tializing the first ready lists and signal all other processors
when computations must be stopped (because the timeout
occurred).

4.2. Octree Level Computation Based on Work Stealing

Each processor tests the voxels of its ready list. If a voxel
needs to be split, its 8 child are inserted into the ready list of
the next level.

Each processor cycles twice through the level list. A pro-
cessor scans the level list from a randomly chosen position,
looking for a free ready list in the level list until it completes
one cycle. If it finds one, it takes it. Else, since there is no
more ready list to grab, it performs a second loop, but this
time the processor becomes a thief. It traverses the ready lists
trying to get part of the remaining voxels. For a target ready
list, the thief processor locks the current working pointer of
the victim processor (the owner of the list). It grabs half of
the remaining voxels, leaving a minimum number of vox-
els (fixed by a threshold) to avoid voxels to be stolen back
and forth. The thief creates a new ready list containing these
voxels. This operation just involves pointer settings and does
not lead to voxel copies. The working pointer of the victim is
unlocked as soon as it can safely restart processing its ready
list.

Finally, when a processor ends its second cycle through
the current level list, it starts working on the next level, pro-
cessing the voxels of its ready list if not empty.

4.3. Overlapping Level Synchronization

Let Li(t) be the level of the voxel being computed by pro-
cessor i at time t, and σ = maxt maxi6= j |Li(t)− L j(t)| be
the maximal level synchronization, i.e. the largest distance
in term of levels between two processors. To enforce a (re-
laxed) width first like octree carving it is required that σ is
always kept small. This is achieved by introducing extra syn-
chronizations. Setting a global barrier after each level guar-
antees a synchronization σ = 0 at any time, but it prevents
level overlapping and then restricts parallelism. A synchro-
nization σ ≤ 1 enables to overlap synchronization overhead
while limiting the octree unbalance. To ensure σ ≤ 1, we
implemented it as follows. To each level d corresponds a
shared counter C[d] initialized to the number of processors
p. When a processor completes all its ready tasks at level d
and if C[d−1] = 0, it starts stealing. If it does not succeed to
get voxels from other processors, then it decreases C[d] by 1
and starts the computation of its local voxels at level d + 1.
Once completed, it waits until C[d− 1] = 0 before starting
new steal requests.

4.4. Time Control

A time control routine was integrated in the algorithm to
bound the time spent to carve the octree. The main objective
is to enforce a real-time behaviour for the final application,
i.e. a minimum latency and maximum refresh rate.

The manager processor is in charge of checking the time
elapsed and signal other processors that the time is over.

One difficulty is to define the time check frequency, to
limit the overhead while being frequent enough to enable a
good time control. A good choice is to have the manager
control the time elapsed each time it completes a ready list.
Because synchronizations are present into the code to en-
force a width first tree traversal, it enables to stop the algo-
rithm at any time keeping a well balanced space carving.

5. Provable Performance of the Adaptive Octree
Algorithm

This section deals with the proof of the performance of
the adaptive octree algorithm. It is analyzed with respect to
the reference sequential algorithm.

For the sake of simplicity, we consider that the adaptive al-
gorithm implements a maximal level synchronization σ = 0,
with a synchronization barrier after each octree level. This
prevents level overlapping: level d is computed only when
level d−1 is completed, like in the sequential computation.
Then parallelism occurs only at each level. Furthermore, we
will consider that the sequential computation starts with the
same voxels as the parallel algorithm. So if we consider p
processors, we consider the sequential computation to be ini-
tialized at depth dlog8 pe with 8dlog8 pe voxels.

Under those assumptions, when there is no time limit, the
following theorem states that the adaptive algorithm is al-
most p times faster than the sequential one if the depth of
the octree is small w.r.t. its number of voxels.

Theorem Let Ts be the time of the reference sequential
algorithm to compute an octree with n nodes and depth d on
a processor with speed Π. The adaptive algorithm running
on p identical processors with speed Π computes the same
octree in time:

Tp =n→∞

Ts

p
+O

(
d logn

Π

)
(2)

Proof. The state of each voxel being deterministically com-
puted, both algorithms compute the same octree. Let Ts(i)
(resp. Tp(i)) be the time of the reference sequential algo-
rithm (resp. adaptive algorithm) to compute level i, 1≤ d≤ i,
and ni be its number of nodes. At each successful steal,
a processor steals half the ready voxels of a non idle pro-
cessor. Then, on an infinite number of processors, the par-
allel algorithm has critical depth W∞ = logni. The opera-
tions performed by the parallel algorithm are either voxels
computations, i.e. Ts(i).Π unit operations, or overhead in-
structions to manage parallelism (locks, steals, list manage-
ment). Due to work stealing, the number of steal requests is
O(W∞) per processor, i.e. O(logni). Except steals, the only
other overhead operations are when a processor access its
own local ready list to extract voxels. This requires a lock
to avoid contention with possible thieves. However, if there
are v voxels in the ready list, then logv voxels are extracted
at the price of only one lock. Then, following [RTB06],
the number of lock operations is O

(
ni

logni

)
. Then, from the

work stealing fundamental theorem (Section 1), we have
Tp(i)≤ Ts(i)

p + 1
Π

O
(

ni
p. logni

+ logni

)
=ni→∞

Ts(i)
p . Summing

for all the levels concludes the proof. 4

However, due to real time interactive constraints, the
depth of the octree is truncated at a given unknown time
limit. The computation time of the algorithm is fixed and the
objective is to maximize the level of details, i.e. the number
of voxels computed. Indeed, taking benefit of parallelism,
the adaptive octree algorithm not only computes faster but
also more details. The next theorem states that in a fixed time
t, the adaptive algorithm on p processors computes almost
the same precision as the reference sequential algorithm in a
time p.t.

Theorem

Let np be the number of voxels computed by the adap-
tive algorithm in a time limit t on p identical processors. Let
ns be the number of voxels computed by the sequential ref-
erence algorithm in a time limit p.t on 1 processor. Let dp
(resp. ds) be the last fully completed level of the adaptive
(resp. sequential) algorithm.

Then:

np = ns−O(logns) and |dp−ds| ≤ 1 (3)

Proof. The proof is also based on the work stealing the-
orem, applied to each level. Let d be the maximal level
of a voxel computed by the adaptive algorithm. Since this
algorithm performs a barrier after each level, clearly d ≤
dp + 1. From previous theorem, in a time t, the adaptive al-
gorithm performs Wp = p.t.Π operations among which at

most O
(

d lognp +
np

lognp

)
are overhead instructions with re-

spect to voxels computation. Then, if Ts(np) denotes the se-
quential time to compute the corresponding voxels, p.t.Π =

Ts(np)+O
(

d lognp +
np

lognp

)
. Then, asymptotically for np

large enough w.r.t. d, p.t.π ' Ts(np). Moreover, all those
np nodes are at most on two levels, dp and dp + 1. Then,
since p.t.Π = Ts(ns), np ' ns and, due to barrier, ds = dp or
ds = dp +1. 4

Asymptotically for a large number of nodes w.r.t. the
depth of the octree, both theorems generalize to the prac-
tical case where σ = 1 (then at most two levels may differ
between the sequential and the adaptive algorithm).

6. Implementation

The algorithm was implemented in C++ using Posix
Threads. As stated earlier, we target parallel computers sup-
porting a global address space with shared (or virtually
shared) memory. In this context Posix threads provide a well
adapted programming environment.

For a better performance the use of mutex like semaphores
was eliminated. Instead assembly atomic operations like
compare_and_swap "cmpxchg" and atomic_add_return
"xadd" combined with the LOCK prefix were used. These
atomic operations are supported by most modern CPUs. We
noticed a performance increase of about 20% compared to a
mutex based implementation.

The "yield" instruction("sched_yield" systems call) was
used to better manage waiting times. It improves the perfor-
mance in the waiting loops informing the kernel to schedule
other processes.

The application is launched with one thread per proces-
sor. The first thread is the manager. We consider we are
the only users of the computer and no other application is
running. To prevent the migration of threads during exe-
cution, which would impact performance, each thread was
locked on a given processor. For that purpose, we used the
"pthread_setaffinity_np" instruction. This technique also im-
proves the frame memory control, avoiding cache misses and
sparse memory allocations.

To better balance the work load into the initial ready lists,
the voxels are distributed in a round-robin fashion. The goal

is to give each working list voxels from different space re-
gions.

To reduce contention, a thread does not wait to steal from
a locked ready list. If one thief fails to lock a working list, it
does not try a second time. It just steps to the next ready list
in the chain. It avoids waiting for a lock release.

We relied on the GCC compiler to make an efficient use
of SIMD parallel instructions available on the processor. A
careful manual code optimization could probably further im-
prove performance.

7. Results

The computer used for the tests has 8 dual Core
AMDTM2.2GHz Opteron processors, 32 GB of mem-
ory, and is running Linux kernel 2.6.17. This is a CC-
NUMA (Cache coherency Non Uniform Memory Access)
architecture with a virtually shared memory using the
HyperTransportTMinter-processors communication layer.

7.1. Off-line Cameras

Tests were first performed with two off line series of im-
ages. The first one is a sequence of a full body person
filmed with 8 cameras, called the Ben benchmark, freely
available at https://charibdis.inrialpes.fr/.
Each camera image has a resolution of 780x582 pixels.
The second benchmark, called Al Capone, is a synthetic
3D model, from which we computed 64 images (resolution
of 300x300 pixels) from different view points. This model
enables to test our algorithm with a very large number of
silhouettes. Though today marker-less motion capture envi-
ronments have usually less than 64 cameras, the trend is to
increase this number as it improves the quality of the ob-
tained 3D model. Notice that both image sets fit in the 1MB
L2 cache available per core. Ben requires 456KB and Al
Capone 713KB.

We first compared a pure sequential implementation of
the octree carving algorithm with our parallel code launched
with only one thread. The overhead due to the extra code
introduced into the algorithm for work stealing is small. It is
about 4% for the Ben model and below 1.3% for Al Capone.

We ran the algorithm for both benchmarks with varying
numbers of CPUs, without time limit but with various max
depth levels. All results are averages over 100 runs. The exe-
cution times include the time to load the images from the lo-
cal disk. We plot (Fig. 6 and Fig. 7) the execution times (log-
arithmic scale on the y-axis) and the speed up (s = T1

Tn
). The

gain of using 16 CPUs is very significant with an efficient
use of the resources (high speed-ups). For instance Ben at
max depth level 8 is computed on 1 processor in about 234.2
ms. The same model takes only 16.82 ms on 16 processors.

Figure 4: Ben. Max depth level set to 8.

Figure 5: Al Capone. Depth level set to 5 (left) and 7 (right).

At max depth level 7, the Al Capone goes from about 441.1
ms with 1 CPU to about 31.15 ms with 16 CPUs. Notice
that the reconstruction at level 5 does not scale well, since
at this low level the execution time is dominated by the im-
age loading – sequential – step. As the amount of parallelism
increases while going deeper in the tree, the speed-up in-
creases with the max depth level. Al Capone was also tested
with work stealing turned off (Fig. 7). The performance is
significantly affected. A static load balancing is inefficient
as the shape of the octree, and thus the work load, cannot be
predicted.

The number of steals is low in comparison to the amount
of cells as predicted by the theory. Table 1 presents the av-
erage of all voxels computed against the number of full vox-
els, and the relative number of steals. About 60% of steal
attempts are successful. A side effect from this low number
of steals is the good space locality of voxel distribution. By
associating a color per CPU, we notice that large contiguous
area are processed by the same thread (Fig. 4 and Fig. 5).

Figure 6: Execution time and speed up for Ben.

Figure 7: Execution time and speed up for Al Capone, with
work stealing enabled or disabled (NA for Non-Adaptive)

We tested the time control routine with Ben (Fig. 8) and
a 30 ms deadline. The simulation is set to go up to depth
level 8. With just one processor it is not even possible to
complete level 5, making the model unrecognizable. The ex-
ecution time is significantly larger than 30 ms, because the
processor does not check the elapsed time before it com-
pletes the first ready list. Up to 8 processors, the time con-

Voxels Steals/threads
Dataset Level Computed Full Tries Success

Ben 8 162799 67398 42.59 25.26
Al Capone 7 44840 34601 26.21 16.18

Table 1: For each data set computed up to a given max level,
the number of voxels computed is given with the number of
voxels identified as full, the number of steal attempts and
successful steals per thread.

trol is effective: the execution stops before all voxels of level
8 are computed. Notice that the measured execution time is
usually slightly higher than 30 ms because after the time-
out occurs all processors apply a fast test algorithm to guess
if each pending voxel is full or empty. With 8 processors,
the 30 ms limit enables to reach the max depth level. Next,
as the number of processors further increase, the extra com-
puting resources available enable to decrease the execution
time, ending below 20 ms (the number of voxels computed
at level 8 stops to increase).

Figure 8: Ben modeling with a 30 ms time limit. The graph
plots the total execution time, the middle graph plots the
amount of voxels produced per level, and the lower graph
the percentage of voxels types.

Figure 9: Live tests with 5 on-line cameras with max depth
level 6 (top) and 8 (bottom).

7.2. On-line Cameras

We tested the algorithm in a live environment with 5
FireWire cameras (image resolution 780x580) filming a per-
son in real time. Cameras are genlocked through a specific
network. Each one is connected to one computer (dual xeon),
processing the incoming video stream to remove the back-
ground and compute the silhouette images. Then, the silhou-
ettes are forwarded to the 16 cores computer. It computes
the octree and sends the list of full voxels to 16 dual Opteron
computers powering a 16 projectors high resolution display
wall. These computers render the voxels. All computers are
connected through a gigabit Ethernet network.

This application was developed on top of FlowVR [AR06]

for coupling and distributing the different software compo-
nents. FlowVR Render [AR05] was used for the distributed
rendering on the display wall.

Refer to the video associated with the article for the re-
sults. Notice the resolution of the video is lower than the
display wall resolution, making it difficult to distinguish the
smaller voxels while they are clearly visible on the display
wall. When rendering, the voxels are colored according to
their depth level. Tests were performed with and without
time control, with various numbers of processors and differ-
ent levels of max depths. The quality significantly increases
with the max depth (Fig. 9). Fingers become visible at level
8. Some artifacts (ghost leg) are visible in some situations.
This is due to the accumulation of small errors from cam-
era calibration, background subtraction and voxel projec-
tion tests. The time control enables to keep the latency low
and the frame rate stable. Some momentaneous performance
drops are visible in the video. Though the cause of these
drops are not yet clearly identified, it is probably related to
network issues (we suspect the linux network driver).

8. Involving the GPU

The implementation was modified to use a GPU as a co-
processor for one thread. The work stealing algorithm is not
modified. The only difference comes from the way a GPU
processes a voxel. As stated earlier, to test a voxel, differ-
ent points contained in the voxel are projected back onto the
silhouettes. On a CPU, the result of each point projection is
probed to detect if the status of the voxel can be defined. If so
the CPU skips to the next voxel. Due to the SIMD nature of
a GPU, making so many probing tests is highly inefficient.
To bypass this limitation, the CPU provides to the GPU a
list of points to project back onto the silhouettes. The GPU
performs all these projections and the CPU gets back the re-
sults to define the status of the voxels. The GPU becomes
faster than the CPU (compared to the case where the CPU
performs all the projections) only if the number of points to
test is large enough to hide the overhead of transferring the
data back and forth between the CPU and the GPU. So the
use of the GPU is triggered only if the number of tests to
perform reaches a certain threshold. To reach that threshold
several voxels can be tested at once if available in the ready
list.

Experiments were performed on the 16 core machine
equipped with one Nvidia Geforce 7900 graphics card
(Fig. 10). Involving the GPU instead of relying only on the
CPU increases the performance by 30% from 234.20ms to
180.17ms. Using these numbers as the reference sequential
execution times (T GPU

1 = 180.17ms and TCPU
1 = 234.20ms),

we can compute a lower bound for the execution time when
p− 1 CPUs and one CPU/GPU couple are involved in the

Figure 10: GPGPU x Pure CPU.

computation:

Tideal(p) =
1

(p−1)
TCPU

1
+ 1

T GPU
1

(4)

Experimental results shows that our implementation usually
fails to stick to this ideal case, often a pure CPU based execu-
tion being more efficient. The CPU is in fact often faster than
the GPU because it can bypass many projection tests while
the GPU will always perform all tests even if the voxel status
can be defined after just a few tests. The main interest of this
early experiment is to show that a GPU can be involved in the
computation without having to deeply revisit the work steal-
ing algorithm. Future experiments will focus on involving
more GPUs and improving the GPU implementation, target-
ing a Nvidia G80 GPU programmed with the CUDA library.

Notice that the theoretical results (Section 5) does not ap-
ply to computing units running at different speeds. How-
ever we should be able to extend our result to this case by
relying on Bender and Rabint’s proof of work-stealing for
heterogeneous processors of different and possibly changing
speeds [BR02].

9. Conclusion

This paper introduced a work stealing algorithm for a
time-constrained octree carving. The algorithm enables to
dynamically balance the work load while ensuring a relaxed
width first octree carving, required to get a balanced octree
carving when the timeout occurs.

The algorithm was validated theoretically as well as ex-
perimentally by applying it to 3D modeling. The algorithm
is general enough to be applied to other problems, for in-
stance from computer graphics where octrees are common.
It can also be applied to different tree structures. Just notice
that the smaller the tree arity, the smaller the ratio W1

W∞
.

Future work will focus on improving the GPU implemen-

tation to efficiently involve multiple CPUs as well as multi-
ple GPUs into the computation.

10. Acknowledgements

The authors wish to thank Thomas Arcila, Everton Hermann
and Florian Geffray for their help with the experiments.

This work is partly funded by ANR grant
BGPR/SafeScale.

References

[ABP01] ARORA N. S., BLUMOFE R. D., PLAXTON

C. G.: Thread scheduling for multiprogrammed multi-
processors. Theory Comput. Syst. 34, 2 (2001), 115–144.

[AR05] ALLARD J., RAFFIN B.: A shader-based parallel
rendering framework. In IEEE Visualization Conference
(Minneapolis, USA, October 2005).

[AR06] ALLARD J., RAFFIN B.: Distributed Physical
Based Simulations for Large VR Applications. In IEEE
Virtual Reality Conference (Alexandria, USA, March
2006).

[BR02] BENDER M. A., RABIN M. O.: Online schedul-
ing of parallel programs on heterogeneous systems with
applications to cilk. Theory of Computing Systems Spe-
cial Issue on SPAA ’00 35, 3 (2002), 289–304.

[CD99] CLYNE J., DENNIS J.: Interactive direct volume
rendering of time-varying data. In Eurographics Data Vi-
sualization ’99 Conference (1999), pp. 109–120.

[Gra66] GRAHAM R. L.: Bound for certain multiprocess-
ing anomalies. Bell System Tech. J. (1966), 1563–1581.

[GWN∗03] GROSS M., WUERMLIN S., NAEF M.,
LAMBORAY E., SPAGNO C., KUNZ A., KOLLER-
MEIER E., SVOBODA T., GOOL L. V., S. LANG K. S.,
MOERE A. V., STAADT O.: Blue-C: A Spatially Immer-
sive Display and 3D Video Portal for Telepresence. In
Proceedings of ACM SIGGRAPH 03 (San Diego, 2003).

[HA98] HEIRICH A., ARVO J.: A competitive analysis
of load balancing strategies for parallel ray tracing. The
Journal of Supercomputing 12, 1–2 (1998), 57–68.

[HHD99] HORPRASERT T., HARWOOD D., DAVIS L. S.:
A Statistical Approach for Real-time Robust Background
Subtraction and Shadow Detection . In IEEE ICCV’99
frame-rate workshop (1999).

[KGYS05] KARAMAN M., GOLDMANN L., YU D.,
SIKORA T.: Comparison of static background segmenta-
tion methods. In Visual Communications and Image Pro-
cessing (VCIP ’05) (Beijing, China, July 2005).

[MP04] MATUSIK W., PFISTER H.: 3D TV: A Scal-
able System for Real-Time Acquisition, Transmission,
and Autostereoscopic Display of Dynamic Scenes. In
Proceedings of ACM SIGGRAPH 04 (2004).

[RTB06] ROCH J.-L., TRAORE D., BERNARD J.: On-line
adaptive parallel prefix computation. In EUROPAR’2006
(Dresden, Germany, August 2006), Springer-Verlag L. .,
(Ed.), pp. 843–850.

[Sze93] SZELISKI R.: Rapid Octree Construction from
Image Sequences. Computer Vision, Graphics and Image
Processing 58, 1 (1993), 23–32.

