
HAL Id: hal-01856367
https://hal.science/hal-01856367v1

Submitted on 18 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging the Power of Big Data Tools for Large Scale
Molecular Dynamics Analysis

Omar A. Mures, Emilio J. Padrón, Bruno Raffin

To cite this version:
Omar A. Mures, Emilio J. Padrón, Bruno Raffin. Leveraging the Power of Big Data Tools for Large
Scale Molecular Dynamics Analysis. JP2016 - XXVII Jornadas de Paralelismo, Sep 2016, Salamanca,
Spain. pp.1-7. �hal-01856367�

https://hal.science/hal-01856367v1
https://hal.archives-ouvertes.fr

Leveraging the Power of Big Data Tools for
Large Scale Molecular Dynamics Analysis

Omar A. Mures1, Emilio J. Padrón2 and Bruno Raffin3

Abstract— Parallel Molecular Dynamics simulations
are generating atom trajectories of growing sizes and
complexity. Analyzing these trajectories is expensive
computationally and time consuming. One reason is
the lack of tools that enable the computational bi-
ologist to easily implement the analysis while ensur-
ing reduced processing times exploiting the benefits
of parallel architectures. In this paper, we present
a comparison between two parallel analytics frame-
works based on the Map/Reduce paradigm: HiMach,
a dedicated framework for trajectory analysis based
on MPI, and Flink, a Big Data analytics framework.
Both frameworks enable to hide the complexity of
parallel code creation to the programmer, providing
significant performance gains compared to a sequen-
tial execution.

Keywords—Molecular Dynamics, Big Data, MapRe-
duce, Flink, High Performance Data Analysis, Paral-
lelization.

I. Introduction

RECENTLY in the HPC vendor and science com-
munity a new tendency is on the rise, since both

fields face similar issues, these two worlds need to
come together in order to solve bigger and more
complex science problems. As a consequence, base
technologies themselves are becoming more closely
related. Nowadays scientists are taking advantage
more than ever of the evolving computing resources
available to them. From their local workstations to
high performance clusters in large data centers, they
rely on these tools to discover new phenomena in
their respective fields.

To accomplish the aforementioned tasks, there is
an inherent need to simplify the creation of analysis
code that can exploit these heterogeneous resources.
Big Data analytics tools based on the MapReduce
paradigm [1], such as Hadoop [2], enable to take ad-
vantage of commodity compute clusters for analysing
very large data sets generated from the web or busi-
ness applications. But when trying to analyse com-
plex scientific datasets they can fall short from a pro-
grammers perspective and performance wise.

Molecular Dynamics (MD) is a computer simula-
tion technique for studying physical interactions of
atoms and molecules [3]. It is a type of N-body sim-
ulation [4], which simulates a dynamic system of par-
ticles, typically under the influence of physical forces,
such as gravity. Atoms and molecules interact dur-
ing a preset period of time, allowing the scientist
to observe the dynamical evolution of the system.

1Computer Architecture Group, Universidade da Coruña,
e-mail: omar.alvarez@udc.es

2Computer Architecture Group, Universidade da Coruña,
e-mail: emilioj@udc.es

3University Grenoble Alpes, INRIA, e-mail:
bruno.raffin@inria.fr

The most common approach determines the trajec-
tories of atoms and molecules by solving Newton’s
equations of motion for a system of interacting par-
ticles. The forces and energies of said particles are
computed using inter-atomic potentials or molecular
mechanics force fields. This method is applied today
in chemical physics, material science and the model-
ing of biomolecules.

Although plenty of progress has been made in the
creation of efficient parallel code for Molecular Dy-
namics simulations, code for analysis of the results
that they produce in parallel is scarce. As a conse-
quence, scientist have to rely on serial tools to ana-
lyze the aforementioned data. In this paper we focus
on the analysis of atom trajectories generated from
Molecular Dynamics simulations. These datasets can
be very large and time consuming to analyze, some-
times reaching thousands of gigabytes in size. The
size of trajectories is expected to keep on growing
further as exascale computers [5] become available,
aggravating this need for parallel analysis code. Cur-
rent serial approaches force the scientist to filter tra-
jectories sometimes randomly in order to find the
phenomena of interest, this is far from a perfect ap-
proach, and if not resolved, could hurt the scientists’
opportunities to perform new discoveries and render-
ing the purpose of creating more precise simulations
useless.

Existing analysis libraries such as MDAnalysis [6]
or VMD [7] rely on traditional parallelization ap-
proaches based on MPI and/or OpenMP that are
often complex to deploy at large scale and use effi-
ciently for computational biologists. In this paper,
we investigate how the Map/Reduce paradigm could
be leveraged to enable the analysis of large trajecto-
ries. We have performed a comparison between two
parallel analytics frameworks based on the Map/Re-
duce paradigm: HiMach, a framework for trajectory
analysis based on MPI and VMD, and Flink, a new
generation Big Data analytics engine. Both frame-
works hide the complexity of parallel code creation
to the user, providing significant performance gains
compared to sequential executions.

A brief background overview of the subject is given
in section II, the proposed solution is explained in
section III and the results obtained are presented in
section IV.

II. Background

MapReduce is a programming model for process-
ing and generating large data sets in parallel, on
commodity clusters. It relies on a simple program-
ming model that uses two main functions, Map and

Reduce. They are inspired by the map and reduce
functions that were commonly used in functional pro-
gramming, although their purpose in the MapReduce
framework is not the same as in their original forms.

These two functions (see Figure 1) have to be de-
fined by the programmer in order to obtain paral-
lelism for data-intensive tasks. The Map function
consumes key-value pairs and produces one or more
intermediate pairs:

Map(k1, v1) → list(k2, v2)

The Reduce function, processes a certain key and
a list of values associated to it, usually outputting a
list with less values than the input list:

Reduce(k2, list(v2)) → list(v3)

For example, a typical MapReduce workload that
counts words in a text, will Map (extract) the words
in all lines of the text emitting (k2, v2), where k2
is the word and v2 is 1. This will allow to Reduce
(summarize) the results, counting the number of oc-
currences of each word. In order to do this, each
reducer uses the input (k2, list(v2)); where k2 is the
word and list(v2) is the list of values associated to
k2 (all ones), to sum up the values, obtaining the
aforementioned count.

The MapReduce system performs the processing
by marshaling the distributed servers, running the
required tasks in parallel, managing all communica-
tions and data movement between the various parts
of the system, while providing redundancy and fault
tolerance. As such, a in a single-threaded environ-
ment, MapReduce will usually not be faster than a
traditional implementation; any performance gains
are usually only seen in multi-threaded scenarios.

From a performance standpoint, MapReduce has
several limitations. First, as we have seen in Fig-
ure 1, after each Map phase, results are written to
disk as Map Output Files (MOFs) even if they can
fit in main memory, and will be later read by the
Reduce phase in order to compute the final results.
This is good from a fault tolerance point of view, but
when trying to achieve high performance it presents
a clear problem, as avoiding disk writes and reads
could increase performance substantially. Further-
more, until every map task has finished, the reduce
phase cannot start; even if the required data has al-
ready been obtained. Second, since the paradigm is
quite simple, it presents almost no opportunities for
the framework to perform automatic optimizations.
While a experimented MapReduce programmer can
use these two abstractions to model complicated al-
gorithms, it is clear that this paradigm can fall short
in some complex scenarios where more flexibility is
required, apart from the fact that there is not enough
semantic information in this two constructs in order
to infer properties about the user defined functions.

Several efforts have been made to mitigate these
problems, for instance the parallel trajectory analysis
framework HiMach [8], is a MapReduce like system

Map
Map

Map

MOF

MOF
MOF

Reduce Reduce

HDFS

(Key, Value)

Key:
{Values, …}

HDFS

Fig. 1

Typical MapReduce job workflow.

where the user writes sequential trajectory analysis
code and the system carries out the parallel anal-
ysis of the trajectory automatically. This solution
avoids the use of MOFs, as well as, using high per-
formance MPI code that can take advantage of In-
finiBand interconnects, improving performance sub-
stantially. Although this framework solves some of
the issues that have been presented earlier, the paral-
lelization paradigm offered still suffers from the same
issues as MapReduce.

Since for complex analysis the MapReduce method
is not optimal, a more advanced paradigm that re-
lies on Directed Acyclic Graphs (DAGs) [9] has been
chosen in order to allow the user to express more
complex analytics tasks. This new approach uses
Parallelization Contracts (PACTs) [10], which can be
thought of as a generalization of MapReduce in order
to ease the expression of many operations, which in
turn leads to better expressiveness and enables opti-
mizations to be inferred automatically. The chosen
framework is the result of the Stratosphere project
[11], an open source project from the Apache Foun-
dation called Flink [12]. To our Knowledge Strato-
sphere/Flink has never been used for analyzing tra-
jectories.

The usage of such framework will allow compu-
tational biologists to more efficiently analyze mas-
sive trajectories, that until now had to be simplified,
which is not ideal. With the presented framework,
a scientist will be able to leverage in a simple way

the power of new generation MapReduce tools, let-
ting them worry about what analysis they want to
perform instead of how to parallelize or deal with
simplifying the data so it is usable.

III. MDReduce Framework

Since our main objective is easing the creation
of parallel code by the scientist, initially we have
chosen the Python [13] language for its ease of use
and plethora of external libraries. Python has been
amply utilized by the scientific community, with li-
braries for efficient numerical analysis like Numpy
[14]. This library is a key component of MDAnal-
ysis, one of the tools that allows scientists to effi-
ciently create parallel Molecular Dynamics analysis
code using our system. This are the key technologies
that were used in order to implement the MDReduce
framework in conjunction with Flink and HiMach.

A. Architecture

Once the reader has been acquainted with the gen-
eral concepts that have been used in the implemen-
tation of MDReduce, it is interesting to take a look
at Figure 2, that presents a more accurate picture of
the system. In the current MDReduce implementa-
tion, the Core module contains all the classes related
to the system internals. First, the Configuration
class takes care of parsing either a configuration file
(it uses the YAML syntax to store several settings) or
the arguments that the user passes to the class con-
structor. It will take care of initializing the requested
back-end (Flink or HiMach), and other trivial setup
tasks. Directly related to this class are the available
Backends. These classes are in charge of dealing
with Flink and HiMach internals, these are helper
classes for initialing these frameworks and running
the requested jobs on them.

Configuration

Backends

Core

Flink HiMach

Analysis

WaterCount

Dihedral
Angles

...

Algorithm

Interface
Zeppelin Thrift

API

Fig. 2

MDReduce system architecture.

The main supported operations that the user can
employ to analyze trajectories in parallel are the fol-
lowing:

In addition, the Analysis module contains all the
classes related to the Molecular Dynamics analy-
sis methods included in the MDReduce framework.

TABLE I

Supported operations. Note: The HiMach backend only

supports the Map and Reduce operations.

Operation Description

Map

Takes one element and

produces zero, one, or more

elements.

Reduce
Combines a group of elements

into a single element.

Filter

Evaluates a function for each

element and retains those

that fulfill it.

Aggregate

Aggregates a group of

values into a single value.

Minimum, maximum, and sums.

Join

Joins two data sets by

creating all pairs of

elements that are equal on

their keys.

Union
Produces the union of two

data sets.

Sort
Sorts dataset depending on a

certain field.

First, an Algorithm base class has been created, so
that developing new analysis scripts is more intuitive
for programmers. Second, several analysis classes
have been included to perform the analyses that will
be detailed in subsection III-B. These two classes,
WaterCount and DihedralAngles offer an insight
for programming analysis codes using the MDReduce
platform.

Finally, through the MDReduce API, external pro-
grams that use the existing algorithms or perform
new types of analyses that can be created by scien-
tists and run on the platform. In order to ease the
integration of the framework with external programs,
output can be consumed by and external client, or
stored in data files. These files can then be analyzed
in local workstations, since the amount data should
have been substantially reduced, and should now be
usable on lesser machines. As can be seen in Figure 2,
Zeppelin [15] a new framework that enables interac-
tive data analytics has also been integrated with the
system. This allows scientists to submit jobs inter-
actively, and dynamically explore the resulting data.
This is a convenient tool to ease the creation and
representation of different analyses, since it allows
the user to interactively modify code and visualize
analysis results.

B. Case Study

To test the feasibility of the proposed system for
Molecular Dynamics analyses, we choose two typical
tasks for a computational biologist. First, how to
obtain a water count in a GLIC channel [16], [17]
using MDReduce. Second, another common analysis
performed in trajectories consists in computing the
dihedral angles [18] in the protein backbone.

B.1 Water Count in a GLIC Channel

I9’

I16’

I9’

I16’

Fig. 3

Graphical representation of the water counting

operation in an ion channel.

As seen in Figure 3, the objective of this analysis
is obtaining the amount of water ions that are com-
prised between certain residues in the ion channel.
The final objective is obtaining a water ion count
for every frame in the trajectory, since the user will
vary the simulation parameters in order to isolate the
causes of the closing and opening of the GLIC ion
channel. This structure has both open and closed
states, the transition mechanism between different
states is unknown for now. Understanding this pro-
cess is crucial, as empowering molecules such as anes-
thetics and alcohols are believed to affect transition
barriers or the relative free energy of states.

To investigate these phenomena, extensive simula-
tions of the GLIC channel with different starting con-
ditions and parameters have been performed. This
allows computational biologists to draw conclusions
about the pore hydration, organization and the pore
lining helix. To characterize the structure of this he-
lix, the first part is performing this analysis. The
number of water molecules in the pore zone between
the two hydrophobic residues I9 and I16 are counted.
After this the scientist can infer which region has
been more affected by pore dewetting.

This type of analysis can be easily characterized in
MDReduce using either the Flink or HiMach back-
ends. Since this is an operation that needs to be
computed for every frame, this translates easily to
the MapReduce paradigm. One just needs to write a
mapper that will perform the water count operation
for every frame. The Figure 4 represents how this
analysis can be performed using the Flink back-end.

The user has to override Flink’s Map function,
with the operations that will be applied to the trajec-
tory. First, the frame number corresponding to the
instance of mapper is selected, then it is processed
with MDAnalysis in order to align it to a reference
frame and obtain the water count in the ion channel
using atom selections. As can be seen, this code is
completely straightforward requiring slight modifica-
tions to be run in parallel.

commentstylecommentstyle commentstyle1 c l a s s MapCount(MapFunction) :
commentstylecommentstyle commentstyle2 de f map(s e l f , va lue) :
commentstylecommentstyle commentstyle3 u . t r a j e c t o r y [i n t (va lue [0])]
commentstylecommentstyle commentstyle4 a l i g n t o (u , uRef , s e l e c t=” pro t e in and
commentstylecommentstyle commentstylebackbone and r e s i d 222:233 ”)
commentstylecommentstyle commentstyle5 se l ec tWater = u . s e l e c t a t o m s (water)
commentstylecommentstyle commentstyle6 i f (se l ec tWater . n atoms > 0) :
commentstylecommentstyle commentstyle7 c y l i n d r e = se lectWater [numpy . where (
commentstylecommentstyle commentstylese l ectWater . c oo rd ina t e s () [: , 0] ∗ ∗ 2 +
commentstylecommentstyle commentstylese l ectWater . c oo rd ina t e s () [: , 1] ∗ ∗ 2 < 100)
commentstylecommentstyle commentstyle[0]]
commentstylecommentstyle commentstyle8 nbWater = c y l i n d r e . n atoms
commentstylecommentstyle commentstyle9 e l s e :
commentstylecommentstyle commentstyle10 nbWater = 0
commentstylecommentstyle commentstyle11 r e turn (va lue [0] , nbWater)

Fig. 4

Water count code example in Flink.

B.2 Dihedral Angles

α
ઠ β

α

ᶕ

α-carbon

Φ

Ψ

I9’

I16’

α-carbon

Φ

Ψ

N

N N

N

Fig. 5

Graphical representation of the dihedral angle

calculation operation in the protein.

As seen in Figure 5, the objective of this analysis
is obtaining a way to visualize energetically allowed
regions for the backbone dihedral angles of amino
acid residues in the protein structure. As mentioned
earlier, understanding the reasons why the transition
between the open and closed states of the ion channel
is crucial for several topics. This second analysis
code is the missing link to study this phenomena
that depends on the pore organization and lining of
the M2 helix. TO help in the description of the state
of the pore, the tilt angles are computed and split in
two angles: the radial and lateral tilt angles of the
M2 helix around the center of mass in respect to the
channel axis.

The second analysis, can be performed in
MDReduce using either both available back-ends.
Since this is an operation that again, needs to be
computed for every frame, it is easily adapted to the
MapReduce paradigm. The user just needs to write
a mapper that will perform the required operations
for every frame. The Figure 6 represents how this

commentstylecommentstyle commentstyle1 c l a s s MapDihedral (Mapper) :
commentstylecommentstyle commentstyle2 de f i n i t (s e l f , u , uRef) :
commentstylecommentstyle commentstyle3 s e l f . u = u
commentstylecommentstyle commentstyle4 s e l f . uRef = uRef
commentstylecommentstyle commentstyle5

commentstylecommentstyle commentstyle6 de f map(s e l f , s t ep) :
commentstylecommentstyle commentstyle7 cur so r = step [0]
commentstylecommentstyle commentstyle8 frameno , framebuf = cur so r
commentstylecommentstyle commentstyle9 a s s e r t framebuf == None
commentstylecommentstyle commentstyle10

commentstylecommentstyle commentstyle11 s e l f . u . t r a j e c t o r y [frameno]
commentstylecommentstyle commentstyle12

commentstylecommentstyle commentstyle13 a l i g n t o (s e l f . u , s e l f . uRef , s e l e c t=”
commentstylecommentstyle commentstylep ro t e in and backbone and r e s i d 222:233 ”)
commentstylecommentstyle commentstyle14

commentstylecommentstyle commentstyle15 phi A , ps i A = ang l e be tween pr inc axe s (
commentstylecommentstyle commentstyleTM2 A, a lpha carbones)
commentstylecommentstyle commentstyle16 phi B , ps i B = ang l e be tween pr inc axe s (
commentstylecommentstyle commentstyleTM2 B, a lpha carbones)
commentstylecommentstyle commentstyle17 phi C , ps i C = ang l e be tween pr inc axe s (
commentstylecommentstyle commentstyleTM2 C, a lpha carbones)
commentstylecommentstyle commentstyle18 phi D , psi D = ang l e be tween pr inc axe s (
commentstylecommentstyle commentstyleTM2 D, a lpha carbones)
commentstylecommentstyle commentstyle19 phi E , ps i E = ang l e be tween pr inc axe s (
commentstylecommentstyle commentstyleTM2 E, a lpha carbones)
commentstylecommentstyle commentstyle20

commentstylecommentstyle commentstyle21 y i e l d (frameno , [phi A , psi A , phi B ,
commentstylecommentstyle commentstylepsi B , phi C , psi C , phi D , psi D , phi E
commentstylecommentstyle commentstyle, ps i E])
commentstylecommentstyle commentstyle22

commentstylecommentstyle commentstyle23 r e turn
commentstylecommentstyle commentstyle24

commentstylecommentstyle commentstyle25

Fig. 6

Dihedral angle code example in HiMach.

analysis can be performed using the HiMach back-
end.

IV. Results

To test the proposed system we have used the Plu-
ton cluster, a supercomputing facility situated in the
Universidade da Coruña. In the Table II, the hard-
ware that the cluster possesses can be seen.

TABLE II

Hardware used for testing.

Hardware compute-0-16

CPU Model 2 x Intel Xeon E5-2660

Cores/Threads 16/32

CPU Speed/Turbo 2.20 GHz/3 GHz

Memory 64 GB DDR3 1600 Mhz

Disk 1 x HDD 1 TB SATA3 7.2K

Networks InfiniBand FDR

Add performance number for sequential execution (pure

MDAnalyis and/or VMD code) The analysis algorithms
explained in subsection III-B, have been used to run
the performance tests carried out in this section.
These tests have tested several different strategies,
that access data with multiple I/O patterns, in order
to discern the best I/O access pattern. The tested
patterns are:

• Broadcast: This strategy utilizes a single file
that contains the trajectory, that is then dis-
tributed to every map task and accessed in par-

allel.
• Split: The trajectory in this strategy is split in

one file per frame, which is then accessed inde-
pendently by every map task in parallel.

All strategies were then executed using both back-
ends available in MDReduce to see which of them
fares better for each type of analysis.

Figure 7 shows the job execution times of the water
count analysis.

Fig. 7

Run time with each back-end of the water count job.

Legend should be move elsewhere (inside the graph or above

it) to have bigger graphs

It is kind of difficult to see which approach fares
better, since with every approach the execution time
as we use more than one processor descends greatly.
The fastest time for this workload, was achieved by
the HiMach back-end with the broadcast strategy.
This is due to the fact that the HiMach runtime uses
MPI and the Infiniband capabilities of our cluster in
an optimal way.

Fig. 8

Bandwidth with each back-end of the water count

job.

To further see what is happening in this analysis
code in Figure 8, we can see the bandwidth achieved
by all the strategies. Here the reader can see bet-
ter which back-end is the fastest. This results mimic
the ones obtained before, but paint a clearer picture

about the performance that each strategy achieves.
As was mentioned earlier, the best performance is
achieved by HiMach followed closely by Flink. The
first thing that one can deduce examining this graph,
is that clearly the split access pattern is less effi-
cient than the broadcast pattern. This was pre-
dicted, since reading through small files generally
causes lots of seeks and stresses the underlying file
system, which results in an inefficient data access
pattern.

Fig. 9

Speedup with each back-end of the water count job.

In addition, as to ascertain the efficiency of the
tested frameworks, in Figure 9 we can see the
speedups of all the different code versions. Here we
can observe other interesting behavior. Both frame-
works scale well but as the number of processors is
increased a couple of discrepancies can be observed,
and the scaling weakens. In addition, we can see
that with the split strategy both back-ends have close
speedups. The performance difference is more signif-
icant for the broadcast access pattern, probably due
to a higher impact of the network performance that
HiMachbetter use than Flink.

V. Future Work

Since several inefficiencies in the current imple-
mentation are believed to be related to the usage
of the Python interpreter from the Java Flink pro-
cesses, it could be interesting to test the ZipPy [19]
python implementation in our system. This Python
3 implementation uses Truffle [20] to generate op-
timized JVM bytecode from Python scripts. This
could certainly improve the efficiency of the analysis
performed using the MDReduce framework.

In addition, it could also be interesting to extend
our study to include a Spark [21] back-end, today
probably the most popular Big Dta analytics frame-
work.

Moreover, to solve one of the main issues with the
split data access pattern, other storage solutions like
HBase [22] could be explored. This column oriented
data store has the potential to avoid the bottleneck
that the plethora of small files in a long trajectory
could present to the MDReduce framework.

VI. Conclusions

Using MDReduce has proven to improve not only
processing times, since it allows users to write almost
sequential code that can then be exploited for par-
allel analysis, but also in terms of programming effi-
ciency. It is clear that using the introduced system,
is minimally more complex than writing sequential
analysis code for straightforward tasks.

The usage of Flink, can yield performance advan-
tages due to incorporated job optimizer, but also
makes programming more complex analysis algo-
rithms possible. It also allow the user to take ad-
vantage of the Hadoop ecosystem, for instance al-
lowing the users to visualize data dynamically using
Zeppelin.

Our initial performance tests have shown that Hi-
Mach, due to its simplicity, is the best option for
running straightforward analysis tasks. However
the analysis we have tested are simple map/reduce
schemes. They did not allow us to probe the capa-
bilities of Flink designed to support more complexe
parallelization schemes.

References

[1] Jeffrey Dean and Sanjay Ghemawat, “Mapreduce: sim-
plified data processing on large clusters,” Communica-
tions of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] “Hadoop,” http://hadoop.apache.org/, Accessed:
2016-05-01.

[3] Berni J Alder and TE Wainwright, “Studies in molecular
dynamics. i. general method,” The Journal of Chemical
Physics, vol. 31, no. 2, pp. 459–466, 1959.

[4] John H Reif and Stephen R Tate, “The complexity of
n-body simulation,” in Automata, Languages and Pro-
gramming, pp. 162–176. Springer, 1993.

[5] Timothy Germann, “Exascale computing and what it
means for shock physics,” in APS Shock Compression
of Condensed Matter Meeting Abstracts, 2015, vol. 1, p.
1002.

[6] Naveen Michaud-Agrawal, Elizabeth J. Denning,
Thomas B. Woolf, and Oliver Beckstein, “Mdanalysis:
A toolkit for the analysis of molecular dynamics simu-
lations,” Journal of Computational Chemistry, vol. 32,
no. 10, pp. 2319–2327, 2011.

[7] William Humphrey, Andrew Dalke, and Klaus Schulten,
“Vmd: visual molecular dynamics,” Journal of molecular
graphics, vol. 14, no. 1, pp. 33–38, 1996.

[8] Tiankai Tu, Charles A Rendleman, David W Borhani,
Ron O Dror, Justin Gullingsrud, Morten Ø Jensen,
John L Klepeis, Paul Maragakis, Patrick Miller, Kate A
Stafford, et al., “A scalable parallel framework for
analyzing terascale molecular dynamics simulation tra-
jectories,” in High Performance Computing, Network-
ing, Storage and Analysis, 2008. SC 2008. International
Conference for. IEEE, 2008, pp. 1–12.

[9] K. Thulasiraman and M.N.S. Swamy, Graphs: Theory
and Algorithms, Wiley, 2011.

[10] Alexander Alexandrov, Stephan Ewen, Max Heimel,
Fabian Hueske, Odej Kao, Volker Markl, Erik Nijkamp,
and Daniel Warneke, “Mapreduce and pact-comparing
data parallel programming models.,” in BTW, 2011, pp.
25–44.

[11] Alexander Alexandrov, Rico Bergmann, Stephan Ewen,
Johann-Christoph Freytag, Fabian Hueske, Arvid Heise,
Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, et al.,
“The stratosphere platform for big data analytics,” The
VLDB Journal, vol. 23, no. 6, pp. 939–964, 2014.

[12] “Flink,” https://flink.apache.org/, Accessed: 2016-
05-01.

[13] “Python,” https://www.python.org/, Accessed: 2016-
05-01.

[14] Stefan Van Der Walt, S Chris Colbert, and Gael Varo-
quaux, “The numpy array: a structure for efficient nu-
merical computation,” Computing in Science & Engi-
neering, vol. 13, no. 2, pp. 22–30, 2011.

http://hadoop.apache.org/
https://flink.apache.org/
https://www.python.org/

[15] “Zeppelin,” https://zeppelin.incubator.apache.org/,
Accessed: 2016-05-01.

[16] Prafulla Aryal, Mark SP Sansom, and Stephen J Tucker,
“Hydrophobic gating in ion channels,” Journal of molec-
ular biology, vol. 427, no. 1, pp. 121–130, 2015.

[17] Pierre-Jean Corringer, Marc Baaden, Nicolas Bocquet,
Marc Delarue, Virginie Dufresne, Hugues Nury, Marie
Prevost, and Catherine Van Renterghem, “Atomic struc-
ture and dynamics of pentameric ligand-gated ion chan-
nels: new insight from bacterial homologues,” The Jour-
nal of physiology, vol. 588, no. 4, pp. 565–572, 2010.

[18] Ricarda JC Hilf and Raimund Dutzler, “A prokary-
otic perspective on pentameric ligand-gated ion channel
structure,” Current opinion in structural biology, vol. 19,
no. 4, pp. 418–424, 2009.

[19] Wei Zhang, Per Larsen, Stefan Brunthaler, and Michael
Franz, “Accelerating iterators in optimizing ast inter-
preters,” SIGPLAN Not., vol. 49, no. 10, pp. 727–743,
Oct. 2014.

[20] Thomas Würthinger, Christian Wimmer, Andreas Wöß,
Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor
Richards, Doug Simon, and Mario Wolczko, “One vm to
rule them all,” in Proceedings of the 2013 ACM inter-
national symposium on New ideas, new paradigms, and
reflections on programming & software. ACM, 2013, pp.
187–204.

[21] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy Mccauley, M Franklin,
Scott Shenker, and Ion Stoica, “Fast and interactive an-
alytics over hadoop data with spark,” USENIX; login,
vol. 37, no. 4, pp. 45–51, 2012.

[22] Mehul Nalin Vora, “Hadoop-hbase for large-scale data,”
in Computer science and network technology (ICCSNT),
2011 international conference on. IEEE, 2011, vol. 1, pp.
601–605.

https://zeppelin.incubator.apache.org/

	Introduction
	Background
	MDReduce Framework
	Architecture
	Case Study
	Water Count in a GLIC Channel
	Dihedral Angles

	Results
	Future Work
	Conclusions

