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The performance of different classic or more recent finite element formulations for Stokes and coupled Stokes-Darcy problems are discussed. Discontinuous, H 1 -conforming, or H(div)conforming velocity approximations can be used for Stokes flows, the formulations being presented in a unified framework. Special emphasis is given to the former H(div)-conforming formulation, for which only the tangential velocity components require a penalization treatment. For incompressible fluids, this method naturally gives exact divergence-free velocity fields, a property that few schemes can achieve. When combined with classic mixed formulation for Darcy's flows, a strongly conservative scheme is derived for the treatment of coupled Stokes-Darcy problems. Unlike other methods existing in the literature, this technique can use the same combination of approximation spaces in both flow regions, and simplifies the enforcement of the coupling Stoke-Darcy interface conditions. All the methods are implemented using an object-oriented computational environment, and typical test problems are simulated to illustrate the properties of the different approximations, verifying errors, and rates of convergence. Then, an application to the simulation of a model representing selfcompacting concrete flow around reinforcing bars is presented. An homogenization technique is applied to interpret the reinforced bar domain by a Darcy's law, while a Stokes flow is considered in the remaining domain.

Introduction

In this paper, the interest is on finite element approximations of Stokes and coupled Stokes-Darcy problems, which appear in considerable number of applications [START_REF] Discacciati | Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation[END_REF]. For instance, Darcy's flows occur for incompressible fluids in a rigid saturated porous media, appearing in various industrial processes. The model is formed by the mass balance of the fluid, and by a constitutive equation (Darcy's law), which relates the mean velocity of the fluid within the pores with a potential field (pressure) in terms of the permeability tensor and the fluid viscosity [START_REF] Chen | Computational methods for multiphase flows in porous media[END_REF]. Stokes problems are used to model free flow situations, where the fluid velocity is very slow, the viscosity is very large, or the length-scale of the flow is very small. This model is composed of a momentum balance equation, an equation for the conservation of mass, which are augmented with constitutive and state equations [START_REF] Slattery | Advanced transport phenomena[END_REF]. They have been used to understand lubrication [START_REF] Lautrup | Physics of continuous matter: exotic and everyday phenomena in the macroscopic world[END_REF], but also appear in a wide class of other fluid flow problems.

Situations where both kinds of flows occur simultaneously, in adjacent regions, are also of interest. For instance, this is the case of the modeling of the interaction of flows in wells and reservoirs, and of flows in fractured porous media, commonly found in Petroleum Engineering, or in modelling the interaction between surface (rivers) and groundwater (aquifer). Free flow channel confined by porous walls is a feature of many of the natural and industrial settings [START_REF] Hanspal | Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations[END_REF]. Self-compacting concrete flow around reinforcing bars can also be represented by a coupled Stokes-Darcy problem, where the reinforced bar domain is represented by a Darcy's law obtained by homogenization, while a Stokes flow is considered elsewhere [START_REF] Kolařík | Computational homogenization of fresh concrete flow around reinforcing bars[END_REF].

Since its early beginning, in the sixties, the history of Finite Element Methods (FEM) shows a variety of formulations for Darcy and Stokes problems, which have been proposed and studied for different types of approximation spaces constructed for the variables involved. For both problems, pressure approximations are in L 2 (Ω) (i.e. they may be discontinuous) but the natural context for Stokes velocities is of continuous functions over element interfaces (H 1 -conforming) [START_REF] Girault | Finite element methods for Navier-Stokes equations: Theory and algorithms[END_REF], and the fluxes only have continuous normal components (H(div)-conforming) for Darcy's problems [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. There is a variety of non-conforming methods adopting discontinuous velocity spaces, as in Discontinuous Galerkin or in hybrid methods for both type of flows [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF][START_REF] Cockburn | Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[END_REF][START_REF] Cockburn | Devising HDG methods for Stokes flow: an overview[END_REF], just to cite a few. There are also several works in the literature dealing with coupled Stokes-Darcy problems, and we refer to [START_REF] Correa | A unified mixed formulation naturally coupling Stokes and Darcy flows[END_REF][START_REF] Chen | H(div)-conforming finite element methods for the coupled Stokes and Darcy problem[END_REF][START_REF] Márquez | Strong coupling of finite element methods for the Stokes-Darcy problem[END_REF] for extensive bibliography review on this topic. Recently, it has regained relevance and is attracting new attention of numerical analysts, and improved numerical methods have been proposed [START_REF] Gatica | Analysis of the HDG method for the Stokes-Darcy coupling[END_REF].

One purpose of the current work is to be an extension of the recent numerical survey in [START_REF] Forti | A comparative numerical study of different finite element formulations for 2D model elliptic problems: continuous and discontinuous Galerkin, mixed and hybrid methods[END_REF], where different schemes for Darcy's problems are considered. That comparison study includes classic H 1 -conforming Galerkin method, and mixed methods, using well known or some more recent H(div)-conforming flux approximations. Different formulations using discontinuous approximations are also studied, namely, a Discontinuous Galerkin formulation and a primal hybrid method. All the formulations have been implemented and numerically compared in terms of accuracy and computational performance. Now, in the context of FEM applied to stationary Stokes problems, several methods are discussed, using an unified representation form, where the variables are, in principle, defined in broken spaces. Then each method is stated as a particular case of the general formulation, by imposing an specific continuity constraint for the approximations of velocity fields. However, as requested in any mixed formulation, in order to have stable and accurate simulations, the adopted approximation spaces for each variable should be chosen properly (verifying the inf-sup condition). In such context, the following methods for the Stokes problem shall be implemented and compared in terms of accuracy:

• Classic H 1 -conforming methods occur when continuous approximations are considered for the velocity variable [START_REF] Girault | Finite element methods for Navier-Stokes equations: Theory and algorithms[END_REF].

• Without assuming any continuity constraint in the approximations of the velocity and pressure variables, we are in the context of discontinuous Galerkin methods. [START_REF] Toselli | hp discontinuous Galerkin approximations for the Stokes problem[END_REF][START_REF] Rivière | Analysis of a discontinuous finite element method for coupled Stokes and Darcy problems[END_REF][START_REF] Lazarov | Stabilized discontinuous finite element approximations for Stokes equations[END_REF]. For this case, extra stabilization and/or symmetry terms need to be incorporated in the general formulation.

• When only the continuity of the normal components of the velocity field is enforced over element interfaces, H(div)-conforming approximation spaces are applied, and penalization is introduced just on the velocity tangential components over element interfaces.

In this sense, this method stays in between the two previous ones concerning regularity of velocity approximations. For Stokes flows, the use of this kind of approximation has been carried out in [START_REF] Wang | New finite element methods in computational fluid dynamics by H(div) elements[END_REF][START_REF] Wang | A robust numerical method for Stokes equations based on divergence-free H(div) finite element methods[END_REF], and can be applied for any pair of compatible space configuration in H(div)-L 2 for Darcy's problems.

Special emphasis shall be given to the former H(div)-conforming formulation for Stokes flows, since the discrete velocity field will be exactly divergence-free, assuming that the fluid is incompressible. Another important feature of this approach is that it offers a more dynamic treatment of boundary conditions than the standard Galerkin methods, since the normal component of the velocity is set as an essential boundary condition and is strongly enforced, but the tangential component of the velocity is treated as a natural boundary condition and is weakly imposed. Thus, this approach empowers the method for problems with discontinuous boundary conditions. It should be observed that in the context of hybrid methods, the idea of employing H(div) elements in order to get exactly divergence-free velocity has been explored in [START_REF] Carrero | Hybridized globally divergence-free LDG methods. Part I: The Stokes problem[END_REF][START_REF] Cockburn | Divergence-conforming HDG methods for Stokes flows[END_REF][START_REF] Lehrenfeld | High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows[END_REF].

For coupled Stokes-Darcy problems, we also adopt H(div)-conforming flux approximations on both sides, a method that has been analyzed in [START_REF] Kanschat | A strongly conservative finite element method for the coupling of Stokes and Darcy flow[END_REF][START_REF] Chen | H(div)-conforming finite element methods for the coupled Stokes and Darcy problem[END_REF]. On Stokes's part, the H(div)-conforming method just described above is used, and in Darcy's part, a classic mixed formulation is applied [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. In order to fit the fluids between the two domains, experimental conditions presented in [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] shall be considered, relating tangential component of fluid velocity and shear stress on Stokes-Darcy interface.

As emphasized in [START_REF] Kanschat | A strongly conservative finite element method for the coupling of Stokes and Darcy flow[END_REF], the most important property of this method is its capability of solving strongly the divergence-free equation, a task that few schemes can accomplish. Furthermore, the same pair of approximation spaces for velocity and pressure representations can be used in both flow regions, a characteristic not shown by most methods designed for the simulation of coupled Stokes-Darcy problems. Another advantage is that the Beavers-Joseph-Saffman condition is easier to enforce, since the bi-linear form only involves the tangential component of the velocity over the Stokes-Darcy interface.

A object oriented programming environment, called NeoPZ [START_REF] Devloo | Pz: An object oriented environment for scientific programming[END_REF], was used for the computational implementation of all the presented methods. Developed at LabMeC (Laboratory of Computational Mechanics), at the State University of Campinas, Brazil, it can be freely downloaded from http://github.com/labmec/neopz.

The organization of the present paper starts by setting the main notation in Section 2. The formulations for the Stokes problem are defined, discussed and computationally verified in Section 3. Next, the coupled Stokes-Darcy problem is considered in Section 4. In Section 5 the methods discussed in the previous sections are used to treat a fluid governed by the Stokes equation passing through obstacles in its original form or by an reduced Stokes-Darcy homogenized model. Finally, in Section 6, we conclude the paper with some final remarks.

Notation

Let Ω ⊂ R 2 be an open polygonal domain with border ∂Ω, and unit normal n exterior to Ω. Shape-regular partitions T = {Ω e , e = 1, • • • , n el } of Ω, formed by affine quadrilateral elements, shall be considered. The set Γ formed by all element edges E is called the mesh skeleton, and Γ int = {E ∈ Γ : E ⊂ Ω} denotes the set of internal edges. To each interior edge E, once and for all, a unit normal vector n E and a tangent vector τ E are associated so that { n E , τ E } form a right-hand coordinate system. If E is a boundary edge, then n E = n is the unit normal exterior to Ω. Over interfaces E ∈ Γ int between two elements, Ω 1 and Ω 2 , jump and average operators of a function v are formally defined as

v E = v 1 | E -v 2 | E , v E = 1 2 (v 1 | E + v 2 | E ) ,
where v i = v| Ω i . For boundary edges E ⊂ ∂Ω, jump and average are function traces over E.

Local approximations shall be defined in terms of one of the following polynomial spaces:

• P k or Q k : scalar polynomials of total degree k or maximum degree k in each variable.

• Q m,n : scalar polynomials of maximum degree m in x, and n in y.

• - → P k = [P k ] 2 or - → Q k = [Q k ] 2 :
vector polynomial spaces of total degree k or maximum degree k in each component.

Vector spaces

-→ V are piece-wise defined over the elements Ω e ∈ T in terms of local polynomial approximations -→ V e . They can be of the following kinds:

- → V d = { ϕ ∈ [L 2 (Ω)] 2 ; ϕ| Ωe ∈ - → V e }, - → V c = { ϕ ∈ [H 1 (Ω)] 2 ; ϕ| Ωe ∈ - → V e }, - → V div = { ϕ ∈ H(div, Ω); ϕ| Ωe ∈ - → V e }.

It is clear that for

E ∈ Γ int ϕ E = 0, if ϕ ∈ - → V c ( ϕ • τ e ) E τ E , if ϕ ∈ - → V div , since ϕ • n E = 0 for H(div)-conforming vector fields.
The scalar approximation spaces for the pressure are also piece-wise defined in terms of local polynomial spaces Ψ e . Globally, the spaces may be continuous or discontinuous

Ψ c = {ϕ ∈ L 2 0 (Ω) ∩ H 1 (Ω); ϕ| Ωe ∈ Ψ e }, Ψ d = {ϕ ∈ L 2 0 (Ω); ϕ| Ωe ∈ Ψ e }, where L 2 0 (Ω) = {ϕ ∈ L 2 (Ω); Ω ϕ dΩ = 0}.

Stokes flows

The first goal of the the current work is to present three methods for the Stokes problem in a unified form. In principle, the variables are defined in broken spaces. Then each method is stated as a particular case of the general formulation, by imposing a specific continuity constraint for the approximations of velocity fields: full discontinuous, continuous or divergence-conforming. These methods are discussed for different approximation space configurations, and numerically compared with respect to orders of convergence for velocity and pressure variables.

Consider the problem of finding the pressure p and the fluid velocity u, such that:

-∇ • T( u, p) = f in Ω, (1) 
∇ • u = 0 in Ω, (2) 
u = û over ∂Ω, (3) 
where

f ∈ [L 2 (Ω)] 2 , û ∈ [H 1/2 (∂Ω)] 2
, and T( u, p) = 2µ D( u) -pI, D( u) = 1 2 (∇ u + ∇ u T ) are Stokes stress and symmetric strain rate tensors, respectively, µ being the constant fluid viscosity. We assume that ∂Ω û • η ds = 0.

Weak formulations

In this section, three different weak formulations for Stokes problem shall be presented in an unified form. They differ in the type of scalar piece-wise polynomial spaces Ψ used to approximate the pressure variable, and in the type of polynomial vector spaces for the velocity fields. The Discontinuous Galerkin Method (DG) [START_REF] Toselli | hp discontinuous Galerkin approximations for the Stokes problem[END_REF][START_REF] Girault | A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems[END_REF][START_REF] Rivière | Analysis of a discontinuous finite element method for coupled Stokes and Darcy problems[END_REF] considers broken spaces of type -→ V d and Ψ d . The other two methods can be interpreted as particular DG cases, by imposing specific continuity constraints: the classic H 1 -conforming method [START_REF] Girault | Finite element methods for Navier-Stokes equations: Theory and algorithms[END_REF][START_REF] Stenberg | Mixed hp finite element methods for problems in elasticity and Stokes flow[END_REF] occurs when continuous spaces of type -→ V c are used, and H(div)-conforming formulations are obtained by applying spaces of type -→ V div , as the ones analyzed in [START_REF] Wang | New finite element methods in computational fluid dynamics by H(div) elements[END_REF]. Given any kind of these approximation spaces -→ V and Ψ, the general variational formulation for the Stokes model problem can be written in the mixed form consisting in finding a pair of functions { u, p} ∈

- → V × Ψ verifying, for all { ϕ, ϕ} ∈ - → V × Ψ, a S ( u, ϕ) + b S ( ϕ, p) = f ( ϕ) + (BC), (4) b 
S ( u, ϕ) = ∂Ω ϕû • n ds, (5) 
where f ( ϕ) = Ω ϕ • f dΩ, and the bi-linear forms are

b S ( u, ϕ) = - nel e=1 Ωe ∇ • u ϕ dΩ e + E∈Γ int E ϕ u • n E ds, (6) 
a S ( u, ϕ) = 2µ nel e=1 Ωe D( ϕ) : D( u) dΩ e -2µ E∈Γ E D( u) n E • ϕ ds -β E D( ϕ) n E • u ds + E∈Γ γ E u • ϕ ds. (7) 
The parameter β = ±1 is taken to have a non-symmetric or a symmetric bi-linear form a S , and the term penalized by γ is usually included for stability purposes. The boundary term (BC) shall be defined separately for each formulation.

Discontinuous Galerkin Method

The DG method corresponds to take in the weak variational formulation ( 4)-( 5) test and trial functions in

- → V d × Ψ d .
The boundary term takes the form

(BC) d = 2µβ ∂Ω D( ˆ ϕ) n • û ds + ∂Ω γ û • ϕ ds. (8) 
In [START_REF] Toselli | hp discontinuous Galerkin approximations for the Stokes problem[END_REF], the suggestion is to use penalization of the form γ| E = γ 0 k 2 |E| , k being the degree of polynomials chosen for the velocity approximation. The parameter γ 0 > 0 has to be chosen by the user in order to get stability (inf-sup condition). It has been shown in [START_REF] Rivière | Analysis of a discontinuous finite element method for coupled Stokes and Darcy problems[END_REF][START_REF] Lazarov | Stabilized discontinuous finite element approximations for Stokes equations[END_REF] that, for the symmetric case (β = -1), γ 0 should be sufficiently large, and bounded by a positive value. For the non-symmetric case (β = 1), taking a fixed constant γ 0 > 0 is sufficient. This kind of constraint is standard for the symmetric interior penalty Galerkin (SIPG) method applied to Poisson problems, but for the non-symmetric interior penalty Galerkin (NIPG) case, γ 0 = 0 is allowed for such problems, which is not the case for Stokes problems.

H 1 -conforming formulation

For vector test and trial functions in -→ V c , the jump operator vanishes at Γ int . Furthermore, assuming u| ∂Ω = û and taking ϕ ∈ -→ V c 0 , i.e, vanishing on ∂Ω, thus the weak formulation becomes the classic H 1 -conforming scheme

a c S ( u, ϕ) + b c S ( ϕ, p) = f ( ϕ), (9) b c S ( u, ϕ) = 0, (10) 
for all in ∀ { ϕ, ϕ} ∈ -→ V 0 × Ψ, for which the bi-linear forms a c S ( u, ϕ) and b c S ( u, ϕ) reduce to

a c S ( u, ϕ) = 2µ Ω D( ϕ) : D( u) dΩ, b c S ( u, ϕ) = - Ω ∇ • u ϕ dΩ.

Divergence-conforming formulation

Consider the weak formulation ( 4)-( 5) based on a vector space -→ V div and a pressure space Ψ d such that the pair -→ V div , Ψ d is compatible for mixed formulations for Poisson problems based on T . This means that their local polynomial spaces are related by ∇ • -→ V e = Ψ e . Consequently, some terms of the bi-linear forms can also be modified by using the continuity of normal components of the velocity field, expressing the jumps and average operators only in terms of tangential components, as described in [START_REF] Wang | New finite element methods in computational fluid dynamics by H(div) elements[END_REF]. Precisely, the H(div)-

conforming formulation consists in finding { u, p} ∈ - → V div × Ψ d such that the equations a div S ( u, ϕ) + b div S ( ϕ, p) = f ( ϕ) + (BC) div . ( 11 
) b div S ( u, ϕ) = 0, (12) 
hold for all { ϕ, ϕ} ∈ -→ V div × Ψ d , where the corresponding bi-linear forms are

a div S ( u, ϕ) = 2µ nel e=1 Ωe D( ϕ) • D( u) dΩ e -2µ E∈Γ E D( u) n E • τ E ϕ • τ E ds -β E D( ϕ) n E • τ E • u • τ E ds + E∈Γ γ E |E| E u • τ E • ϕ • τ E ds, (13) 
b div S ( u, ϕ) = - Ω ∇ • u ϕ dΩ. (14) 
Similarly, the boundary term becomes

(BC) div = 2µβ ∂Ω (D( ϕ) n • τ )(û • τ ) ds + ∂Ω γ(û • τ )( ϕ • τ ) ds + ∂Ω ϕû • n ds.
It should be observed that, because of the space compatibility constraint, equation ( 12) implies that the incompressible property ∇ • u = 0 holds strongly in Ω.

Error analysis for the mixed weak formulations

The error analysis considered here holds for Stokes problems applied to homogeneous media. For simplicity, the homogeneous Dirichlet condition u| ∂Ω = 0 is considered. Let u and p be the exact solutions, and u h ∈ -→ V h and p h ∈ Ψ h their approximations based on shape-regular partitions T h , with mesh size h. Norms for L 2 (Ω) and H m (Ω) are used for error estimations, denoted by || • || and || • || m , respectively. In the context of methods using discontinuous velocity approximations, mesh dependent H 1 -norms || • || 1,h are also applied.

As is well known [START_REF] Brezzi | Mixed discontinuous Galerkin methods for Darcy flow[END_REF], the convergence of mixed methods depends not only on the approximation potential of the spaces -→ V h , and Ψ h , but also on the satisfaction of a inf-sup stability condition between them. The verification of the inf-sup condition is simpler when stabilization techniques are imposed, allowing more flexibility in the choice of the approximation spaces. Without applying stabilization, e.g. when using H 1 -conforming formulation, Method Space L 2 -error rates Divergence configurations in u in p free

DG - → Q d k Q d k-1 , N-S k k No - → Q d k Q d k-1 , S k + 1 k No - → Q d RT (k) Q d k , N-S k k No - → Q d RT (k) Q d k , S k + 1 k No H 1 - → Q c k Q c k-1 k + 1 k No - → Q c k+1 Q d k-1 k + 1 k No H(div) - → Q div RT (k) Q d k , N-S k k Yes - → Q div RT (k) Q d k , S k + 1 k Yes
Table 1: Type of space configurations used for approximations of the variables u and p for two-dimensional Stokes problems defined on convex regions, and some of their main properties.

or by just doing partial stabilization, when H(div)-conforming approximations are used, the approximation spaces are required to satisfy some particular compatibility constraints.

As shall be described in the next sections, rates of convergence for both variables are dependent on each other, and they are affected by the choice of the approximation spaces. Precisely, the smallest value between the orders of approximation of the exact solutions u in -→ V h and p in Ψ h (measured in H 1 and L 2 norms, respectively) determines the rate of convergence of the approximate velocity u h and pressure p h , simultaneously, under the corresponding norms. However, the velocity error measured by the L 2 -norm can be one unit higher, provided adjoint consistent formulations are used.

Table 1 summarizes all the methods that shall be numerically compared in the next sections, and their main properties with respect to expected orders of convergence for velocity and pressure, using the L 2 -norms, and the strongly verification of divergence-free velocity.

Stabilized full discontinuous weak formulations

Without any continuity constraint, the spaces -→ V d × Ψ d are usually formed by local polynomial spaces restricted to the elements Ω e . In [START_REF] Lazarov | Stabilized discontinuous finite element approximations for Stokes equations[END_REF], a generalized error analysis for approximate velocity and pressure variables, obtained by stabilized weak formulations (4)-( 5), has been developed. No restriction on the geometry of the elements Ω e is necessary, and quite general local finite element spaces of discontinuous functions are allowed, by just requiring them to satisfy the restriction

∇Ψ e ⊂ - → V e . ( 15 
)
For the symmetric case, the penalization function γ should be sufficiently large, and bounded bellow by a positive value. For the non-symmetric case, it is sufficient to take γ > 0. Under such assumptions, the inf-sup condition holds, and assuming that P l ⊂ -→ V e and P m ⊂ Ψ e , with l ≥ 1 and m ≥ 0, then

|| u -u h || 1,h + ||p -p h || ≤ C h l || u|| l+1 + h m+1 ||p|| m+1 , ( 16 
)
where C is a constant, independent of h, and || • || 1,h denotes a standard mesh-dependent H 1 -norm used in DG methods. Furthermore, assuming elliptic-regularity, holding for bidimensional convex regions, and applying the symmetric weak formulation, the following improved order of convergence holds for the velocity error measured by the L 2 -norm

|| u -u h || ≤ C h l+1 || u|| l+1 + h m+2 ||p|| m+1 . (17) 
These results correspond to Theorem 4.1 and Theorem 4.2 in [START_REF] Lazarov | Stabilized discontinuous finite element approximations for Stokes equations[END_REF].

For the current applications, the following two space configurations, verifying the restriction [START_REF] Gatica | Analysis of the HDG method for the Stokes-Darcy coupling[END_REF], shall be used for quadrilateral meshes, in symmetric and non-symmetric forms:

• Space configuration of type - → Q d k , Q d k-1 : discontinuous velocity space with - → V e = - →
Q k , and discontinuous pressure space with Ψ e = Q k-1 , for k ≥ 2. Note that this particular case has been previously analyzed in [START_REF] Schötzau | Mixed hp-DGFEM for incompressible flows[END_REF].

• Space configuration of type - → Q d RT (k) , Q d k , k ≥ 1:
the pressure space is discontinuous with Ψ e = Q k , and the velocity space is discontinuous with

- → V e = Q k+1,k × Q k,k+1
, for k ≥ 1, corresponding to the local spaces used in the construction of the classic Raviart-Thomas spaces for mixed formulations of elliptic problems on quadrilateral element geometry.

Methods without or with partial penalization

These are the cases of H 1 -conforming (no penalization) or H div -conforming (partial penalization of the tangential components of the velocity) formulations. Usually, their local spaces -→ V e and Ψ e , defined on Ω e , are constructed by means of standard transformations, based on the geometric diffeomorphisms F Ωe : KΩe → Ω e , which map polynomial spaces defined on the master element KΩe to -→ V e or to Ψ e . When F Ωe is affine, the functions in -→ V e and Ψ e are polynomials as well. For such methods without (or with insufficient) penalization, the inf-sup condition requires that the approximation spaces for velocity and pressure verify some special compatibility constraints.

H 1 -conforming formulation

On this context, there exist rather general techniques for verifying the inf-sup condition and for the construction of compatible space configurations

- → V c h × Ψ h satisfying it, both with continuous Ψ h = Ψ c h or discontinuous Ψ h = Ψ d h pressure spaces.
A large collection of such methods, which are known to be stable, are described in the book by Girault and Raviart [START_REF] Girault | Finite element methods for Navier-Stokes equations: Theory and algorithms[END_REF]. The analysis in [START_REF] Stenberg | Mixed hp finite element methods for problems in elasticity and Stokes flow[END_REF] also considers several stable approximation space configurations, for quadrilateral or hexahedral geometry, with discontinuous pressure spaces Ψ h = Ψ d h . For such stable methods, classic error estimations are of type

|| u -u h || 1 + ||p -p h || ≤ C inf v∈ -→ V c h || u -v|| 1 + inf ϕ∈Ψ h ||p -ϕ|| . (18) 
Furthermore, assuming elliptic-regularity, enhanced L 2 -errors for the velocity holds:

|| u -u h || ≤ Ch    inf v∈ -→ V div h || u -v|| h 1 + inf ϕ∈Ψ h ||p -ϕ||    . ( 19 
)
The following cases, based on affine quadrilateral meshes, shall be compared:

• Space configuration of type - → Q c k , Q c k-1 :
these are the well known Taylor-Hood spaces (k = 2), where

- → V e = - →
Q k and continuous pressure space with Ψ e = Q k-1 , which have been analyzed in [START_REF] Stenberg | Error analysis of some finite element methods for the Stokes problem[END_REF].

• Space configuration of type - → Q c k+1 , Q d k-1 , k ≥ 2:
using discontinuous pressure space with Ψ e = Q k-1 , the velocity approximation spaces should be larger than -→ Q k , as discussed in [START_REF] Stenberg | Mixed hp finite element methods for problems in elasticity and Stokes flow[END_REF]. One stable possibility is to take

- → V e = - → Q k+1 .

Divergence-conforming formulation

Assuming velocity approximation spaces

- → V div h in H(div, Ω)
, only the tangential component of the velocity needs to be penalized at element interfaces. As described before, for general DG methods, the penalization function γ to be applied to symmetric H(div)conforming formulations should also be sufficiently large, and bounded bellow by a positive value. For the non-symmetric case, it is sufficient to take γ > 0. Using this partial penalization, the inf-sup condition for the Stokes problem can be obtained by imposing an extra compatibility constraint [START_REF] Wang | New finite element methods in computational fluid dynamics by H(div) elements[END_REF]: the pair -→ V div h × Ψ d h should form compatible spaces for the mixed formulation of Poisson problems. Under these hypotheses, Theorem 5.1 and Theorem 5.2 in [START_REF] Wang | New finite element methods in computational fluid dynamics by H(div) elements[END_REF] imply error estimations of type ( 16) and ( 17), the convergence rates depending on the particular family of compatible spaces adopted. Note that similar results hold for Navier-Stokes flows [START_REF] Cockburn | A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations[END_REF], using discretizations in the context of local discontinuous Galerkin (LDG) methods, based on space configurations which are compatible for the Poisson problem.

The following space configuration for affine quadrilaterals meshes shall be applied:

• Space configuration of type - → Q div RT (k) , Q d k , k ≥ 1:
this is the well known Raviart-Thomas space configuration introduced in [START_REF] Raviart | A mixed finite element method for 2-nd order elliptic problems[END_REF] for mixed methods of Poisson problems. The pressure space is discontinuous with Ψ e = Q k , and the velocity space is

H(div)-conforming with - → V e = Q k+1,k × Q k,k+1 , verifying the compatibility property ∇ • - → V e = Ψ e .
For this type of spaces, projections Π h u and Λ h p over -→ V div h and Ψ h can be defined commuting the divergence operator: ∇

• - → V div h = Λ h [∇ • u]. Furthermore, || u -Π h u|| 1,h = O(h k ) and ||p -Λ h p|| = O(h k+1 ).
With the help of such projections, error estimations of type ( 16)-( 17) hold with l = m = k.

Verification tests

A simple Stokes model, with known analytic solution, is adopted in order to verify the implemented computational code for all the described weak formulations. The domain is Ω = (0, 1) × (0, 1), and with properly chosen forcing term f , the functions u = sin(2πx) cos(2πy) -cos(2πx) sin(2πy)

, p = - 1 π cos(πx) e y , solve the problem -∆ u + ∇p = f in Ω, ∇ • u = 0 in Ω, u • n = 0 on ∂Ω.
The results obtained with the methods listed in Table 1, based on square meshes Π h with spacing h = 1/N, N = 2 i , i = 2, • • • 6, shall be compared in terms of errors measured by L 2 -norm.

On the choice of the stabilization parameter γ As already mentioned, the function γ is piece-wise defined over the skeleton by γ| E = γ 0 k 2 |E| , k being the polynomial order chosen for the approximation of the velocity. To identify good choices of the parameter γ 0 concerning stability and accuracy, a numerical study has been performed for the current test problem to evaluate the behaviour of the discontinuous and the H(div)-conforming methods based on the mesh with h = 0.125. The plots in Fig. 1 show that the accuracy of u stabilizes for increasing values of γ 0 . The symmetric DG formulations using space configurations of type

- → Q d k Q d k-1
are more sensitive to the choice of this parameter, requiring much larger values of γ 0 to reach a steady accuracy, a behaviour that is more significant as k increases. The methods using space configurations of type

- → Q d RT (k) Q d k and - → Q div RT (k) Q d
k are less sensitive to the variation of γ 0 . Based on this numerical analysis, γ 0 = 20 was considered a safe choice for all methods, and shall be adopted for all simulations presented in what follows. |E| on the accuracy of u using symmetric (S) and non-symmetric (N-S) methods for space configurations
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- → Q d k Q d k-1 , - → Q d RT (k) Q d k and - → Q div RT (k) Q d k ,
on a square mesh with spacing h = 0.125, and using k = 2 (left side) and k = 3 (right side).

Confirmation of the predicted rates of convergence

The errors in u and p, obtained with all the methods listed in Table 1 are displayed in Table 2, for k = 2 and 3. The expected convergence rates of order k + 1 for u are clearly observed in all the adjoint consistent cases. For the non-symmetric methods, stronger 

N -→ Q d 2 Q d 1 (N-S) -→ Q d 2 Q d 1 (S) N -→ Q d 3 Q d 2 (N-S) -→ Q d 3 Q d 2 (S) || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || 4 2.04E -2 1.25E -1 1.92E -2 6.58E -2 4 2.01E -3 3.59E -2 1.95E -3 3.22E -2 8 2.84E -3 2.58E -2 2.51E -3 1.60E -2 8 
N -→ Q d RT (2) Q d 2 (N-S) -→ Q d RT (2) Q d 2 (S) N -→ Q d RT (3) Q d 3 (N-S) -→ Q d RT (3) Q d 3 (S) || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || 4 1.38E -2 5.78E -2 1.40E -2 6.99E -2 4 
N -→ Q c 2 Q c 1 -→ Q c 3 Q d 1 N -→ Q c 3 Q c 2 -→ Q c 4 Q d 2 || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || 4 2.00E -2 1.78E -2 2.00E -3 1.65E -2 4 
N -→ Q div RT (2) Q d 2 (N-S) -→ Q div RT (2) Q d 2 (S) N -→ Q div RT (3) Q d 3 (N-S) -→ Q div RT (3) Q d 3 (S) || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || || -→ u --→ u h || ||p -p h || 4 1.38E -2 5.88E -2 1.40E -2 6.99E -2 4 1.36E -3 6.85E -3 1.35E -3 6.80E -3 8 1.85E -3 8.20E -3 1.86E -3 9.54E -3 8 
→ Q d k Q d k-1 and - → Q d RT (k) Q d k ; H 1 -conforming method of types - → Q c k Q c k-1 , and - → Q c k+1 Q d k-1
; H(div)-conforming symmetric and non-symmetric methods of type

- → Q div RT (k) Q d k .
orders occur, greater than the expected order k, specially for the spaces of type

- → Q div RT (k) Q d k , - → Q div RT (k) Q d k , and 
- → Q d 3 Q d 2 ,
for which convergence rates of order k + 1 are clearly observed, one unit higher than the predicted order k for methods with lack of adjoint consistency. Probably this fact could be justified by the size of the penalization γ| E = 20k 2 |E| , similarly to the case of non-symmetric DG methods for Poisson problems [START_REF] Arnold | Unified analysis of discontinuous Galerkin methods for elliptic problems[END_REF], where the theoretically predicted loss of optimality in L 2 for the velocity can be compensated by imposing strong penalty. It is also observed that the choice of the approximation space for the velocity (continuous, discontinuous or divergence-conforming) does not have a significant impact on the velocity accuracy. Excepting the non-symmetric

- → Q d 2 Q d 1 case
, all the other velocity space configurations give comparable velocity accuracy for a given polynomial degree. The difference in error is smaller when using higher order schemes (e.g. k = 3). Concerning the accuracy of the pressure, the predicted order k clearly holds for both stable configurations of type

- → Q c k Q c k-1 and - → Q c k+1 Q d k-1
when using H 1 -conforming approximation spaces, and for the DG methods with spaces of type

- → Q d k Q d k-1 .
However, super-convergence of order k + 1 is observed for all methods using configurations of type

- → Q d RT (k) Q d k and - → Q div RT (k) Q d k ,
a fact that the theoretical analysis cannot explain. Similar faster convergence results for pressure have also been numerically observed in [START_REF] Cockburn | A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations[END_REF] for a DG method applied to a Navier-Stokes problem using

- → Q div RT (k) Q d k space configuration.
With respect to symmetric versus non-symmetric schemes, their results seem to be quite similar, except for the

- → Q d 2 Q d 1 case
, for which the symmetric case gives better pressure accuracy.

These results are represented graphically by the plots in Fig. 2. The L 2 -norms of ∇ • u are displayed in Table 3 illustrating the strongly enforced divergence-free property obtained with the 

- → Q div RT (k) Q d k space configurations.
- → Q d k Q d k-1 ; H 1 -conforming method of type - → Q c k Q c k-1
; H(div)-conforming symmetric and non-symmetric methods of type

- → Q d RT (k) Q d k .
Error curves obtained with the H 1 -conforming method are shown in Fig. 3 for the velocity u (left side) and for p (right side), with stable space configurations of type

- → Q c k Q c k-1 , and - → Q c k+1 Q d k-1
, using k = 2 (top side) and k = 3 (bottom side). Since the rates of convergence of both variables are dependent on each other, the enlargement of the velocity approximation space in the -→ Q c k Q c k-1 space configuration does not imply in a better order of convergence, but the velocity errors are more than one (or even two) orders of magnitude less than the ones obtained with the Taylor-Hood method. The results for its counterpart space configuration

- → Q c k Q d k-1
, using discontinuous pressure approximations, are also include in Fig. 3. Note that the error analysis in [START_REF] Stenberg | Mixed hp finite element methods for problems in elasticity and Stokes flow[END_REF] does not apply to this framework. In fact, according to it (see Method 6 in [START_REF] Stenberg | Mixed hp finite element methods for problems in elasticity and Stokes flow[END_REF]), taking the velocity approximations in -→ Q c k , a maximal stable space combination requires discontinuous pressure with local polynomials in Q k-2 ∪ P k-1 . Despite this case, for this particular test problem, the results for

- → Q c k Q d k-1
appear to be quite stable, the velocity being in close agreement with its counterpart

- → Q c k Q c k-1 .
For k = 3, the pressure approximations of these two methods are also similar.
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→ Q c k Q c k-1 , - → Q c k+1 Q d k-1
, and space configuration

- → Q c k Q d k-1
, based on uniform square meshes with spacing h, for k = 2 (top side) and k = 3 (bottom side). 
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- → Q c k Q c k-1 and - → Q c k+1 Q d k-1
, the symmetric (S) and non-symmetric (N-S) DG method of types

- → Q d k Q d k-1
, and the H div -conforming method of type

- → Q div RT (k) Q d 2 , for k = 1, 2
, and square meshes with spacing h = 1/N .

Coupled Stokes-Darcy model

We present in this section a finite element formulation for the coupled model considering a Darcy's flow in a region Ω D and a Stokes flow in a region Ω S . Both regions form the computational domain Ω = Ω D ∪ Ω S , and are assumed to be polygonal, sharing the interface Γ SD = ∂Ω D ∩ ∂Ω S . Let n SD be unit normal vectors to the edges in Γ SD , pointing from Ω S to Ω D , and let τ SD be the associated positive oriented tangent vectors. For convenience, restrictions of functions to each of the flow domains are denoted by v S = v| Ω S , and v D = v| Ω S .

The coupled Stokes-Darcy model problem consists in finding u and p such that:

-∇ • T( u, p) = f in Ω S , µK -1 u + ∇p = 0 em Ω D , ∇. u = f in Ω,
where K is the permeability tensor, f ∈ [L 2 (Ω S )] 2 , and f ∈ L 2 (Ω), with f | Ω S = 0. The boundary conditions for this coupled problem are:

u = 0 in ∂Ω S \ Γ SD , u . n = 0 in ∂Ω D \ Γ SD .
Furthermore, the following conditions should be enforced at the interface Γ SD :

• Flux continuity: u S • n SD = u D • n.
• Balance of normal forces:

p S -2µ [D( u S ) n SD ] • n SD = p D .
• Beavers-Joseph-Saffman (BJS) condition [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF]:

u S • τ SD = -2G [D( u S ) n SD ] • n SD ,
where G > 0 is an empirical coefficient.

[13] for vector spaces of type -→ V div , where general H(div)-L 2 balanced spaces are allowed, in different geometry, and numerical simulation results are presented for quadrilateral meshes, demonstrating the main qualities of the method. A recent study [START_REF] Márquez | Strong coupling of finite element methods for the Stokes-Darcy problem[END_REF] considers different forms for the combined mixed method using space configuration of type -→ V c,div for the velocity fields, combined with appropriate pressure spaces Ψ, which should be of type Ψ d on the Darcy's part, but can be of type Ψ c or Ψ d on the Stokes part, depending on the kind of H 1 -conforming space used there.

As already mentioned, the special interest on the method using balanced H(div) -L 2 space configurations for the simulation of Stokes and coupled Stokes-Darcy mixed methods comes mainly from its important capability of solving strongly the divergence-free equation, a task that few schemes can accomplish. Furthermore, for coupled flows, the same pair of approximation spaces can be used in both Stokes and Darcy's regions, a convenient characteristic not shown by most methods designed for such problems. Another advantage is that the Beavers-Joseph-Saffman condition is easier to enforce, since the bi-linear form only involves the tangential component of the velocity over the Stokes-Darcy interface.

The next example verifies the implemented methodology of these divergence-conforming methods by applying them to a Stokes-Darcy problem with known exact solution.

Verification test

The following problem was proposed by [START_REF] Chen | Weak galerkin method for the coupled Darcy-Stokes flow[END_REF]. The region is a rectangle where the Stokes domain is Ω S = (0.0, π) × ([0.0, 1.0), and the Darcy domain is Ω D = (0.0, π) × (-1.0, 0.0), with interface Γ SD = {0 < x < π, y = 0}. Viscosity coefficient µ = 1, constant permeability K = I, and coefficient for the BJS interface condition µ * = 1 are adopted. For this problem, the exact velocity and pressure fields are: The forcing functions g and f are obtained from these exact solutions. Approximations u h ∈ -→ V h , p h ∈ Ψ h are computed using uniform rectangular meshes T h with mesh sizes h xi = π/N , and

u S = v ( 
h y i = 2/N , for N = 2 j , j = 2, • • • , 6, and H(div) -L 2 balanced spaces - → V div Ψ d of type Q div RT (k) Q d k , k = 1, 2 and 
3. For this verification test, symmetric formulation with stabilization parameter γ 0 = 12 is considered on the Stokes part. The results are represented graphically in Fig. 4, where the L 2 -rates of order k + 1 for velocity and pressure, predicted by the Raviart-Thomas mixed scheme on the Darcy's domain, have been achieved. The results for the Stokes flow are consistent with the ones obtained in the previous section, and correspoding to the predicted order k + 1 for velocity, and rates close to order k + 1 for pressure, which is higher than the predicted order k. 
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Application

This section is dedicated to the application of the methods discussed in the previous sections to treat a Stokes fluid passing through obstacles. This kind of problem is of interest in Civil Engineering applications to represent self-compacting concrete flow around reinforcing bars [START_REF] Sandström | A two-scale finite element formulation of Stokes flow in porous media[END_REF][START_REF] Kolařík | Computational homogenization of fresh concrete flow around reinforcing bars[END_REF]. The idea is to replace the original multiscale problem, that would require strongly refined meshes to represent the small scales, by a Darcy's type flow with an homogenized permeability property, which is simpler to resolve. The procedure involves an expensive first step of Stokes simulation in order to estimate the homogeneous permeability coefficient. Then different scenarios can be solved by a reduced coupled Stokes-Darcy model, using less refined space configurations. This strategy is illustrated in this section using the following test example. In order to obtain a permeability coefficient for Darcy domain, compatible with the obstacle region of the first problem, the pressure difference ∆p num = 188, 44 between left and right extremity points of Ω 2 in the simulation of Step 1 is computed. It is shown that pressure has approximately linear variation through this second domain. Then the permeability coefficient κ num = 0, 0212 can be obtained from numerical results. For verification, this is compared with an estimated coefficient κ est by the homogenization procedure suggested in [START_REF] Tamayol | Analytical determination of viscous permeability of fibrous porous media[END_REF], where different curves are plotted for the parameters: ε = 1 -πd 2 4S 2 and κ * = κest d 2 , related to geometrical properties of the obstacles (S, surface and d, diameter). In [START_REF] Tamayol | Analytical determination of viscous permeability of fibrous porous media[END_REF], for obstacles of radius r.

Based on the comparative study shown in Table 4, the permeability value κ num can be considered and Step 2 is performed. For comparison, the pressure fields obtained in Step 1 and Step 2 are illustrated in Fig. 7. Pressure profiles at y = 2 are plotted in Fig. 8. Observe that the pressure is constant in Ω 1 (free flow domain) and then, when the flow reaches the obstacle domain, the pressure varies close to linear profile verified by the reduced coupled Stokes-Darcy model of Step 2. 

Conclusions

Approximating the Stokes equations using discontinuous Galerkin methods yields consistent results with optimal convergent rates. The use of discontinuities between elements simplifies the stabilization of numerical approximations, by means of penalization, giving flexibility on the choice of approximation spaces and element geometry. They are also appealing for problems where there is imposition of discontinuous boundary conditions, and in the treatment of interfaces between domains comprising different formulations. However, Discontinuous Galerkin approximations lead to larger systems of equations with extended bandwidth and, consequently, demanding greater computational capacity.

The application of H(div)-conforming spaces revealed to be an efficient form of approximating velocity fields in Stokes, Darcy and coupled Stokes-Darcy equations, leading to optimal convergence rates, even when velocity and pressure spaces are defined by polynomials of the same degree, as in the schemes using

- → Q d RT (k) Q d k and - → Q div RT (k) Q d
k space configurations based on quadrilateral meshes. Furthermore, the former one has the additional advantage of being strongly conservative, and to allow natural enforcement of Beavers-Joseph-Saffman interface condition in coupled flows.
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 1 Figure 1: Stokes problem: influence of the penalization parameter γ| E = γ0k 2|E| on the accuracy of u using symmetric (S) and non-symmetric (N-S) methods for space configurations-→ Q d k Q d k-1 ,

Figure 2 :

 2 Figure 2: Stokes problem: errors in u (left side) and in p (right side), measured in L 2 -norms, obtained with formulations based on square meshes with spacing h, for k = 2 (top side) and k = 3 (bottom side): symmetric (S) and non-symmetric (N-S) DG methods of types -→ Q div RT (k) Q d k , and

1 Figure 3 :

 13 Figure 3: Stokes problem: L 2 -errors in u (left side) and p (right side), for H 1 -conforming methods with stable space configurations -→ Q c k Q c k-1 ,

  y) cos x v(y) sin x , p S = sin x sin y, where v(y) = 1 π 2 sin 2 (πy) -2, u D = (e -y -e y ) cos x -(e -y + e y ) sin x , p D = (-e -y + e y ) sin x.

Figure 4 :

 4 Figure 4: Stokes-Darcy problem: convergence history for u (left side), p (right side), on Ω S (top side) and on Ω D (bottom side), using spaces -→ Q div RT (k) Q d k , k = 1, 2 and 3, with symmetric formulation on Ω S .

• Step 1 : 2 [ 8 ]• Step 2 :

 1282 Consider the domain Ω = Ω 1 ∪ Ω 2 (with 8 × 4 size) illustrated in the left side of Fig.5, where a Newtonian fluid (µ = 1) is governed by the Stokes equation. On the right part Ω 2 , the domain is populated with obstacles of radius r = 0.25, where the boundary condition u = 0 is enforced around them (i.e., on ∂Ω f 2 ). At the left border, u • n = ûn = 1, and p n = (2µD( u) -p I) • n = 0 on the right side. Elsewhere, no-penetration condition ûn = 0 is specified. Numerical resolution with H(div, Ω)-conforming formulation is performed, with space configurations of type -→ P div BDF M (3) P d based on the adaptive triangular mesh shown in Fig.6. Coupled Stokes-Darcy problem with domains Ω S = Ω 1 and Ω D = Ω 2 , and same boundary conditions as in Step 1, according to illustration in the right side of Fig.5. The permeability coefficient for Darcy's domain (κ num ) is obtained from the numerical solution of pressure of Step 1, and it is also verified by an homogenization procedure documented in[START_REF] Tamayol | Analytical determination of viscous permeability of fibrous porous media[END_REF]. The problem is approximated by the combined formulation with space configuration-→ V div Ψ d of type -→ Q div RT (1)Q d 1 on both sides. For this simulation, the mesh is much more simpler: exact results are obtained by using a mesh with 4 × 2 quadrilateral elements.

Figure 5 :

 5 Figure 5: Domains and boundary conditions: Stokes flow with obstacles solved in Step 1 (left side), coupled Stokes-Darcy flow solved in Step 2 (right side).

Figure 6 :

 6 Figure 6: Step 1: mesh geometry (1255 nodes and 2540 elements) for the Stokes flow with obstacles.

Figure 7 :

 7 Figure 7: Fluid pressure fields: Stokes flow with obstacles solved in Step 1 (left side), coupled Stokes-Darcy flow solved in Step 2 (right side).

Figure 8 :

 8 Figure 8: Fluid pressure profiles at y = 2 for Step 1 (left side), and Step 2 (right side).

Table 2 :

 2 

	8.82E -5	4.45E -4	8.79E -5	4.43E -4

Stokes problem: errors in u and p, measured in L 2 -norms, obtained with formulations based on square meshes with spacing h = 1/N , and using k = 2 (left side) and 3 (right side): symmetric (S) and nonsymmetric (N-S) DG method of types -

Table 3 :

 3 Stokes problem: L 2 -errors in ∇• u for the H 1 -conforming method of types

		3.70E -1	5.14E -2	4	4.38E -14	4.36E -14
	8	9.97E -2	6.78E -3	8	7.06E -14	6.62E -14
	16	2.54E -2	8.93E -4	16	9.91E -14	9.91E -14
	32	6.37E -3	1.28E -4	32	1.66E -13	1.64E -13
	64	1.60E -3	2.25E -5	64	3.33E -13	3.20E -13

Table 4 ,

 4 κ est and κ num values are compared for different meshes with obstacles of radius r.

	r	0.25	0.30	0.35	0.40
	κest	0.0250 0.0130 0.0050	0.0020
	κnum	0.0212 0.0115 0.0054	0.0019
	∆pnum	188.44 348.57 738.43 2067.32

Table 4 :

 4 Comparative study of permeability coefficients κ num (corresponding to ∆p num ) and κ est

Acknowledgments

The authors thankfully acknowledge financial support from CAPES -Brazilian Federal Agency for Post-graduate Education -(grant 01P-4376/2015), CNPq -the Brazilian Research Council (grants 305425/2013-7, and 304029/2013-0), and to FAPESP -Research Foundation of the State of São Paulo, Brazil (grant 2016/05155, and 2016/13637-5).

Weak formulations for the Stokes-Darcy problem

The main goal here is to show how the well known capacity of divergence-conforming spaces for flux representation in mixed methods for Darcy's flows can be combined with the different schemes for Stokes flows illustrated in the previous section to design different stable and accurate weak formulations for the coupled Stokes-Darcy problem.

Let T S and T D be shape-regular partitions of Ω S and Ω D , respectively, and assume they match along the interface Γ SD . This means that T = T S ∪ T D form a partition of Ω S ∪ Γ SD ∪ Ω S . Given pressure and velocity approximation spaces Ψ and -→ V based on the partition T , the mixed formulation searches for a pair of functions

The bi-linear forms for the coupled problem can expressed as

where the components a S ( u S , ϕ S ) and b S ( u S , ϕ S ), coming from the Stokes part, are obtained from the corresponding ones presented in the previous section, with some minor modifications. For instance, the integrals are restricted to the elements Ω e ∈ T S , to the edges in the skeleton Γ S that are not included in the interface Γ SD , or to the internal edges in Γ int,S . Following the unified presentation of the previous section for different schemes to approximate Stokes flows, three kinds of approximation spaces

V div can be considered for the approximate velocity fields on coupled Stokes-Darcy problems, depending on the continuity constraint required for the Stokes velocity:

For the velocity space configurations -→ V d,div and -→ V div , it is convenient to take local polynomial spaces -→ V e of the same type in both sides, for Ω e ∈ T S and for Ω e ∈ T S . But they should be well balanced with the corresponding pressure approximation space Ψ = Ψ d by the compatibility property ∇ • -→ V e = Ψ e . The methodology using vector spaces of type -→ V d,div has been introduced and analyzed in [START_REF] Rivière | Locally conservative coupling of Stokes and Darcy flows[END_REF] by using local approximations of type P k P k-1 . Then the method has been extended in